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In the last lecture, we introduced the rectangular cartesian coordinate system, the 

cylindrical polar coordinate system and the spherical polar coordinate system. We were 

able to construct the line element, the area element and the volume element in all the 

three cases; but then it does not complete the preparation for us in order to launch into 

the study of electric and magnetic phenomena, because as we mentioned, we are still left 

with the freedom of choosing the origin of any of these coordinate systems or choosing 

the relative orientation as well. 

I already discussed there at length in the previous lecture, so what I shall now do is to put 

those concepts on a formal footing footing, and see how we can actually write down 

transformation formulae from one coordinate system to another coordinate system. Thus, 

what we would have achieved is a dictionary that allows us to translate the observations 

made by one set of observers in a given coordinate system with to the observations made 

by another set of observers in another coordinate system.  
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Let us start with the simplest of the situations, namely the translation of the coordinate 

system. So, I start with my rectangular cartesian coordinate system again; so, I have my 

x - axis, I have my y - axis, I have my z - axis; this is the standard configuration. Now 

what I do is to take the origin o of this coordinate system, and shift it by a certain 

distance, a certain vector R, and then erect a new coordinate system. So, if I have to 

denote them by x prime, y prime and z prime; I have the unit vectors or the basis vectors 

along these directions with our i prime, j prime and k prime; and I have i, j and k in the 

coordinate system - original coordinate system. 

Now, when we say that we have translated, by that we mean that i prime is parallel to i; j 

prime is parallel to j; and k prime is parallel to k. In other words, all that we have done is 

to bodily move the coordinate system that we have not caused any rotation; we have not 

affected any rotation. This is so simple that, I do not even have to call it as a 

transformation formula, because let me say that my original coordinate system was 

labeled S 1, the new coordinate system is labeled S 2, the position vectors in my original 

coordinate system, if they are labeled as r; the position vector, the same position vector 

in the new coordinate system is labeled as r prime; then we have r prime, simply given 

by r minus r. So, this, is essentially the transformation from one coordinate system to 

another coordinate system; given this we immediately know, how to transform for 

example, velocity or acceleration or any another quantity, we know that v prime will be 

given by v, a prime will be given by a, so on and so forth. 



This is only a warm up for us, in order to discuss a slightly more complicated example, 

and that is what we shall get into now, and that is the rotation. Of course, the more 

general transformation will involve both translation and rotation simultaneously; but we 

are not going to launch into that, although you can take it as an exercise and write it 

down later, we will consider rotation individually. Also for our purposes, it is very, very 

important to concentrate on the rotation, but that is because that is something that we will 

be doing routinely. So, let us see how to go on with the rotations.  
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Again I have my the rectangular cartesian coordinate system x, y and z. Now I do not 

move my origin better rotate my original coordinate system to a new coordinate system, 

which I shall call as x prime, y prime and z prime. This is a rather pictorial 

representation, because we know that in general, a rotation is a rotation about any 

arbitrary axis, by any angle theta. So, there is some axis presumably let call it as n, I have 

rotated about this particular axis; and what I have done is to rotate by an angle theta. We 

do not wish to write down the most general form of the rotation that is the rather 

complicated form; and we won not we will not need it here. What we shall do is to 

consider for purposes of illustration, the simplest case namely rotation about the z - axis, 

rotation about z axis; equivalently, it is also rotation in the plane. 

Now, our problem is considerably simplified, because I have x, I have y here, and then I 

rotate about the z axis. So, I get my x prime here, I get my y prime here, and I have 



rotated it by an angle theta, that is what I have done. So, once I rotate it, I want to know 

what the coordinates of a point p, which is denoted by (x,y) in the original coordinate 

system, you could call it x 1 if you feel like, would be into new coordinate system in 

terms of x prime and y prime. 

I will not spend too much time, I would rather write down the answer, because we have 

other important things to go to; we can straightaway write down the transformation 

formula. And that is given by x prime equal to x cos theta plus y sin theta; y prime is 

equal to minus x sin theta plus y cos theta. Of course, although we have rotated at the 

plane, we are giving in a three-dimensional world therefore, I should complete my set of 

transformations by giving down what happens to z - axis also, the z coordinate also; so, 

we write z prime is equal to z. So, this is the transformation formula. 

Of course, remember that when I speak of a point p, this is actually a vector, which I 

have denoted it by r. And what I am doing is to look at, a given physical vector, the 

position of a particle, the position of a charge for instance, in terms of two different 

coordinate systems. I have not altered my vector, it remains one and the same; all that I 

have done is to alter my coordinate system; the one and the same vector has two different 

coordinate descriptions; it is not as if I took the vector and rotated it by an angle theta. 

Now once we speak of vectors, not only should we speak of the coordinate system that 

we should also speak of coordinates, but we should also speak of the basis vectors. 

Before I get into that, let me write down this transformation in a slightly more 

convenient form, it is a rather compact notation; what do I do for that; what I do is to 

arrange the coordinates as a column vector. 
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So, let me introduce a notation, let me call it as psi, and say this is your column vector 

with rows given by x, y and z. If I have to rotate the angle theta and if the same vector to 

be represented by coordinates x prime y prime and z prime; obviously, I would write psi 

prime is equal to x prime y prime z prime. Now the effect of rotation can be represented 

as a matrix operation on this column vector. So, I will now write psi prime equal to R 

psi; I could qualify my R even further, R standing for rotation. I am going to rotate about 

the z axis, while indicated by a subscript z here, I am rotating it by an angle theta, I will 

indicated by an argument as I have written now. And what is this given by R z theta is 

simply given by the 3 by 3 matrix cos theta sin theta 0 minus sin theta cos theta 0 0 0 1, 

this indeed is the so-called rotation matrix; when you rotate by an angle theta about the z 

axis, that is what we have done. 

