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So so far, we had been looking at electrostatic phenomena, where the charges were at 

rest. So, what we did was to look at electrostatics both in free space and in medium. We 

considered broadly two kinds of media; so one was the class of conductors and the other 

one was dielectrics, and by taking the charges to be at rest and at equilibrium. So, what 

are the conditions that we put? The charges were at rest and were in equilibrium. If the 

charges are not in equilibrium or they do not reach in equilibrium state, then one cannot 

discuss electrostatics phenomena like for example, how does a dielectric material 

respond in electric field or how do the charges get redistributed, when I change my 

electric field? 

So, we took charges to be at rest at an equilibrium, and we sort of covered the 

phenomena in the media namely; conductors and dielectrics, which covers most of the 

materials that we encounter in everyday life. What we now do is to look at charges in 



motion and that would be the subject matter of the so called currents. So, it is a fresh 

topic that we are going to begin right now; so let us call it as the physics of charges in 

motion. Now, when I am looking at charges in motion, obviously I would not like to 

consider the most general motion that is possible with all kinds of accelerations. To start 

with, we want to specialize ourselves to a very specific kind of motion.  
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So, we want to look at a specific kind of motion, and it is this motion which gives rise to 

what is called as steady currents. In fact, today’s lecture will be largely devoted to an 

elucidation of the concept of what a steady current is and how it manifests itself in many 

situations. I have to define the notion of a steady current very, very carefully, and what I 

would request you as you listen to me is also to remember that you have studied a similar 

thing in your fluid dynamics course or you will be studying something very parallel to 

whatever I am telling you in your fluid dynamics course. Therefore, you should be able 

to sort of make some kind of a correspondence between the steady current that is being 

introduced here and what you study in the general subject matter of fluid dynamics. 

Now, how do you define a steady current and what do we mean by that? The notion is 

intuitively clear. What we want to imagine is that the charges are all moving with 

uniform velocity and the current does not change with time. So, the intuitive notion is 

that the current does not change with time; of course, it can be quasi static or quasi 

steady by that we mean; it changes very slowly with time. 



What are the situations that we encounter normally? For example, if I take a wire and 

connect it to a battery, I say there is this much current that is flowing. I know the 

resistance of the wire; I know the battery voltage. Let us say at 5 volts or whatever. So, 

these are examples of steady currents that we have intuitively. What we now want to do 

is to quantify it and make that notion precise. So, this intuitive notion of what a steady 

current is to be made precise. In doing so, we shall introduce two important concepts 

both of which you are familiar with; so two concepts is what I need required; one is that 

of current density and the next one is of the current itself. 

Currents are of course are what we are most familiar with. We say this wire carries ten 

amperes current. There is a lightening which carries something like 20 thousand amperes 

etcetera, etcetera. Current density is something that we do not encounter normally. 

However, current density is absolutely fundamental. It is more basic then the notion of a 

current. So, what we shall do is to first of all introduce the concept of current density; 

introduce the concept of a current; state precisely what one means by a steady current. 

Study its properties, and then, go on to study the magnetic field produced by the currents. 

So, this is our plan of action for this lecture and probably the next lecture.  
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Now, in order to formulate the notion of a current, it is very important for us to 

remember the most fundamental law which governs all of electrodynamics phenomena 

and that is conservation of charge. So, let us start with that; long time back in my fifth or 



sixth lecture, I almost devoted an hour to elucidate the concept of the conservation of 

charge. What it means, how it can be verified, what is the evidence, so on and so forth. 

Shall I would now do is to take it for granted that we all accept that we all know that 

charge is conserved and use that in order to formulate the concept of a current. How shall 

we do that? 

In order to do that, what we shall do is to look at a certain region in space. So, this is a 

certain region in space. So, let me call it as R and this region is bounded by a surface s. 

Now, in this region carries a volume V. The volume of this particular region is given by 

V and we shall ask what is that, that, we can say about the charge density in this region. 

So, what is the statement that I would like to make? I would like to say that there is a 

charge density rho of r, t. It can of course be a function of time in the region R. Now, if 

rho were independent of time, then I would say as far as this particular region is 

concerned, it is as good as electrostatics. 

