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In the last lecture, we looked at the electrostatics in the presence of conductors. Now, 

what we shall do is to continue our studies of electrostatics in media, but with dielectrics. 
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So, we are going to study electrostatics in media namely dielectrics. You people are 

already familiar with the concept of a dielectric. In fact, you have calculated the 

capacitance, how the capacitance changes in the presence of a dielectric and so on and so 

forth. So, what I shall do is to try to give you a perspective as to, how a dielectric has the 

properties it acquires the properties that it has from a sort of microscopic viewpoint. In 

the case of conductors we argued that there is a reasonable supply of free electrons, 

rather there is a supply of reasonably large number of free charges, which can move 

freely to readjust their positions; they can move over macroscopic distances such that 

they can decrease the energy of the system. The electric field is completely made to 

vanish within the body of the conductor.  



So, that was the defining property of the conductors. And we are able to derive a large 

number of properties such as all the free charges or the excess of charge resides on the 

surface of the conductor; the surface of the conductor should be an equipotential surface 

so on and so forth. 

What we now want to do is to look at materials, where there is no supply of such 

electrons, there is no charge particle, which are actually move over macroscopic 

distances; but the charge particles only readjust their positions slightly to a certain extent. 

May be over a molecular length or a few molecular lengths and that is what distinguishes 

a dielectric from a conductor. 

At the very beginning when I introduce the concept of dielectric and a conductor, I told 

you that it is a matter of qualitative distinction, it is not quantitative distinction. I even 

gave you the numbers as to under what circumstances we call a material a conductor or 

we call a material a dielectric; do not forget that I gave you the number in terms of 

resistivity. 

So, if you remember that you can appreciate that, there is a rather smooth transition from 

dielectrics to conductors through what are called as static discharged materials. Static 

discharged materials we do not study in this particular course I have mentioned it for the 

sake of completeness. 

Now, let us get to our studies. The first thing that I would like to do is to model 

conductors, rather dielectrics as follows. As we said in a dielectric, the charges are not 

free to move, but certainly they can be displaced. In order to make it somewhat 

quantitative, we shall imagine that charges are bound by an oscillator potential, let me 

explain that. 

We have already argued that, if you look at average charged densities, (( )) charged 

densities then, rho is independent of time that is the definition of electrostatics. 

Although, the electrons may be moving very, very fast in atoms or in molecules, we are 

going to look at the average charge density. What is the average? The average is then 

over time, the average is then over reasonably small, but reasonably large compared to 

molecular dimensions of space if you did that my charge is a constant. 



If my charge density is a constant that is it is not varying as a function of time that means 

the charges must be sitting in their equilibrium positions. So, the statement is that the 

charges are placed in their equilibrium positions. Obviously, these are stable equilibrium 

positions. So, at this point I have minima in the potential, not a maxima; a maxima would 

give you an unstable equilibrium, we are going to look at equilibrium positions. 

(Refer Slide Time: 05:28) 

 

Now, if I imagine that the particle is sitting in the equilibrium position I can ask, what 

happens if I displace it slightly away? So, what do we do, let us look at the energy; 

without any loss of generality let us take the potential energy at equilibrium position, let 

me choose that to be r equal to 0 to be 0. What we are now going to do is to make a 

Taylor expansion of my potential around this particular point. 

So, if I look at r close to r equal to 0 which I have taken to be the equilibrium position, I 

get V r equal to 0, which is equal to 0 plus r dot delta V by delta r, that is what I am 

going to get plus quadratic terms plus quadratic terms. And obviously, this derivative is 

to be evaluated at r equal to 0. Since, we are looking at an equilibrium position and we 

have chosen the 0 of the potential such that, at r equal to 0 it is 0 potential. What do I 

have? V of r has only quadratic terms, this cancels and this cancels. 

Now, let me imagine that I am moving along the x direction. So, let me look at only 

along the x direction, the argument will generalize to other directions also. This will 



obviously I have the form half k x squared, where k greater than 0. How is it that k is 

greater than 0, because this is implied by the minimal minima in the potential. 

So, the statement that we are making is that, if I slightly displace my charged particles 

from its equilibrium position, then in the leading order it experiences a harmonic 

oscillator potential. It vibrates around the equilibrium position with a frequency given by 

root k by m, and this will be the basis of all our discussion of dielectrics today. 
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So, let me imagine that I have a dielectric (( )) I do not put any extra charge on it on the 

whole it is electrically neutral; and let me show how the charge distribution 

corresponding to the negative charges are there. So, may be I can do something better, 

my charge distribution is schematically shown in this particular fashion etcetera, etcetera, 

etcetera. 

And what we are saying is that? Rho plus is equal to rho minus, rho plus is the mean 

charge density coming from the (( )), rho minus is the mean charge density coming from 

the electron distribution. They are both the same implying not only over all charge 

neutrality, but also the charge density itself vanishes at every point that is what we are 

interested in. 

Now, let me imagine that this charge distribution inside the dielectric slab has actually 

being obtained by a super position of two slabs on each other; one of them is a uniform 



positive charge density, another is a uniform negative charge density. And let us look at a 

typical negative charge density. So, I am now going to look at only rho minus, there is an 

identical picture for rho plus. So, let me say that there is one charge q minus sitting here, 

which is actually electron, let me imagine that it is sitting here. 

We are obviously interested in the time averaged position of this charge density need not 

be a single electron, it could be a collection of electrons also, because I am looking at a 

sort of physically small space, but larger compared to the molecular dimensions, let me 

call it as an electron for the time being. Now, if I look at that because it is stationary it is 

sitting in the equilibrium position that is the statement that we are making. Now, without 

any loss of generality I can take the position corresponding to r equal to 0. 

