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Mathematics-I 

Prof. S.K. Ray 

Department of Mathematics and Statistics 

Indian Institute of Technology, Kanpur 

 

Lecture - 8 

Differential Functions 

 

Today we start our lecture with differentiability of functions defined on real lines. 
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 So differentiability, here the set up is as follows. Suppose I stands for an open interval of 

the form a, b and let us say, f is a function f defined on I taking values on the real line. 

Let us also suppose x naught is a point in I. We want to define, what do we mean by 

saying that f is differentiable at the point x naught. The definition goes as follows: f is 

said to be differentiable. In short, I will write it diff at x naught if the following limit 

exists. That is, limit x going to x naught, f of x minus f of x naught divided by x minus x 

naught exists finitely. 

 

This definition can also be written in a different fashion. I will just put it as a remark, that 

the other definition is equivalent to limit h going to 0, f of x naught plus h minus f of x 

naught divided by h. Now what does this definition actually mean? 
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For this, we need to draw the following picture. Let us assume that the function is 

represented by a curve of this form. Let us say this is the point x naught. Now x naught 

plus h should be somewhere here. This is x naught plus h. The corresponding values we 

will denote, certainly, by f of x naught and then this is f of x naught plus h. Now if I look 

at the quotient f of x naught plus h minus f of x naught divided by h, it just means that I 

look at the line we join those two points. It is the slope of the line joining x naught, f x 

naught and x naught plus h f of x naught plus h.  

 

When you take the limit h going to 0 in the limit, then we get the slope of the tangent to 

the curve at the point x naught, f x naught. This is the geometrical interpretation of the 

derivative of the function at a point. Now it might happen then, once we know the 

geometric interpretation that, all such curves, they may not have well defined tangent. 

Analytically it would mean that there are some functions which are not differentiable at 

certain points. Let us look at the examples first.  
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Our first example is very typical one of a function which is not differentiable at point. We 

look at the function f x equals to mod x for all x in R. Now you can easily draw the graph 

of this function. What it looks like, it is very simple function. This is the y axis, then I 

have x axis. This is the origin 0. Then the graph of the function is this and this and we see 

that at the point 0, the function has a sharp edge. As such, it would mean then that the 

function possibly does not have well defined tangent there. That means, our definition of 

differentiability should fail for the function at the point 0. Let us check why it is so. 

 

So I look at the limit h going to 0, f of 0 plus h minus f of 0 divided by h and then I put 

the value of the function. Then it would mean limit h going to 0, modulus of h. Of course 

modulus of 0 is 0 divided by h. Now, if I look at the limit h going to 0 plus, now it means 

that h approaches from the right hand side. This then by the definition of modulus, it is h 

by h which equals to 1. But now, if I look at limit h going to 0 minus, that is, I am 

approaching 0 from the negative side, again by the definition of modulus, I have minus h 

because my h is negative but modulus of h has to be positive. So I multiply with it by 

minus divided by h.  The answer I get is minus 1. They do not match. 
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This implies that f is not differentiable at x equals to 0 although it is easy exercise to 

check that f is differentiable all at other points. So the next conclusion is this, that f is 

differentiable on R minus 0. You see whenever the function has come with sharp edge, 

the differentiability fails there. Nevertheless, differentiability is a stronger property than 

something which you are already know, namely continuity of the function and that is the 

first result we are trying to prove. Now, that is, we will try to prove that if the function is 

differentiable at a point, then the function has to be continuous there. That is our next 

theorem.  

 

(Refer Slide Time: 08:21) 

 

 

Let f be from an open interval I to R and x naught is a point in I. If f is differentiable at x 

naught, then f is continuous at x naught. So the proof of this is very simple. We know by 

definition of continuity, we need to prove that limit x going to x naught f x must be equal 

to f of x naught. So what we do is, we write f x equals to f x minus f x naught divided by 

x minus x naught and then multiply with it by x minus x naught. So the net result is f x 

minus f x naught. Then I cancel f x naught by adding with it. So this is the expression and 

now I take the limit. This implies that limit x going to x naught f of x is certainly equals 

to limit x going to x naught f x minus f x naught divided by x minus x naught into x 

minus x naught plus limit x going to x naught f x naught.  
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Notice that I have divided this expression of limit on the right hand side, simply because 

of the one thing. I know f x minus f x naught by x minus x naught. That is this quantity; it 

has a well defined limit as f is differentiable as x goes to x naught, this quantity also has 

the well defined limit. So the product limit exists. On the right side, I have a constant 

function whose limit as x goes to x naught is also exists. I can write it in this form. 