However, suppose rho is a function of time. So, suppose rho depends on time. What do 

we mean by that? By that we mean that as a function of time, the charge contained in this 

particular volume is going to change. Now, when I am speaking of rho depending on 

time, I do not mean simply redistribution of charges. So, let me make my concept even 

more precise. What I will do is to look at Q which is contained in the volume V, which is 

nothing but the integral rho of r t d cubed r. 

So, I am looking at the total charge contained in this particular region, and I am asking 

how much is it? So, I make an integration over this certain volume; I have indicated this 

figure here and ask what is this Q V the charge contained, and we are asserting that this 

is a function of time. Now, if this is a function of time, we ask how is it that this charge 

can become a function of time. 

Well, the answer is clear. The charge becomes a function of time not by sudden 

annihilation or creation of charges. I cannot say that an electron was born in this 

particular volume. Your proton got dead in this particular volume. It cannot be suddenly 

appearing; it cannot be vanishing, because remember, we said that our whole discussion 

will be based, will be pivoted on the fundamental law namely the law of conservation of 

charge. So, what is the statement that we want to make? 
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So, let me write that region here again. I am going to magnify that. So, this is my region 

r; this is my surface s and I am looking at charge contained in that particular volume V. 

So, if we say that the charge contained is changing as a function of time in this particular 

volume V, how is it possible? It is possible if and only if there is a net charge that flows 

into the volume or a net charge that flows out of the volume. 

If Q V of t increases, there should be a net flow into the volume. So, let us indicate that. 

So, this is the line which indicates that the charge is flowing into the volume. These are 

the lines which indicate that the charge is flowing out of the volume. So, if my Q of t is 

an increasing function of time, I would say that such a thing happen because more charge 

flowed into the volume, then the charge flowed out of the volume. 

If Q V of t is a decreasing function of time, I would say that more charge flowed out of 

the volume than inside the volume. So, in this case, Q of t increases with time. This is a 

schematic representation, whereas I can write the same situation of figure here, the same 

region. Let us say these two lines indicate the flow of the charge inside the volume and 

these four lines indicate the flow of the charges outside the volume. Here, Q V of t 

decreases with time. 

So, we are asserting that the charge contained in the volume can change only because of 

the flow either into the region or outside the region. It cannot happen by annihilation or 

creation of individual charges. That is the statement that we are making. Now, it is 



perfectly possible that my charge does not change and yet there is a flow. So, how do I 

indicate that? The indication is clear.  
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So, let me draw two figures to show you because this is an important concept. 

Schematically, I would draw two lines like this and two lines like this; that means here, 

Q V is constant in time. What is happening? There is a certain charge that enters this 

particular volume, but the same quantity of charge also leaves this volume. Therefore, Q 

V is constant in time. Is this the only possibility, because of the current that the charge is 

going to be constant in time? The answer is no. I can make one more schematic 

representation and that is the currents are of this nature. 

Whatever charge is inside keeps flowing, there is no flux outside, but the flux is all 

parallel to the surface. Therefore, whether we look at this, let me call it as figure a or 

whether we look at this configuration, both of them imply for me that Q V is constant in 

time. So, the long and short of this story, the summary of whatever I am trying to convey 

through this cartoons, through these schematic representation is that the charge contained 

in a given volume will change because of the flow of the charges. 

And what should be the nature of the flow of the charge? The flow of the charge should 

be such that there should be a net flux either inside or outside the surface. So, please 

notice the way I have drawn the arrow. These arrows have a component perpendicular to 

the surface. Now, my area vector is always perpendicular to the surface. Therefore, my 



current which represents the flow of the charges obviously should have a component 

parallel to the surface vector. 

If the current vector, the flux vector does not have a component parallel to the surface 

vector like here, it is parallel to the surface, but perpendicular to the surface vector, then 

there is no change in the charge contained. So, in other words, the change in the charge 

contained is always, it is always it is invariably accompanied by an associated current.  
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Now, what is the current that we want to say? Well, suppose rho is the charge density. 

Now, the current at any given point depends on two factors. How many charges are 

sitting in that unit volume, and what is the velocity with these those charges are moving. 