Now, even if you went to rotate about an arbitrary axis n without any loss of generality 

we could take that to be the z axis therefore, in principle, there should be a prescription 

of writing down the most general rotation matrix starting from this; we will not get into 

this, because that is not the purpose of our discussion here. However what we have to do 

is to observe certain nice properties of this rotation matrix, so what are those properties; 

let me list down here. If I look at the transpose of this matrix that is the same as R of 

minus theta; whether you interchange the rows and the column or you simply change 

theta to minus theta, it is one and the same, not only that this is also equal to the R 



inverse of theta, the inverse matrix which takes cube from x prime, y prime, z prime to x, 

y, z that is I can write psi is equal to R inverse psi prime. 

The set of matrixes, which have this property are called as orthogonal matrixes; when the 

transpose is the same as the inverse, it is an orthogonal matrix. And actually what we 

have done is to observe a very, very important; in fact, the defining property of the 

rotation matrixes namely the transpose is the same as the inverse. What are the other 

properties that you can see about this particular matrix? Yet another property that you 

would see is that the determinant of this matrix is equal to 1, which I will write, 

determinant R equal to 1; in fact, together with orthogonality, this determinant tells you 

that you have ended up with a rotation matrix. What do I mean by that? Every rotation 

matrix satisfies the property that its inverse is the same as its transpose, not only that 

every rotation matrix satisfies the property determinant R equal to 1; conversely if any 

matrix has the property its transpose is the same as inverse and determinant is equal to 1, 

then it is certainly a rotation matrix; that is what we have. We are we might need it at a 

later step, so please remember these properties.  
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Now, I can actually write down, how the basis vectors transform, when I move from one 

coordinate system to another, where there are various ways of looking at it. One thing is 

to remember that the vector r, which was given by x i plus y j plus z k is in some sense 

quote unquote invariant, because x will go to x prime, y x will go to x prime, y will go to 



y prime, z will go to z prime, i will go to i prime, j will go to j prime, k will go k prime; 

but the position nothing has happened to the position vector or you can look at it 

geometrically as well in any case, what is the result that you will find. 

Again what we shall do is to define two column vectors; now these column vectors do 

not have the coordinates as their entries, basic vectors themselves as their entries that I 

shall denote by curly e. This I will denote it as a column vector consisting of i j and k; 

obviously, if I have to rotate by theta, then I have my another column vector consisting 

of i prime, j prime and k prime. Now e prime will be related to e by a matrix R, but this 

rotation matrix is not the same as what we wrote originally that was R z of theta; in this 

case, it is R z of minus theta. In other words, the coordinates of a (( )) vector, and the 

basis vectors themselves transform in two different fashions; if that transforms according 

to R, this transforms according to R inverse, because we already absorbed that property 

R inverse of theta operating on e. 

Well nobodies, no great surprise that the position vector has retained its absolute 

character, when I move from one coordinate system to another coordinate system. This is 

an important conceptual view point for us; in fact, it is a very important conceptual input 

for us, because normally we say a vector is a set of quantities, which transform in a 

particular manner under notations like what I have executed just now. When you make 

such a statement, we are actually referring only to the coordinates of the vector; if you 

simultaneously worry about the transformation of the basis factors also then of course, it 

has retained its absolute what nature. 

Now, whenever I speak of a vector, it is very clear that it is with respect to the set of 

transformations that I have in my mind, I have already introduced two different kinds of 

transformations; one of translation and another of rotation. Now for our purposes again, 

whenever I speak of a vector, I only have transformations with their, in terms of 

rotations, I will not worry about translations anymore. So, what is a vector now? Any set 

of three quantities, which transform like the position vector.  

So, give me a quantity v in terms of three quantities v x, v y, v z. If you want, you can 

imagine them to be the components of the velocity vector. These transform exactly like 

the components x y z of my position vector; therefore, we say the velocity is also a 

vector. Similarly, acceleration is a vector, force is a vector, angular momentum is a 



vector, we have the electric field, which is a vector, we have the magnetic field, which is 

a vector. So, what do we mean by that? Every components of these fields in any 

coordinate system; rotate your coordinate system, then their coordinates in the new 

coordinate system does not depend on the nature of the quantity that you are considering, 

whether it is velocity or acceleration or magnetic field or electric field, it is simply 

dictated by this given matrix R or as universally on all of them. So, that is what we mean 

by a vector. So, that is something that we have to remember. 

Now, why do we need this notion of a vector? The answer is simple, because as I already 

did just now, I have given innumerable examples of objects, which transform like 

vectors, except that there is a small complication; the complication is that at every point 

in space, there are many, many observations; for example, we can have something like 

energy at every point in space, energy density or we can have the momentum density; if 

there is a gas, there might be gas molecules in a small volume in space, which are 

moving in a particular direction or you can have pressure or temperature or magnetic 

field or electric field. Therefore we are not interested simply in three numbers v x, v y, v 

z, but we are actually interested in functions per set. We want to define scalars over the 

points in the real space; we want to define vectors over points in the real space and that is 

what launches on to what we call as vector algebra and vector analysis; in fact, vector 

analysis and that we shall do now. 