 

Then the next line is very obvious. I just write it as limit x going to x naught f x minus f x 

naught divided by x minus x naught into limit x going to x naught x minus x naught plus 

the last limit, limit x going to x naught f x naught and then it is easy to see what is the end 

result.  
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So end result is f prime at x naught because f is differentiable at x naught. So this is 

where I am using the fact that f is differentiable. Otherwise f may not exist. So this is the 

second quantity, 0 plus f of x naught. The net result is f of x naught. This is precisely 

what we wanted to prove. This implies f is continuous at x naught. So when are we on 

with this, we want to do some calculus of derivatives. That is the familiar rule because 

derivative after all is a operation on functions. So there are certain things which we will 

like to know and we write it as a theorem. 
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Assume that f and g are differentiable functions at x naught. Then number 1, f plus g: this 

is also differentiable at x naught and it is given by f prime at x naught plus g prime at x 

naught. Second is about the point wise product of functions. That is, f dot g prime at x 

naught, this is f prime x naught times g x naught plus f x naught times g prime x naught. 

Here, the meaning of the function f dot g is the point wise product. That is f dot g at x is 

defined to be f of x times g of x. The right hand side, certainly, makes sense because f x 

and g x are two real numbers. So I can multiply them.  

 

The third property about the quotient, that if g is non-zero at x naught, then f by g prime 

at x naught is g x naught squared times f prime x naught into g x naught minus f x naught 

times g prime x naught. Well for this actually what I need is, it is the function g which I 

have written here. The precise statement should be, it is non-zero in the neighborhood of 

x naught. Now the first one, the number 1 is fairly simple that you just write down the 

definition of the derivative for the function f plus g and separate things. It follows easily. 

Only 2 requires bit of our attention. We will start with proving 2. 
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So the given function is, I call it H x, equals to f x into g x and then I want to look at limit 

x going to x naught H x minus H x naught divided by x minus x naught and then I write 
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down the definition of H. That is, limit x going to x naught f x into g x minus f x naught g 

x naught divided by x minus x naught. Then what I do is, I write it as limit x going to x 

naught. I write it as f x g x minus f x naught g x plus f x naught g x minus f x naught g x 

naught and I divide the whole thing by x minus x naught, simple. 

 

Notice that the middle terms cancel each other, that is, this term and this term. It has been 

arranged in such a fashion that they cancel each other. Now if I separate terms, what I get 

is this limit x going to x naught f x minus f x naught divided by x minus x naught into g x 

plus g x minus g x naught divided by x minus x naught into f x naught, just by separating 

terms. 

 

Now notice the first factor, limit x going to x naught f x minus f x naught by x minus x 

naught, that is certainly f prime x naught but the added terms g x which we know, as x 

goes to x naught, we know that it goes to g x naught because g is continuous at x  naught. 

So the end result is, if I separate the terms as limit x going to x naught f x minus f x 

naught divided by x minus x naught into limit x going to x naught g x plus limit x going 

to x naught g x minus g x naught divided by x minus x naught times limit x going to x 

naught f x naught.  
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If I just put all the required values, what I will get is f prime x naught because f is 

differentiable at x naught times g x naught because g is continuous at x naught because it 

is differentiable at x naught plus f x naught times g prime x naught. So this is the formula 

of the product which we already know perhaps. Now for 3, what I observe is it is enough 

to calculate the derivative of the function capital G x equals to 1 by g x at x naught. 

Notice that my assumption on little g is that g is non-zero in a neighborhood of x naught. 

If I do not have this, the capital function G is not at all well defined.  

 

Now once I find the derivative of capital G, then it is easy to see that by using 2, you can 

actually get 3. So let us first try to prove what is the derivative of G at x naught. So we 

again start with the definition.  