Therefore, the flux that I want to construct is naturally given by the quantity. This is my 

famous current density, which is nothing but rho into V, where V is the velocity of the 

small pocket of the charge this charge density. 

So, obviously we are looking at a sufficiently small volume to take it for granted that all 

of them are moving in the same velocity. So, in general, J is a function of both place and 

time, and what we want to say is that it is because of this motion that there can be a 

change in the charge contained. Well, how do I write that? It is a very, very simple 

relation that we can write. We can write that delta Q of t. I am asking for the change in 

the charge contained that is simply given by minus surface integral J dot d s where J is 



given by rho V. So, let me record it. My J is nothing but the charge density, current 

density. 

Now, if you feel like you can go back and look at all these pictures, integral J dot ds is 

equal to 0 here because whatever entered the surface exited through the other side of the 

surface. Integral J dot ds is equal to 0 here because J and ds were perpendicular to each 

other. This was your ds and this is your direction of J, and whereas if you go yet other 

previous figures, here integral J dot d s is greater than 0; here integral J dot ds is less than 

0. Our surface area element the tractor is always outward normal and that is indeed the 

reason why I get this relation minus sign minus integral J dot ds, because we should 

remember this is always defined as outward normal. 

J dot d s greater than 0 tells you that the charge is flowing out; that means, there is a in 

the charge contained that gives you the minus sign. J dot d s is less than 0 tells you that 

the charge is flowing inside the surface. There is a flow of the current within the surface. 

It is flowing into the volume. Therefore, this minus sign now ensures that there is an 

increase in the charge contained. 

So, we are now able to quantify the qualitative notion of conservation of charge through 

this relation and all that remains for me is to write it as a nice algebraic relation, a 

differential equation. In order to do that, all that I have to do is to rewrite the left hand 

side, but what is delta Q of t? So, if I have rho of r, t, if I have an integral d cubed r, that 

is actually what the total charge contained. 

Now, I am interested in how it is going to vary. So, I am going to write a d by dt. That is 

what I have here, and the derivative can be taken inside and I can write it as delta rho by 

delta t, that is, the ordinary derivative becomes the partial derivative r, t d cubed r. This 

delta Q of t was actually a function of time. I should have actually written it as d Q by dt. 

Otherwise, I would have to multiply this whole thing by a certain delta t that would be a 

more precise notion. 
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So, if we combine both the formula, what is the relation that I am going to get? I am 

going to get d cubed r delta rho by delta t r, t. In that volume V, whatever the volume is 

of your interest is nothing but minus integral J dot ds where there is a surface s which 

encloses, which bounds the volume V. So, we know the precise meaning of the symbols 

on the right hand side and the left hand side. I am performing a volume integral on the 

left hand side; I am performing a surface integral on the right hand side. This is a close 

surface, and what is that close surface? The close surface is indeed the surface that 

bounds that particular volume. So, let us never forget this figure. This is my total volume 

and this is my surface. 

Now, all that we have to do is to actually invoke Gauss Divergence theorem, and what 

does gauss divergence theorem tell me? It tells me that integral J dot ds. Please 

remember it is a close surface. That is the reason why I am putting that circle is nothing 

but integral divergence J d cubed r. So, we are rewriting the surface integral on the right 

hand side as a volume integral, and of course, it is over the same volume contained in the 

region r. So, if you feel like I will write it as contained in the region r, so all we have is a 

volume integral on the left hand side; a volume integral on the right hand side. 

So, let me write them now integral d cubed r delta rho by delta t of r, t over a given 

volume is equal to minus integral divergence J d cubed r over the same volume. So, we 

are almost home. All that we have to do is to look at the left hand side, look at the right 

hand side and ask whether we can get rid of the integral sign. Let me go through the 

argument slowly. 



When I wrote this equality, I did not make any assumption about the nature of the 

volume. The volume can be large; the volume can be small. The surface can be of any 

shape. In other words, this relationship holds for arbitrary regions which are enclosed by 

arbitrary surfaces. Therefore, since this holds for all regions, all kinds of regions and 

surfaces, since we have made no assumption what so ever on the nature of the volume 

integral. We can conclude that this equality is possible if and only if the integrants are 

equal.  