Since, we have sort of endowed ourselves with all the basic properties; we are now in a 

position to actually make a quick review. Many of the concepts that I am going to 

discuss now, you are already familiar in your earlier courses for example, in your 

mechanics course, you already know that force can be written as the gradient of a 

potential and so, on and so forth. However for the sake of completeness and for the sake 

of setting of the notation and for the sake of causing no confusion, what we shall do is to 

quickly review these concepts, even if you are already familiar with them, because there 

is no harm in repeating these notions.  
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The simplest concept is of what is called as a Scalar function; it is worth spending some 

time on that, because once we understand this, it is very, very easy to have the notion of 

a vector field. In physics, we do not use the word Scalar function, but actually what we 

do is to replace it by the word field. So what do we mean by that? Instead of giving an 

abstract definition straightaway, let me start with a very, very simple example; and then 

go on to extract the definition out of this example, that would be a sensible way of doing 

things; so what shall we do now.  

Let us look at the classroom or the room, in which you are sitting right now listening to 

this lecture; and let us imagine that a whole series of thermometers, which measure 

temperature at various points in the room. So, let us say that it is a nice bright clear 

sunny day; sun is shining equally on all the sides on the ceiling and on the four walls. So, 

what is it that you would expect the temperature to be? Well, if it is not too big a room, 

what we might say is that the temperature at the centre of the room, temperature at the 

centre of the room should be a minimum. The temperature at the centre of the room 

should be a minimum.  

So, what do I do? Let me write a cube here; so, this is a kind of caricature of what we 

expect a room to be, this is the ceiling and here we have the floor, we have the ceiling 

here, and these are the four walls that we have. Now, if it is a real hot summer day and 

sun rays are shinning widely on all these objects. Let me look at the centre of the room 



and let me erect a coordinate system with that as the centre of the room; and then I have 

my x, let me call it as y; I have my x; and I have my z; and I want to measure 

temperature, as I move away from the centre of the room. As you approach for example, 

this wall or this wall or the wall, which is coming outside the plane or wall which is 

going inside the plane, you might expect the temperature to rise. 

As to approach the ceiling, you would expect the temperature to rise, may be if you are 

approaching the floor the temperature would decrease; but whenever knows if there are 

bright windows for example, let somewhere at the lower point here, I am deliberately 

creating them in order to get a nice example for the purpose of our discussion; we can 

imagine even the floor is somewhat warmer. So, we can say, because the floor gets 

heated and it starts radiating. So, what we can say is that the temperature is at minimum 

at the centre of the room; and that is what I would call as the origin. 

Now, what I would do is to take my thermometer and move around the all this all over 

the room; and then I would make a table; I would say T at the origin, let us say is given 

by 20 degree celsius. Now I want to move a point put a point nearby, so what shall I do? 

I will say T at the point (1,0,0); probably I am measuring the units of 1 feet 1 foot let us 

say or it could be even 6 inches, I would say this is given by some 20.3 degree Celsius; I 

would write that. There I would move in the other direction (0,1,0), and say this is 20.25 

degree celsius; there I might move in the upper direction and I would say T (0,0,1) is 21 

degree celsius, this is a gross exaggeration; but never mind, this is what we are doing. If 

you notice, I have actually smuggled in a notation, which should be clear to you, but we 

now let me make it explicit, I denote at the positions by (1,0,0), (0,1,0), (0,0,1) what did 

we mean by that; what I mean by that is that if I have a position vector r, and if I write x i 

plus y j plus z k and denoting it by a rho vector, not a column vector and indicate it by x, 

y and z; fine.  
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Let me again make a caricature of the room that I had, so so this is my room, ceiling 

floors, floor walls and so on and so forth. I had looked at the coordinate system, where 

the origin was centered, bank at the centre of the room. And then I had my z axis, I had 

my y axis, and I had my x axis. Now suppose I say no, no; I do not want to look at it 

from the centre of the room, but I want to look at it from the centre of the floor let us say, 

because that is where I am going to actually start, bringing my measuring scales, meter 

sticks whatever, whatever. 

So, now what I will do is my y axis will be sitting here, my x axis will be sitting here, 

and my z axis is going to go apply this; this is my o prime; suppose I do that. Simply, 

because I chose my coordinate system, where the origin is centered at o prime on the 

centre of the floor, does not mean that the temperature at this point has changed. 

Irrespective of what you are going to do, whether you are going to choose the origin 

here, here, here, here, here centre of the floor at anywhere, the temperature is an 

invariant quantity. It is a property of the position of this point, relative to the walls, the 

ceilings and the floor of that room that is what we mean, when we say that there is a 

scalar; please remember that. 

However what is it that is going to happen? Now when I do that what I called as r in my 

original coordinate system will be called as r prime in my new coordinate system. So, 

what in my original coordinate system I say, T (0,0,0) that was the origin was given by 



20 degrees Celsius that is what I wrote. Now if the room has a height h, I moved on by a 

distance minus h by 2 in order to come to the centre of the floor; therefore, my origin, 

which was the original origin will have a coordinate 0, 0, h by 2. In the new coordinate 

system, it will have a coordinate 0,0,h by 2 my original coordinate system deeply 

denoted by T 1; in the new coordinate system T 2, the coordinates have changed that is 

0,0, h by 2, but what is the value; it is still given by 20 degree Celsius. 