 

G prime at x naught, by definition is limit x going to x naught G x minus G x naught 

divided by x minus x naught which then I write as, limit x going to x naught 1 by x minus 

x naught into 1 by g x minus into 1 by g of x naught, which then is limit x going to x 

naught 1 by x minus x naught into g x naught minus g x divided by g x into g x naught, 

which can now be written as, limit x going to x naught g x minus g x naught divided by x 

minus x naught into minus 1 g x into g x naught. Now if I take the limit, as I know since 

the little g is differentiable at x naught, it is continuous, so limit x going to x naught g x is 

actually g x naught. So limit x going to x naught 1 by g x is 1 by g x naught. 
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If I use this, what I get is that the limit is g prime x naught times minus 1 by g x naught 

squared, which we write as minus g prime x naught by g x naught squared. Apply this 

with 2 to prove 3. So these are the familiar rules of the derivative which we anyway 

know. Now I want to understand the geometry of the curve f through the derivative. See 

the whole point is that if I have the function f defined which is differentiable, it is not 

necessary that the function is given as a curve. If it was a curve, then certain of its 

property will be obvious which we want to derive from the differentiability of the 

function.  

 

So the first thing of its kind is goes as follows: Now another fundamental property of the 

differentiable function, which we need for application, is the chain rule. So this is what I 

am going talk now. Chain rule is actually the differentiability of the compositions of 

functions. For example, we have a situation like this. 
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I have function f defined from I to, let us say, to another open interval J, where I and J are 

open intervals and let us say, our another function g defined from J to R. Then it makes 

sense to talk about the composite function g compose f. We write in this form, which is 

defined from I to R, the following way. The definition is g compose f at x is g of f x. See, 

it makes sense because f x lies in J where g is defined. So f x actually belongs to the 

domain of g. So I can apply g on that.  

 

Now suppose the condition is this, that if f is differentiable at x naught and g is 

differentiable at f x naught, then the new function which we have formed g compose f, 

this is differentiable at x naught.  
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Not only that, we can calculate the derivative also and the derivative g compose f prime 

at x naught is g prime at f x naught times f prime at x naught. This is the familiar chain 

rule. Now let us look at an example first before proving the result. Suppose I look at this 

function f x equals to sine of x squared. Then many of you know it is true that f prime at 

x is actually cosine of x squared times twice x. How does it follow? It follows actually 

from the chain rule. In the following way, just take g x to be equal to sine x and h x to be 

equal to x squared.  

 

Apply chain rule. How, because g compose h prime at x, this is g prime at f x, sorry at h x 

times h prime x. Now I know what is g prime. g x equals to sine x g prime is cosine x, 

which we will derive after some time. So it is cosine of h x is anyway x squared times h 

prime x is twice x. We get the formula. This is technical rule which we will be needing 

but it requires proof which we are going to supply right now. The proof goes as follows. 
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I first define a function define h of y to be equal to g of y minus g of f x naught by y 

minus f x naught, if y is not equal to f x naught. See if y equals to f x naught, we will 

have the problem of having 0 in the denominator, which we want to avoid. Then how do 

you define the function h, for all y? Suppose, y equals to f x naught, we define it as g 

prime at f x naught which we know, exists. So this defines the function h on the whole 

real lines. Then I say h is continuous at f x naught, as limit y going to f x naught h of y is 

same as limit y going to f x naught g of y minus g of f x naught divided by y minus f x 

naught.  

 

This, by definition of, derivative of g at f x naught is g prime at f x naught which by our 

definition is h of f x naught. Now this then implies that y minus f x naught times h of y 

equals to g y minus g of f x naught. This implies then if I put y equals to f x for an 

arbitrary x, I get f x minus f x naught times h of f x equals to g of f x minus g of f x 

naught.  
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If I divide now both sides by x minus x naught, what I get is g of f x minus g of f x 

naught divided by x minus x naught equals to f x minus f x naught divided by x minus x 

naught times h of f x. Now I am in a perfect condition to take the limit as x goes to x 

naught. Let us see what happens. So limit x going to x naught g of f x minus g of f x 

naught divided by x minus x naught equals to limit x going to x naught f x minus f x 

naught divided by x minus x naught into h of f x, which again I can write as, limit x going 

to x naught f x minus f x naught divided by x minus x naught into limit x going to x 

naught h of f x.                    