(Refer Slide Time: 21:01) 

 

So, this is indeed the crux of the argument. Therefore, this implies that the integrants are 

equal. So, we have now got the required equation delta rho by delta t plus divergence J 

equal to 0. This if am I say so is the local version of the conservation of charge. 

Conservation of charge tells you that the total charge contained in any closed system is 

the same, but this local version is more powerful. It has more information than that 

statement because it tells you that, if I consider a certain region in space and if there is a 

change in the charge contained, as to how the charge contained change because there was 

a net in flux or out flux. Therefore, this is the local version of the conservation of charge. 

Now, it is this local version of the conservation of charge that we are going to use, and 

by the way, this goes by a famous name. This is called the continuity equation, and as I 

told you at the beginning of this lecture, this is an equation which will encounter in many 

many situations. It is not necessarily specific to electric current. There can be a fluid 



which is flowing; there can be a gas which is flowing. The total mass will be conserved 

in such a situation that tells the place of the total charge. 

So, in a variety of situation where there are conserved charges, conserved masses, 

conserved momentum, conserved energy, we write the appropriate continuity equations. 

Therefore, this is indeed a very, very important equation which will certainly encounter 

in your fluid dynamics course. Therefore, we should remember this. 

So, what I would now like to do is to look at this continuity equation, this particular 

version of the conservation of charge, and now, define for you precisely what is steady 

current is. Let me first state the intuitive concept, and then go on to make it precise. 

Intuitively, I said that a current is steady if the current is the same everywhere. Now, 

what does it mean for us? A current is steady if there is no charge accumulation 

anywhere, charge accumulation anywhere. Let me give an example.  
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So, let me imagine a thick wire or it may be a thin wire which I have magnified and there 

is a current which is flowing. So, what I will do is, I will look at this surface s 1 

cylindrical wire. So, this is a circular cross section and I will look at s 2 and ask is the 

same current flowing here and here. Well, if the same current is crossing the surface s 1 

and also s 2, that means there is no accumulation of charge anywhere. That is the 

statement that we want to make; so, that means delta rho by delta t identically equal to 0. 



This indeed is the statement of the idea, the intuitive notion that there is no charge 

accumulation. Very good, but what does the continuity equation tell me? Continuity 

equation tells me that delta rho by delta t is equal to 0 if and only if divergence J equal to 

0, divergence J equal to 0, and this is what we are all the time going to use in order to 

discuss our quantify the notion of steady currents. 

So, now, we have a definition. A current is steady if divergence J equal to 0 everywhere 

and at all times that is indeed what happens in your wire. When your d c current is 

flowing, divergence J is equal to 0, everywhere and at all times. So, if you come back to 

this example, you can easily see that there is a same current density at this point and at 

this point; the area of the cross section of the same. Therefore, the current is steady. So, 

what we have done so far is to actually define the concept of a current density.  
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Now, let me take the opportunity to also define the concept of a current. As we saw 

current density is a vector quantity, whereas current is a scalar quantity. I say for 

example, a 10 amp switch, 20 amp switch, this fuse can support a maximum current of 

20 amperes. 

So, when I say that, I am not bothered about the direction in which the charge is flowing. 

So, I have to define a scalar quantity in terms of the fundamental vector quantity namely 

the current density and that is very simple. So, what we shall do is to imagine that the 

current is flowing. So, you can imagine that there is some kind of a pipe line and this is 



my surface. So, this is my surface s 1, and then there is also this surface, this cylindrical 

cross section. So, let me call this as s 2. 

So, both of these line are parts of the surface s 2. We are looking at a cross section in the 

plane. Now, how is the current flowing? The current is flowing along this particular 

direction and we normally define the current to be total charge per unit time, but total per 

unit time of what? Per unit time flowing through this particular surface. 

Therefore, I will define the current to be integral J dot ds. Please notice that this s not a 

close surface, but an open surface. That is very, very important. This is not a close 

surface but an open surface. I put an obstacle; I put a surface; I put some kind of a gaze 

and ask how many of the charges are passing per unit time - obviously for a given 

current density. Imagine the current density is constant throughout. Then as I keep on 

increasing my area, the current increases. As I keep on decreasing my area, my current 

decreases. 