Now, we say any physical absorbable, which has this property that when I shifted my 

coordinate system whether it is translation or rotation; for us rotation is important. 

Although I have illustrated it in terms of translation, the numerical value remains the 

same; then we say that that particular object is a scalar. Now, this scalar is defined all 

over the room and therefore, we say since, it is assuming continuous values as a function 

of the coordinates of the points in the room, we call such an object as a Scalar field. Now 

in order to make it more concrete, what I shall do is to give a definite functional form; 

this functional form has nothing much to do with whatever I have just now described, it 

is some functional form, which is easy for us to manipulate.  
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So, now let us here that my T of r in my original co-ordinate system, so I shall denote it 

by 1, was simply given by z minus z naught whole square, this is a bad example; but 

there is matter, actually it is not too bad example; what does it tell you? It tells you that 

the temperature is independent of x and y, it is a minimum at z equal to z naught, but z 



naught is actually the centre of the room, if you put z naught is equal to 0. And now what 

shall I do? I will shift my coordinate system, I shifted my coordinate system, how did I 

do that? I shifted it by a quantity R, which is simply given by 0, 0, minus h by 2, there is 

a plus sign here, that is what I did; if you remember the translation. Now what happens to 

this object in terms of the new description; well in the new coordinate system, I would 

write T 2 of r prime that object would be given by, now I have to be very, very careful, 

because z prime would be given by z minus h by 2; I will have z minus z by 2 minus h 

by 2 whole square, that is what I would have. 

Now, suppose I were to open this up, expand this square, I would get z minus h by 2 

whole square minus z naught plus z naught square plus cross terms or even better I can 

write it as z minus z naught whole square plus extra terms, this is a better form. 

Numerically speaking T 2 of r prime is exactly T 1 of r; what was being called as r is 

being called as r prime, but functionally speaking, the functional form has changed. In 

the original coordinate system, it had the functional form z minus z naught whole square; 

in the new coordinate system, it has the form z minus z naught whole square plus extra 

terms. Now I can write those extra terms if you feel like, that is simply given by plus h 

square by 4 minus 2 z minus z naught into h by 2, that is how it looks like. 

Now, we are not going to be displayed by the difference in the functional forms, because 

we know both these functional forms represent one and the same functional dependence 

of the quantity, namely the dependence of temperature on various points in the room. So, 

in actually writing down this example, I have hit upon the exact definition of a scalar 

field. What is the definition of a Scalar field? 
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Let a function be defined over a certain region in space, if under rotations of translations 

it acquires the form f prime of r prime; the functional form changes, but numerically both 

the values are the same, then we say that f, this is scalar field. So, let me put the word f 

here. If f equal to f of r is equal to f prime of r prime, then f is a scalar field. It is not for 

us to decide what is a Scalar field, what is a vector field, what is a tensile field that is a 

luxury given to the mathematicians; for us, we have to demand that your physical 

absorbable actually has the property under these physical transformations. In order to 

exemplify this point, in order to emphasize this point, let me give another example; take 

the position vector r, and take the velocity vector v. Now under the translation we say r 

prime will be given by r minus R, but under translation by velocity v prime will be 

simply given by v. 

Now, if you feel like although both of them are vectors, what is it that we had in mind 

when we said that both of them are vectors, we had in mind rotations as far as 

translations are concerned we find that the x component of v prime is the same as x 

component of v; y component of v prime is the same as y component of v; y z 

component of v prime is the same as z component of v; they actually act as scalars. So, if 

you remember this, then you would know that in all future lectures whenever I use the 

vector, I actually have rotation mind and not the translations in mind. 



However if I were to rotate my coordinate system, now there is no ambiguity, because I 

would write r prime equal to R r, if you feel like I could be more precise and write psi 

prime equal to r psi. Now similarly if I were to arrange the components of velocity as a 

column vector, suppose I call it as a eta, then eta prime will be given by the same 

rotation matrix eta; under rotations, the position vector and the velocity vector had the 

same transformation property whereas, under translations, they do not have the same 

transformation properties; therefore, this statement f of r equal to f prime of R prime is to 

be specified specified with respect to a set of transformations. 

In mechanics, in your earlier course, you had to worry not only about rotations, but also 

about Galilean transformation from one inertial frame to another; not only that you and I 

had to worry about entering rotating frames of preference, which are not inertial frames. 

If I were to do a complete course on electricity and magnetism, you would have worried 

about transformation from one inertial frame to another in terms of Lorentz 

transformation; but here since they are not going to bother, we can sort of rest contented 

by saying that we will be worried about only the rotations. So, all that discussion will be 

with respect to the rotations. So, now we have been able to define a scalar field, over the 

field, over the of real numbers; let us say over the configuration space or the physical 

space that is what we have done.  
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Now, we would like to further study the property of this field; in order to clarify what I 

mean by the property of the field, let me now specialize the general notion of a Scalar 

field to a simple case, namely my Scalar field is a function of (x,y). In fact, my 

temperature example was not a very good example, because it dependent only on z, but 

now let me make it as a function of x and y, if you feel like I can call it as a z (x,y). A 

very, very simple example would be is that you bring a whole lot of children let us say, 

and you fill them your classroom with them; each child is going to stand there, they are 

closely part; and you can ask what is the height of each child as I move from point to 

point. So, every square or every slab in your on your floor can represent a point some 

kind of an average. 