 

Now the first quantity is nothing but f prime at x naught, by definition, as f is 

differentiable at x naught. What about the second quantity? Well, I have proved that h is a 

continuous function. So x goes to x naught since f is also a continuous function at x 

naught, I have that the second limit is actually h of f x naught and now I go back to the 

definition of h. What is h of f x naught? By my definition, it is g prime at f x naught. So 

what I get is f prime at x naught times g prime at f x naught.  

 

Notice the left hand side. What is the left hand side? Well, the left hand side here, if you 

just apply the definition of composition, it is limit x going to x naught g compose f at x 
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minus g compose f at x naught divided by x minus x naught, which is same as g compose 

f whole prime at x naught. This is precisely what we wanted to prove. This is called the 

chain rule of the derivative. Next, we turn towards certain properties which are related to 

the geometry of curves.  
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So first I define, if a function f from I to R is given, let us say, x naught is a point in I, 

then x naught is called a local maximum. If there exist a delta bigger than 0 such that for 

all x in x naught minus delta x naught plus delta, we have f x is less than or equal to f of x 

naught. That is, x naught is called a local maximum if there exist a region around x 

naught, such that, for all x in that region f x naught is the largest one. All the other values 

are less than f of x naught. 

 

If I draw the graph of the function, if it is possible, let us say this is my I. Suppose, x 

naught is here then I have delta, such that, these two points are x naught minus delta and 

x naught plus delta. There, the graph of the function looks something like this. That is, x 

naught is the highest point. This is what local maximum means. Now suppose the picture 

is like this only. So again I will draw a replica of the picture. This is x naught and this x 
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naught minus delta and x naught plus delta. The graph of the function, as I said looks like 

this.  

 

If this is the case, when you see the point f of x naught, this is the point f of x naught. If I 

draw the tangent at this point, it will look exactly like this. That is, this is the tangent. We 

have that the tangent there is actually parallel to the x- axis. What does this mean in terms 

of derivative because the derivative f prime at x naught, if it exists, it tells you the slope 

of the tangent at the point f x naught? If it is parallel to the x-axis, that means the slope is 

0. That is, this implies f of is 0.  

 

Now to conclude this, do I really need to know how the graph of the function there looks 

like because the functions there might be so complicated that I cannot draw the graph of 

the function? Nevertheless, the conclusion, that makes the sense. We can examine 

whether it is true. So that is the next result. So the theorem is this. 

 

(Refer Slide Time: 38:20) 

 

 

Let f is from I to R, x naught belonging to I is a local maximum of f. That is given to me. 

That was the previous situation also. If f is differentiable at x naught, then f prime at x 

naught equals to 0. Once I prove this theorem, it will show at least one thing, that to draw 
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the conclusion, that at local maximum the tangent is parallel to the x- axis, for that I need 

to draw the curve of the function. Without drawing the graph, I can conclude the same. 

That is the power of having the formal definition of derivative. Let us start with the proof 

of this. How do go about it?  

 

Well, I know that f prime at x naught exists. That is in the supposition. Then there are 

two things which can happen. Either f prime at x naught is positive or it is negative. If 

none of these things are true, the only possibility to remain is that f prime at x naught is 0. 

So what we try to do is, let us assume that f prime at x naught is positive and try to 

understand what it means.  

 

Now assume that f prime at x naught strictly bigger than 0. This then implies by our 

definition that limit x going to x naught, f of x minus f of x naught divided by x minus x 

naught. This limit exists and is strictly bigger than 0. Now while dealing with continuity, 

we have noticed one thing which we are going to use now. That if I have the function 

whose limit at a point x naught is strictly bigger than 0, then there exist a neighborhood 

of that point x naught where the function is strictly bigger than 0. That is the observation 

I am going to use now. 

 

This would imply then that there exist a delta bigger than 0, such that, this whole interval 

x naught minus delta, x naught plus delta is contained in I and for all x in x naught minus 

delta, x naught plus delta, we have f x minus f x naught divided by x minus x naught is 

strictly bigger than 0. Now suppose I choose x strictly bigger than x naught in x naught 

minus delta and x naught plus delta. That is, in this interval I choose a point x which is 

right hand side of x naught.  

 

Then look at the quantity here. I say the denominator x minus x naught is positive and the 

whole quantity is positive. That means the numerator also has to be positive.  
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That is, it then implies f x minus f x naught is strictly bigger than 0. Now I could have 

chosen the delta to be the delta 1, which satisfies the local maximum property. To be 

precise, there exist delta 1, such that, f x is less than f x naught for all x in x naught minus 

delta 1 and x naught plus delta 1.  