So, here is my fundamental quantity; the basic quantity namely the current density. If I 

dot it with the surface element, the surface vector d as an integrate that gives me the 

current flowing across the surface. So, this is the current flowing across the surface. Of 

course, if I ask what is the current flowing through this surface s 2 in this particular 

figure, I s 2 is equal to integral J dot d s 2. This is s 1 d s 1 identically equal to 0 because 

no charge is flowing. The charges are all flowing parallel to the surface of the wire. It is 

always the cross section which cuts the wire. That is what we have. 

Therefore, we have now a precise concept of what is a current and what is a current 

density and we have also been able to define what one means by a steady flow. We 

should never forget that divergence J identically equal to 0. By the way, there is yet 

another notion that I would like to tell you at this particular point although I would not 

use it.  
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That is the idea of incompressibility. We can always imagine the flowing charge to be 

some kind of a fluid because it is a field, is that right? And all fields can be imagined to 

be some kinds of fluids whenever there is a velocity associated with it. So, divergence J 

equal to 0 means that fluid is incompressible; it cannot be compressed. For all reasonable 

pressures, water is an incompressible fluid and this again is intuitively possible to us, 

because if the fluid is not compressible, whatever enters should go out; that means there 

is no accumulation of charge. Therefore, this is also a statement of incompressibility. 

Now, we should be very clear in understanding under what conditions, I would have an 

incompressible flow; under what conditions, I would have a compressible fluid, or even 

better under what conditions, I would have a steady current, and under what conditions, I 

will not have a steady current, and in order to illustrate that, let me give you the 

following examples. So, let us start with a few examples. We are proceeding rather 

slowly because although this might appear to be simple, grease light at the heart of all the 

electro dynamic phenomena the current phenomena that we are going to study. So, we 

might ask to be careful. 

Now, a good Example is that of a straight wire, straight wire. So, let me say that it has a 

diameter d. Let me take the axis to the along the z direction. This is my z direction. My J 

is equal to J naught k within the wire equal to 0 outside. So, clearly if I did divergence J, 

this is nothing but delta J z by delta z identically equal to 0 because J naught is some 



number. This is the usual notion of a current that we have. In fact, my current is simply 

nothing but J naught into I gave a diameter d, so, pi r square which is d by 2 whole 

square. This is my current. 

This is an example of a incompressible flow. The same amount of charge is passing 

through every cross section which is perpendicular to the axis of the wire. We have a 

constant current which flows and there is a constant density. So, the general notion, the 

intuitive notion what you expect is that, if there is a constant current that flows, well 

there better be a steady current, and therefore, divergence J must be equal to 0. One has 

to be however careful in dealing with this. So, what I shall do is to now look at another 

example. In fact, this is an elementary physical example.  

(Refer Slide Time: 32:30) 

 

So, let me look at a wire whose cross section looks like this. It is a wire made of the 

same material. So, here, it has a diameter d. Here, it has a diameter let us say d by 10; it 

is some number that I am giving; here again I have a diameter d. This is in fact the 

principle behind the fuse what I do is that I take a wire and then taper it into a very very 

thin filament and then increase the thickness again. 

So, if there is a current I which is flowing here, the same current I will have to flow here, 

but then, there is a change in the current density, and therefore, there is a corresponding 

larger heating which I will come to at a later stage. Therefore, what happens is that, as I 



keep on increasing my current, there will be a threshold value beyond which this part of 

the wire is going to melt and we say that the whole circuit has got fused. 

Now, I do not want to solve this problem, I want to give it as a problem for you people to 

think. Suppose I assert, suppose that I is the same everywhere. The same current is 

flowing everywhere. So, let me call this as region one. Let me call this as section 2. This 

is the section 3 of that length of the wire. So, what we are saying is that I 1 is equal to I 2  

is equal to I 3. Suppose I told you that. Suppose I also told you that J is parallel to the z 

axis. So, this is my z axis which I denote by unit vector k everywhere. 