So, the height is represented as a function of (x,y); now that means, if I were to place a 

whole lot of children in your classroom, and if I were to look at their height, therefore 

form a surface and that surface is define over the x y plain. So, this is a surface; of 

course, if I write a Scalar form of x, y, z that would be a high per surface in a higher 

dimensional space, let me not worry about that at this point. Now, whenever we are 

given a surface of this particular kind, a very, very natural question to ask is where is the 

surface peak, where is the surface a minimum, where does the surface change very 

rapidly, where is the surface discontinuous is the surface defined everywhere, these are 

the question that we are going to ask; and we need some kind of a procedure, which 

allows us to discuss these notions. 

Now, imagine that I freeze the value of y, and I look at the variation of f of x at a given 

value of y naught; I have held my y naught fixed, at a given value of y naught, I keep on 

only changing my x coordinate. Now it is as good as a function of a single variable, 

which I will denote it as a phi of x. Well this is a curl, defined over the x axis; once I 

give you a curl defined over the x axis, there is no great deal about discussing maxima 

minima extreme and things like that, because what you would do is to look at the 

quantity d f by d x, which is this slope. And you say that whenever this is 0 that is if x 

prime is 0 at some x naught, x equal to x naught, you say that is an external point, 

because at that particular point either your function is a maxima or a minimal or it could 

even be some kind of a inflection point. 

In order to further characterize the nature of the extreme, you would set the second 

derivative. So, you now calculate the second derivative at the same point, and now if this 



function is greater than 0, you say f has a local minima at that particular point. So, I say 

at x equal to x naught, f has local minima; how do I illustrate that. So, I say that if this is 

my x axis, and this is my f; I have changed my notation to phi it may really does not 

matter phi at x equal to x naught, it looks like this, there is a minima sitting here. 

On the other hand, suppose my f double prime x, which is same as phi double prime x; at 

x naught is less than 0 that is curvature is negative let me denote it here. So, this is x 

naught, at the while x naught if it is 0, then the curve would behave like this, and this 

point is what would be called as a local maxima. So, we know that the minima or the 

maxima depend on the curvature properties of this function; of course, if the second 

derivative also is 0, then we cannot say much we will have to go onto higher derivatives 

and that is something that we have studied from the calculus of a single variable. Now, 

your surface is a more complicated object, because it might so happen that if I had frozen 

the value of x and change the value of y let us say. 
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So, what I now do is I look at f of x naught y, this will be some other function, which I 

will denoted as g of y. This g of y may exhibit a different nature altogether; there is no 

reason why g of y should be following phi of x. So, what do I mean to say, what I mean 

to say is that in the x y plane, the function might behave differently as I keep on moving 

in different directions. If I move along the x direction, the function might increase; if I 

move along the y direction, the function might decrease; if you move on some other 



direction the function might not change; therefore I need a procedure to keep track of 

how the function changes as I move to a neighborhood point.  

The procedure to do that is not calculating the derivatives that we have done, but what 

we should do is to calculate the partial derivatives. So, what shall we do? We shall 

calculate delta f by delta x and delta f by delta y. So, if you were to calculate these two 

points the derivatives, then this derivative will tell you how the function behaves 

independently, when I am changing x, keeping the value of y fixed that is what the 

meaning of this partial derivative is; and here I vary y keeping the value of x fixed.  

Now, what is the geometric significance of the partial derivative; in order to see the 

geometric significance, what we shall say is that I have a good, smooth, nice 

differentiable continuous function; and let me say, I want to do a Taylor expansion 

around the point. So, what shall I do? I have a function f y f (x,y) and let us say I want to 

make a Taylor expansion of this function around the point x is equal to y equal to 0. So, 

what would I do? I would say that this is given by f (0,0) plus delta f by delta x d x plus 

delta f by delta y d y plus higher order terms. 

Now, I have to be careful; I should not write the use the notation d. So, let me use the 

notation delta. So, what do I mean by x and y actually I mean, f delta x f delta y that is 

what I have done. Given the value of the function at x equal to 0, y equal to 0, I am 

giving you the value of the function at delta x and delta y. Now, stare at the right hand 

side of your equation, if you look at the right hand side of your equation, delta x and 

delta y are arbitrary displacements; they are infinitesimal displacements, but they are 

arbitrary otherwise, along the x and the y direction; f delta x delta y is the value of the 

Scalar function at the point 0 plus delta x and 0 plus delta y.  

So, if I want to do, I can write it symbolically as delta f by delta x into delta x plus delta f 

by delta y delta y, this is what I am going to concentrate plus extra terms; let me leave 

them alone; this object I can write symbolically as gradient f dot delta r. In making this 

expansion, I may not have to specify for you, how I chose my x coordinate, how I chose 

my y coordinate; I can rotate my coordinate system for that matter I can even translate 

my coordinate system. If I want to translate what I called at 0 0 would be called as x 

naught and y naught; if I rotated, it will become delta x prime and delta y prime, 

whatever it might be. So, we have found that the change in the value of the function, that 



I shall denote it by delta y f; so, because identically equal to f of delta x delta y is simply 

given by gradient f dot delta r. 