 

Let us choose delta 2 to be equal to minimum of delta and delta 1. Then I have that for all 

x in x naught minus delta 2, x naught plus delta 2, I have two conditions. Number 1 is f x 

minus f x naught divided by x minus x naught strictly bigger than 0. Number 2, f x is less 

than f x naught. Now choose x, as in the previous case, in x naught minus delta 2, x 

naught plus delta 2, such that, x is bigger than x naught. Then 1 tells me, from 1, we have 

f x minus f x naught is strictly bigger than 0, which implies f x is bigger than f x naught 

which certainly contradicts 2 because I know f x has to be less than f of x naught. 

 

Why did this contradiction occur, because I have assumed that f x minus f x naught by x 

minus x naught, the limit is strictly bigger than 0. This cannot happen. Then the other 

possibility is f x minus f x naught by x minus x naught, the limit is less than 0. Let us 

examine that case.  
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Now assume that limit x going to x naught f x minus f x naught divided by x minus x 

naught is less than 0. As in the previous case, I can say that there exist delta bigger than 

0, such that, for all x in x naught minus delta x naught plus delta, I have two conditions. 

Number 1, f x minus f x naught divided by x minus x naught is less than 0 and f x is less 

than f x naught.   

 

Now choose x in the set x naught minus delta x naught plus delta, such that, x is less than 

x naught. Then the denominator here is negative but the whole quantity is positive that 

means the numerator is positive. So this implies by 1 that f x minus f x naught is strictly 

bigger than 0. That is, f x is bigger than f x naught, which certainly again contradicts 2.  

That is, if I assume the derivative of f at x naught is bigger than 0, then there is a 

problem. If I assume that the derivative of the function f at x naught is less than 0, then 

also there is a problem. So the only possible way out is the conclusion which I want. That 

is, f prime at x naught is actually equal to 0. 

 

Now the question is, now in this whole argument what is so holy about the local 

maximum. I could have defined the local minimum also analogously.  
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So I define, if f is from I to R, I is an open interval as always. x naught belongs to I, then 

x naught is called the local minimum if there exist a delta bigger than 0, such that, x 

naught minus delta x naught plus delta is contained in I and for all x in x naught minus 

delta x naught plus delta, we have f x to be bigger than or equal to f of x naught. That is, 

there exist a neighborhood of the point x naught, such that, the value f x naught is the 

smallest all the f x s. Then I would like to show this is also true. 

   

If f is from I to R and x naught is a local minimum of f and f prime at x naught exists, 

then f prime at x naught is 0. Well, this proof follows very easily. Proof is just one line 

Define g x equals to minus f x. Notice that this implies that x naught is a local maximum 

of g. By the previous theorem, it would imply g prime at x naught equals to 0, which 

would imply that minus f prime at x naught is 0, which certainly implies that f prime at x 

naught is 0. We will like notice certain things here. The first is as follows.  
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I will put it as a remark. Look at the function, f x equals to mod x. Then 0 is the 

minimum. Then x equals to 0 is a minimum and hence a local minimum but f prime 

equals to 0 does not make sense. This is simply because the function is not differentiable 

there. That is, the condition that the f exists is very fundamental. The second one is the 

converse of the result is certainly not true. That is, if I have a function f whose derivative 

vanishes at a point, let us say, x naught, then that point has to be either a local maximum 

or a local minimum. That is not true. 

 

I look at the function f x equals to x cube, where x belongs to the open interval minus 1 

and 1 which I call I. Then notice f prime at x is 3 x squared, which implies, f prime at 0 is 

certainly 0. That is, the derivative of the function at the point 0 vanishes. If I look at the 

graph of the function, it looks like this. The point 0, x equals to 0 is not a local max or 

local min. That is, the converse of the result that, if f is differentiable at x naught and the 

derivative vanishes at the local maximum or the local minimum, the converse of this 

result is not true. From the zeros of the derivative, you cannot conclude that the point is 

the local extreme of the function but the observation that if f is differentiable at the local 

maximum or the local minimum, then the derivative is 0. This has profound applications.  