 

This is what you would imagine. There was a fluid or something which was flowing; it 

continue to flow straight; it continues to flow here. So, it continues to flow here. Except 

that here, it was distributed over a larger area here; it is distributed over a smaller area; 

again it gets distributed over a larger area. Now, the Question is, is the current steady? 

Well, I ask you to look at this figure carefully. I request you to evaluate the derivatives 

carefully; I request you to find out what would happen if J is everywhere and provide an 

answer. 

The answer is that it is not a steady current, but as to how it is not steady, how the charge 

is going to accumulate that I will give as a problem. So, let us call it as a home work 

problem. We will return to this problem when I discuss the functioning of a fuse after I 

introduce the concepts of a resistance. But I would urge all of you to solve this problem 

before actually going on to discuss the other things. So, please take some time to solve 

this particular problem. 

So, now, we have stated the concept of a steady current, and the next thing obviously is 

to immediately start discussing what should be the magnetic field produced by a current 

and what happens if a current is flowing in a wire so on and so forth. However, we have 

to be a little bit more careful here. We have to pause for a while and ask ourselves as to 

how many kinds of steady currents are there. 
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So, you shall now ask a slightly different question what are the varieties of steady 

currents, so, varieties of steady currents. I would like to give you several examples. In 

nature, which are different manifestations, which give you different kinds of steady 

currents, and therefore, we shall ask ourselves that whether all steady currents are the 

kind of currents that we see in a wire. 

The answer is no. Actually there are two types. There are two types - one is what I call as 

convective current and the second is conducting type, conductive current, and most of 

the time when we deal with steady currents, magneto statics whatever you people studied 

in your twelfth standard, we deal with conductive currents, but conductive currents do 

not exhaust the phenomena of steady currents. 

There is a lot of interesting physics even with currents which are not conducting and 

these are the convective currents. So, let us start studying Convective currents; 

convective currents arrives when there is a body flow of the currents. I will make this 

concept more precise body flow that is the charges flow. They do not simply transmit 

momentum to the neighboring charge, but the body flow of the charges, the charges 

move 

So, what are the examples now like to give? Ionized dust. So, dust you know gets 

charged, and suppose there is a wind that is blowing in a wind; so when the wind is 

blowing, carries the dust, and when the dust is flowing, each dusts let us say carries a 

charge. It may tells about hundred electrons of per unit some peak of coulombs. But 



then, there will be a certain density of the dust. Each dust particle carries some peak of 

coulombs of charge and it will be moving along the direction which is the wind is 

blowing. So, this constitutes a Convective current. 

So, if there is a steady wind, then there is a steady current and these currents of course 

exhibit a variety of phenomena. They will produce a magnetic field so on and so forth, 

but their behavior as per as the resistance properties are concerned are very, very 

different from what you would find in a conductive current.  
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So, this is example one. Let me consider another example and this is a very familiar 

example, but not from view point of the current and that is rainfall. We are all told that 

rain water is the purest form of water so on and so forth. But actually in reality, the water 

molecules, the water drops which fall actually can carry a charge. So, let me give you 

some tit bits of information. So, typically each drop of water can hold up to thousand 

electrons, and how many water drops? Do you expect to fall per meter square about ten 

thousand water drops let us say. I am speaking of normal rain not a very, very heavy 

Rainfall or anything per meter square per second fall on the surface of the earth. 

What is the speed with which they move? Well, at the surface, it will be about 20 meters 

per second. Not a very fast, it could be 10 20, 25. It really does not matter. So, as I told 

you these are some typical values, 20 meter per second is the speed, vertical speed at the 

surface. So, if you imagine that each drop is carrying about thousand electrons, there are 



ten thousand water drops per meter square per second and there is a certain velocity 20 

meters per second. This constitutes a Convective current. 

Of course, the total number of electrons might fluctuate from particle to particle, but if I 

consider for example a centimeter square of area or whatever, the fluctuations average 

out. There will be on an average 1000 electrons per water drop. On an average, there are 

ten thousand water drops per meter square. The average speed is about ten feet meters 

per second. Therefore, the time averaged current, and remember, we already discussed 

the notion of a macroscopic field a macroscopic charge density and a macroscopic 

current. 