So, what did I do? I introduced a notation. The notation that I am introducing is that I 

arrange these two partial derivatives as a vector, delta f by delta x i plus delta f by delta y 

j. When we looked at these partial derivatives, we have no clue that we are actually 

constructing the components of a vector. But now let me repeat the argument so that 

there is no confusion about it; and what is the argument; delta f is a scalar; it is a scalar 

defined at the point delta x delta y, but other hand delta r is an arbitrary infinitesimal 

displacement, this is a vector and the only way I can construct a scalar given a vector is 

to take the dot product or if you feel like the inner product with some other vector; 

therefore this object better transform like the component of a vector; and therefore, this 

notation is a legitimate notation. So, take the partial derivatives along individual 

directions, along the i direction, along the j direction, along the k direction so on and so 

forth. 

Then we have actually constructed this vector called delta f by delta x i plus delta f by 

delta y j, which is a great significant improvement, you never understand it, this started 

with a very nice simple object like a scalar field something like an energy density. Now, 

we have ended up with a more complicated entity like the vector entity. And this vector 

entity is indeed something of some importance to us. So, we have succeeded in 

constructing a vector function, starting from its scalar function, which I shall call as a 

vector field. I will give you a quote unquote rigorous definition at a later time.  
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Right now, we have succeeded in constructing this function, namely the gradient, which 

I shall now write in its full detail with all the coordinates put namely delta f by delta x i 

plus delta f delta y j plus delta f by delta z k. Now obviously, it specifies a direction at 

every point in the space. So, I have my co-ordinate system this is my position vector r, 

there is a function defined, and now I am associating the direction with a certain 

magnitude and that is what I am denoting it by gradient f. So, we have to know what the 

physical significance of the magnitude of this gradient f and what the physical 

significance of the direction of this gradient f is; if you have done that then we know the 

complete geometric significance of this function. 

Obviously, it should have something to do with, how the function increases or decreases 

or changes or retains its shape as we keep on moving on different points on the space; 

but before I go on to do that, it is necessary for us to confirm one thing namely that this 

new definition, namely the gradient f confirms to our earlier notion of a vector, what is it 

that I said, I said that any set of three quantities, which transform like the coordinate 

vectors under rotations are what will be called as a vector. So, that is what I would like to 

erect it. 

Now, what are the inputs that I have to use; the first input that I have to use is f (x,y,z) is 

given by f prime of x prime, y prime, z prime that is what I need to use. The second input 

that I need to use is the transformation property of these partial derivatives. Now, this is 



a very, very important notion. And let us pause to spend a little time. What is it that is 

happening? Look at this notation gradient f, now when I am looking at the gradient f, I 

am going to produce a vector on the right hand side, and the fact that the vector on the 

right hand side is produced is independent of the nature of f; start with energy density, 

start with temperature, start with pressures start with anything; the minute these 

derivatives operate d by d x i d by d y j d by d z k are actually land up with a vector. So, 

there is something that I would like to emphasize therefore, let us give an independent 

existence to these operators themselves these differential operators.  

So, let us denote the operator by delta by delta x along the i direction, along the j 

direction I have delta by delta y and along the z direction, I have by delta by delta z. This 

is unlike anything that we have seen so far, because this is not a function. Whenever I 

spoke of the transformation properties what is it that I had in my mind? Set of three 

numbers; and these three numbers, which I have defined all over this space, they 

constitute a function. Right now I do not have a number, but I have a set of three 

operators; therefore this gradient is what one would call as a vector operator meaning if 

this operates on any scalar function that produces a usual vector function or a vector 

field. 

Now, what is the great difference between this operator and the position vector that I 

wrote; i x plus j y plus k z. If then it is indeed a vector operator, then these derivative 

operators, these differential operators d by d x d by d y d by d z better have the same 

transformation properties as x, y and z and that is something that you should be able to 

verify. If you did that then the concept, the idea that this is a vector operative as shown, 

not only from the physical view point, but also from the view point of mathematics; we 

are doing something consistently. So, in order to do that, I need the transformation 

properties, so what do I do? Let me write down the coordinates x, y, z in terms of x 

prime, y prime and z prime. 

 



(Refer Slide Time: 44:06) 

 

As usual, I will not consider the most general rotation, but I will consider the simplest of 

rotations namely around this z - axis. So, I have x, y, x prime, y prime and my theta here. 

So, how is my x related to x prime and y prime? x is simply given by x prime cos theta 

minus y prime sin theta, y is given by y prime cos theta plus x prime sin theta. Given this 

functional dependence, I can actually express the derivatives with respect to x, y, z in 

terms of derivatives with respect to x prime, y prime and z prime. What is it that I want 

to do? Look at the partial derivative delta by delta x prime; what is it that I have in my 

mind? It is going to act on a function. So, how is it going to act on a function, if I had 

rotated my coordinate system, I say that this is the same as delta x by delta x prime delta 

by delta x plus delta y by delta x prime delta by delta y. 

So, if there is a function f sitting here, the same function f will sit here, it has the same 

numerical value in both the coordinate systems, because it is a scalar field. So, what is 

the great difference, here I am going to write delta of f prime of x prime, y prime, z 

prime, but here I will write f that is understood. So, here it will be f prime, here it is f. So, 

once you are given that we can forget all about this f. So, let me not worry about that and 

let me write down the original equation, what was the original equation; delta by delta x 

prime is given by delta x by delta x prime d by d x plus delta y by delta x prime d by d y. 

Now, I know x as a function of x prime, I know y as a function of x prime therefore, I 

can immediately rid it off from this formulas that I have written. So, let me write it down 



here, there is still lot of space; delta x by delta x prime is nothing but cos theta, delta y by 

delta x prime is nothing but sin theta; therefore, I have sin theta delta by delta x plus cos 

theta, little bit of mistake; so, I am sorry this should be cos theta delta by delta x plus sin 

theta delta by delta y; that is what we wrote. If you remember, we have written the 

transformation formula for x prime as x prime equal to cos theta x plus sin theta y. Now, 

my delta by delta x prime is cos theta delta by delta x plus sin theta by delta delta y.  

In a similar manner, you can sit down with your paper and pencil, and verify easily that 

my delta by delta y prime will be given by minus sin theta delta by delta x plus cos theta 

delta by delta y, which is exactly the way my y coordinate transform; y prime is minus 

sin theta x plus cos theta y. In other words the differential operators delta x and delta y 

transform exactly like the coordinates x and y therefore, they qualify to be called as 

vectors; except that they are not vector functions, but they are what we call as vector 

operators. 

So, we have to remember that if you are going to take the dot product of this vector 

operator with some other function, you have to be careful, because whether it acts from 

the right or the left, it will have two different meanings, we will not get into it right now, 

but there is a caution, which is well exercised and mentioned at this particular point. So, 

now let we have demonstrated the nice transformation properties of my derivative 

operator; in fact, you people should amuse yourself by writing down the most general 

rotation matrix on x, y, z and convincing yourselves that the derivative operators 

transform in this particular fashion.  
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Now, we can launch on to get all that the geometric interpretation of this gradient 

operator; and that is not a very difficult thing, because we already said that the change in 

the value of my scalar field is simply given by gradient f dot delta r; that is what we 

wrote; delta r are infinitesimal displacements. Now, suppose I freeze the value of my 

delta r, whatever the infinitesimal value is; and then change only the orientation of delta 

r. So, what is it that I mean, I take a point x naught, y naught and sweep all over this 

sphere with a radius, which is given by delta r. So, delta r is nothing but modulus of delta 

r, that is what I am saying; when does the right hand side become a maximum? Let us 

ask that question; the right hand side becomes a maximum, when that gradient f and 

delta r are parallel to each other, that is when it becomes a maximum; when does it attain 

a minimum value, it attains a minimum value, when gradient f is anti parallel to delta r. 

And of course, whenever delta r is perpendicular to be gradient of f the direction, then 

there is no change in the value of f that is what this fellow says. In other words gradient f 

if I look at it as a vector, it gives you the direction, in which my function changes 

maximally; that is what it gives you. Now, once you give me this piece of information, 

module gradient of course, is the magnitude by with it changes the direction is simply 

given by gradient f divided by mod gradient f. So, suppose I denote it by some unit 

vector n, then n gives the direction, in which the function changes maximally. 



So, if I give you a hill, the hill keeps on winding up, and then you will reach the peak, 

and then there is a valley, there is a hill, so you imagine a range like this. If I am sitting 

here, the gradient here is given in this direction; the gradient at this point in given in this 

direction, the gradient at this point is given in this direction. Of course you also have 

maxima and minima, the gradient at this point is 0, the gradient at this point is 0, the 

gradient at this point is 0, except that what I have written here is a rather poor description 

of what a two-dimensional surface like a hill is, because there are more complications 

than what this curve shows; and that is something that we shall examine now. 

In order to do that, let us look at a surface again; and let us say that gradient f is equal to 

0 at a point, at a point x naught y naught. A nice question that you would like to ask is, if 

the function minimal or maximal at that particular point, well the answer to that depends 

on a higher order derivative that is what I said, when I looked at the calculus of a single 

variable, I said look at d square f by d x square. But now, I have two variables and there 

are three different kinds of second order derivative that I can construct. So, what are 

those objects, I can construct del square f by del x square; I can construct del square f by 

del y square; and I can construct del square f by del x del y. Please remember that del 

square f by del x del y is the same as del square f by del y del x. It does not matter 

whether you take the partial derivative with respect to x first and y later or y first and x 

later; therefore we have three species of derivatives.  

So obviously, the precise behavior of the function at this point x naught y naught would 

depend on all the three quantities. I would like to state a result without generally proving 

it; that is something that you would have learnt in your mathematics course, and that is 

the following. In order to discuss the properties, it is convenient to define an object 

called D, which is called as a discriminate; and that object is devoted to be d square f by 

d x square d square f by d y square minus del square f over del x del y whole square. 