So, the time averaged current is steady, and obviously, you people should be imagining 

that there is going to be a problem. So, let us say that the Rainfall is over an area of, let 

us say suppose the Rainfall is over area of 1 kilometer square. What is the current? So, I 

invite you to do this calculation and then convince yourself that you have got your 

numbers right. Get the estimate of the current and compare it with the typical currents 

that flow in your wires at home or in your laboratories and ask yourself whether this is a 

large current or a small current. Obviously, the current should not be too large. So, I will 

leave it for you people to ponder about and work it out.  
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So, what I shall now do is to look at the next example. This is indeed an example of what 

is called as a Solar wind. So, we have looked at two examples which come from the 



terrestrial phenomena for the convictive flow. The first one was the dust particles which 

are carried by the wind. The dust particles were naturally charged because of confliction 

or whatever. 

The second example was that of the rainfall. The third example is now astronomical we 

are going beyond the realm of the earth and this is what is called as the Solar wind. Now, 

what is a Solar wind? If you can look at this accompanying picture, this is what is called 

as a corona, and in the corona what happens is that, it is enormous number of charge 

particles which are thrown out by the sun. These are called the solar flares and these 

charge particles travel enormous distances. 

Now, I have written down some typical numbers here. The speed with which the charge 

particles are thrown out are something like 500 kilometers per second. The corona is at a 

very very large temperature. It is of the order of something like a million Kelvin or so. 

So, these are all predominantly protons not electrons. 

So, they have thrown out at a speed of 500 kilometers per second, and then they travels 

through what? They travels through the planetary system and they reach the surface of 

the earth. Now, as they move further and further away from the sun, their density 

increases. And then they reach the planetary orbit. So, this is near the earth. When they 

reach the earth and you know earth is about seven light minutes away from the sun, that 

is, light takes about seven minutes to reach the earth from the sun and light travels with a 

speed of 300, 000 kilometers per second. Therefore, you can find out what is the distance 

between the earth and the sun. When they reach there is a flux of about ten to the power 

of, their density of the protons is about ten to the power of 6 meter per cube. 

So, if this is the sun and if you imagine that there is an earth here, so you can imagine 

that there is a flux of the incoming proton. This again is an example of the Convective 

flow. By the way, this is a phenomenon which is a branch of an extraordinarily 

interesting subject called the magneto hydro dynamics because these moving charges 

produced a magnetic field. In fact, the magnetic flux lines are attached to the charge 

particles. 

And because they are charged, they are also going to produce an electric field. So, there 

is a lot of study that goes on to study the solar wind, because it will give us lot of 

information about the sun, but that does not matter, but we see that at the astrophysical 



level at the, sorry, at the astronomical level, again there are phenomena involving with 

the conductive flows and that is indeed the familiar, the beautiful example of the Solar 

wind. 

Again, I would like you to estimate what the current is because I have given you the 

number density; I have given you the velocity. The last example that I would like to give 

you is a very, very practical example. Except that, unfortunately in this case, I do not 

have the numbers. Therefore, probably you should talk to your faculty members to your 

teachers in your colleges and find out.  
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This is oil flowing pipeline and we know that oil flows through enormously long 

distances through pipelines, and what is the oil that we have in mind? The mineral oil or 

petrol let us say. Now, what happens when petrol flows through this pipeline and this is a 

picture of a long pipeline? The, because of the friction between the surface of the pipe 

and the oil, the surface gets charged. So, let us say positively if the surface gets charged, 

oil is over all neutral, the other charge moves convectively with the fluid with the oil and 

this has lots of in terrestrial implications for better and for worse. 

So, even here, you see that what is happening is that, if I am going to show you a pipe, 

the positive charges adhere to the surface and the negative charges stick to the molecules 

and their flow and this causes gives rise to the convective flow of the oil and there is a 

steady current that is produced. 