If you feel like this is actually the determinant of the matrix, which we write d square f 

by d x square d square f by d y square, then I write a d squared f d x d y here and d 

square f d x d y here. Clearly otherwise it is complicated, because of the occurrence of 

these so-called cross derivative terms. However it turns out that if d greater than 0, here I 

should go make it more carefully in the next page.  
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So, suppose D greater than 0, and then I have D square f by D x square greater than 0, 

then the function f has a minimal. Suppose D greater than 0, D square f by D x square 

less than 0, then f has a maxima of course, this is not evaluated at any point, that it is 

evaluated at the point x naught y naught where your gradient vanished. Suppose D less 

than 0, what is it that you are going to get? You are going to get a very new kind of a 

functional behavior called as the saddle point. The geometric meaning of this object is 

not at all tough, because the first two are very easy; so let me take some very, very 

simple examples and illustrate them.  
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The simplest example confirms a conics so, what we shall do is to consider a very, very 

simple function, which I shall denote as f (x,y) is equal to alpha into x square minus y 

square; alpha tells you how fast the function increases, essentially it is a measure of this 

scope, so it is not very important for us. Now, if I look at this particular surface, it is 

going to give you properties, which tell you what the saddle points are. So, instead what I 

shall do is to look at an even simpler surface, which is given by f (x,y) is equal to alpha x 

square plus y square.  

What is this function? If I hold the value of y fixed it describes a parabola along the x 

direction, so if y is fixed, it describes a parabola in the x direction, and then a similar 

manner if I were to hold the value of x fixed, it would again describe a parabola 

therefore, alpha of x square plus y square is a parabolic, that is what we are going to get. 

So, if this is the z axis, and if I imagine that this line is the section of the plane, what you 

do is to draw a parabola, and what I did about the z axis to get the parabola. From this 

geometry, it is clear that the only external point is at x equal to y equal to 0. 

In order to verify that explicitly, let us calculate the gradient; you can see that gradient f 

is given by 2 alpha x into I hat plus y j hat and this is equal to 0 only at the origin x is 

equal to y equal to 0. Now, in order to further verify that the origin is indeed minima, all 

that we need to do is to calculate the discriminated; but however, since the cross 

derivative terms vanishes, I only have to calculate the second derivative of x square, and 

the second derivative of y square and evaluate it at the origin. The second derivative for 

both of them is simply given by 2 alpha, which is greater than 0, thus by discriminate at 

that point is greater than 0, individually both the second derivatives of the origin are 

greater than 0 therefore, we conclude this is indeed a maxima. 

On the other hand, if I take alpha to be less than 0, I had taken alpha to be greater than 0 

here, if I take alpha to be less than 0 here, then my parabola would be generated from a 

parabola, which is written in this fashion. Obviously, this would be a maxima no surprise 

about that, because although the discriminate is greater than 0, my alpha is less than 0 

therefore, 2 alpha is less than 0. Thus we have been able to generate two very, very 

simple functions; one of each has a global minima at the origin and it is negative, which 

has a global maxima at the origin. 



However, these are not the only examples or functions that we can have; whenever you 

look at a surface, it may so happen that I move along the x - axis the function increases, 

that I move along the y axis that the function decreases, whenever we encounter such a 

situation, which is what we denoted we discussed in the case D less than 0, will be called 

as a saddle point. 
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In order to illustrate a saddle point, a very, very good example is given by yet another 

conic, which is f (x,y) equal to x square minus y square. Now, this function is something 

that cannot be shown or drawn so easily or even can be picturize by rotating it therefore, 

what we shall do is to show you a nice computer generated picture and let us look at that.  
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So, this is the function, which has been generated; it is a very, very simple function as I 

told you, which is simply given by x square minus y square; I believe that alpha has been 

set to equal to 1. Now you can see that if I were to move along the x direction, the 

function is going to increase; in fact, it is a section of a parabola. But if I move along the 

perpendicular direction namely along the y direction, the function is going to decrease. 

So, we say that the point x is equal to y equal to 0, because that is the only point at which 

the gradient is going to vanish, it is a saddle point. So, what is the definition of a saddle 

point, take the external point, in this case x is equal to y equal to 0, and draw a small 

region around that particular point. When you draw the small region around the point, 

however, small this region may be there will be some points at which the function will be 

decreasing from the original point; whereas if I move in some other direction, the value 

of the function will be increasing; this is not an unfamiliar surface for us, because this is 

the famous horse saddle, which you will see the riders use when they want to ride on a 

horse and this is regard the required property for this stability, that is a stability of a 

different kind not in the sense of mathematical stability. 

In fact, yet another simple figure that shows the saddle point behavior is this function, 

this surface has been generated by looking at a even simpler function f equal to x y. I 

invite you people to convince yourself that only x equal to y equal to 0 is the external 

point, that is that is the point at which the gradient vanishes, and again it is a saddle point 



as you can see from this figure, the behavior along this direction is simply different from 

the behavior along this direction. And the again we find that if you draw a sufficiently 

small circle around the origin, depending on which direction you move, the function will 

either increase or decrease, but there is no circle; however, small the radius may be such 

that the function will only either increase or it will only decrease. 

This should conclude for us, the study of the properties of the gradient, what kind of a 

information it gives us, when we look at it in terms of the… From the view point of 

maxima, minima so on and so forth; except that that I did not discuss yet another case 

namely, discriminates is equal to 0, D equal to 0. Whenever d equal to 0, unfortunately 

there is no way for us to do, except that we have to start computing higher alternate 

derivatives, and see how the function behaves. But there is something that is not very 

important to us, what we shall do is to now take the q from the fact that gradient f is a 

vector field or a vector function, generalize the notion to discuss any arbitrary vector 

field and do not go on to discuss other operations such as curl and the divergence, which 

we shall take up in the next lecture. 

 