So, be it dusts or rainfall or a solar wind or the flow of oil in a pipe, all of them give us 

the notion are examples of steady currents, and what I would like you people to 

remember is that the physics of this steady currents of this phenomena is very different 

from what you get when you look at the steady currents coming from the conductive 

phenomena and we shall look at that in your next time. 
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So, now, what we shall do is to look at conductive currents, and this is what we are 

familiar with in our day to day example of electro dynamics. In the phenomenal of 

conduction, there is no flow of individual charges. What happens here is that there is a 

large number of charge particles and you keep on transmitting momentum to your 

neighboring charge. So, each charge let us say electron one moves only a few molecular 

distances, moves only a few molecular distances. 

But then it moves, it transmits all its momentum to the neighboring electron. Meanwhile 

the electron behind it again transmits the momentum, and because of which, there is a net 

current, but continuous transmission, continuous transmission, of momentum velocity 

gives rise to currents. So, how do I produce a current? The way I produce a current for 

continuous transmission of momentum is that I have to apply an electric field. So, 

conductive currents need electric fields to be produced. Please notice that when we 

looked at the conductive currents, there was no concept of an electric field. 



In the case of the wind, it was the kinetic energy of the wind that produced the current. In 

the case of the rainfall, it was the gravitational field. There is no electric field; there is no 

voltage difference, and in particular, there is no Ohm’s law. But here, in the case of the 

conductive fields, you should remember whatever I told you when I was discussing the 

difference between the concepts of a conductor and a insulator, I told you that in 

conductors there are about 10 to the power of 28 electrons per meter cube. There are that 

many of them. They keep on transmitting energy because of an applied external field. 

They need electric fields to be produced, and therefore, there is a natural dissipation. 

They give rise to Ohm’s law and this we shall study a little bit carefully because that is at 

the heart of all circuit theory. So that means, they need electric fields or external 

voltages, for their sustenance, and how are these voltages produced? That is the question 

that we have to ask. 
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The whole thing is kinetically shown. So, this is my voltage source – positive, negative, 

and there is a current that is flowing through this. This has a thin filament wire. We do 

not worry about the thickness etcetera, etcetera, at this particular point. It is carrying a 

current I, and what is this voltage doing? It is going to produce an electronic field. So, let 

us say that the total length is L through of the wire is L. Then my electric field is nothing 

but V by l. You can imagine that there is a source and there is a drain, and then, the total 

electric field is simply given by V by L. Now, what is the phenomenal unit to the 



conduction electron? Although we use the language of free electrons in order to describe, 

this cannot be absolutely free, because if they were absolutely free, a uniform electric 

field would have produced a uniform acceleration.  

If the electrons were absolutely free, there would be a uniform acceleration. This is 

child’s play to all of you how to solve this. You would write acceleration is nothing but 

what? q E by m which is uniform, which implies V is equal to a t. Even if they were at 

rest, this implies I is equal to some I naught t because the current keeps on increasing 

with time, but this is not what happens we get instead a uniform current. 

So, the interest in questionnaire is that, how I write that a constant force does not 

produce a constant acceleration but a constant velocity. The answer to that is obviously 

that there are lot of coalitions that are taking place. There are frictional forces, and what 

eventually happens is that the charge particles attain a terminal velocity like you have 

studied in your dynamics and that is what constitutes a uniform current. So that means 

that although there is a constant force that is being applied on the electrons, the electrons 

only move with a constant velocity; that means all the work that is being done should be 

dissipated away. How does it get dissipated away?  
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The electrons transmit or lose. That is a better word. The energy gained from the field, 

gained from the field, to the atoms to the atoms, and what the atoms do? The atoms get 

heated up and they will dissipate. So, this causes heating, the famous joule heating. So, it 



is this heating that is phenomenological very beautifully summarize in what we call as 

Ohm’s law. Therefore, now you should be in a position to appreciate why I took so much 

time to make a distinction between the convective current and the conductive current. In 

a convective flow, the charge particles move with uniform velocity, but there is no 

accompanying dissipation because there are no accompanying coalitions; there is no 

external related field, whereas here there is a certain joule heating. So, what we shall 

now do is to study the phenomenon of this joule heating and that takes us to the famous 

Ohm’s law. So, we shall take up the study of the Ohm’s law and its applications and 

ramifications in the next lecture. 