What we now want to do is to study the response of this system to an external electric 

field. In particular, I am interested in the response of the electrons and not of the positive 

charges, because as we all know the positive charges are rigidly held on to the lattice, 

they are much, much heavier compared to the electrons. 

Therefore, the response is small, although the experience the same force, because of their 

large inertia, they do not move much. So, we shall always assume that, rho plus is 

unaffected by the external fields. And we are imagining that, only rho minus is going to 

get affected, which is the reason I am looking at this distribution. 
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Now, the minute I am going to apply an electric field in order to make it concrete let me 

show it again. So, this is my dielectric slab and let me say that apply my electric field in 

this direction and let me take this to be z axis, so this is my z axis this is my z axis. And I 

am looking at one particular charge particle, whose equilibrium position I shall denote it 

by 0. In the absence of the external electric field, there was no net force acting on the 

particle. 

However, the minute we apply an electric field, the electric field displaces my charged 

particle as soon as it gets displaced, it experience two forces. The first force is of course, 

the external electric field, the other one is the restoring force. Now, in order to make 

notation very precise, so that it depicts the physical situation that we have in mind; let me 

add a subscript here E external I have applied an external electric field. 

So, if you want you can imagine that this external field is produced by placing this 

dielectric between a parallel plate capacitor consisting of positive and negative charge 

densities surface charge densities. So, if I want to write down the net force acting on the 

particle this will now be given by minus k x, where x is the displacement from the 

equilibrium position plus q E. 

We are again interested in the time average distribution. So, although the charge particle 

might oscillate around the point, because of these two forces, we are interested only the 

time averaged equilibrium position. Therefore, we are now going to set this equal to 0 

which defines the new equilibrium position. 

Before the application of the external electric field, my equilibrium position was given 

by r equal to 0, now I have applied an electric field; and therefore, the equilibrium 

position has shifted. This is something that you people are familiar for example, in a 

spring mass system in a gravitational field, it comes down and stays in the new 

equilibrium position. Except that, since I have declared that my electric field is along the 

z direction, I have to make a change here I will replace this x by z; it could be along any 

direction I will take my z direction to be along the electric field. 

So, if I said this equal to 0, my new equilibrium position will be simply given by z equal 

to q E external by k. In other words, the shift in the equilibrium position is essentially 

dictated by the strength of the external electric field, and also the stiffness of the spring 

how big or how small this k is. 



Now, we are all familiar with a large number of dielectrics water, mica, glass, etcetera 

wood etcetera, etcetera; and if you take them and place them in an electric field, nobody 

has seen the material either expand or contract, unless one makes what a very, very 

precise careful measurement. This model is telling us that, the z shifts if the z is going to 

shift that means the charges are going to move. So, the shape or the size of the body 

should change however, those changes are very, very small and that effect is what is 

called as electrostriction. We are not going to get into that, we only want to use the fact 

that there is a slight displacement. So, let us forget about how the shape of the body 

changes, may be we will return to that subject later. 

At this point what I want to do is to ask, what the impact of this on my charge 

distribution is. So, what have we done, what we have done is to apply a uniform external 

electric field and we find that for every particle for every charged particle, because we 

have taken E external to be uniform, the equilibrium position has shifted by a quantity z. 

So, this z is independent the position of the particle, because we have taken E to be 

uniform, this is independent of the position of the particle. So, we are saying that, the 

new equilibrium position shifts by a quantity z, for all the charged particles. 
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Now, with this I want to make a very simple picture, which actually almost completely 

explains what we mean by a dielectric. So, imagine this to be my dielectric slab, that part 

which corresponds to the positive charge density. Now, I have applied an electric field in 



this particular direction, if I apply an electric field in this particular direction, my charge 

particles the negative charged particles are going to move in a direction opposite to that 

of the electric field. How do they move? The equilibrium position shifts by a quantity, let 

us for not forget z is equal to q E by k, E is along the positive z direction, q is negative 

therefore, there is a shift. 

Since, all of them are going to shift by the same quantity z, what I can do is to now show 

another rectangular slab cylindrical slab, this is a rectangular cross section, this is a 

highly exaggerated picture. What I am saying? The negative charges are now going to 

shift by a certain quantity and this is indeed nothing but the (( )) all of them are going to 

shift by the same quantity z. Therefore, these two regions correspond to z and in this 

region, rho plus equal to rho minus, the negative charges have moved in this direction. 

What do we conclude? We conclude that, there is excess negative charge here charge to 

the left, my positive charges have not moved at all; therefore, there is an excess positive 

charge here. Obviously, you can see that, if I denote them by delta rho plus and delta rho 

minus, these are the excesses delta rho plus is equal to minus delta rho minus, because 

the material itself has remained overall neutral. 
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Now, we can make a very simple estimate of what this rho is and what is going to 

happen. So, let me take the number density of the electrons number density of the 

electrons to be n e. So, the excess charged density is simply going to be what? q n e is 



the charge density, q n e is the excess charge density, q is negative. So, if you want I will 

put a q e and q e is less than 0. 

Now, that much charge density has shifted by a quantity delta z. And as we said, we are 

not interested in the dimension delta z, that delta z is very, very small compared to the 

dimension of the system. So, let me come back to this picture. If this total length is l, we 

are saying that z is much, much less than l, mod z is much, much than l. So, we want to 

imagine that, almost all the charges are concentrated at the edge of the material; that is 

we want to replace the surface the volume charge density by the surface charge density. 

How do I do that? If q e n e is the charge density, so I have excess q e n e that is the 

charge density, and what is the excess? The excess charge is simply given by z into area 

is the excess charge at the edge we want to replace this by a surface charge density. So, 

let me write again, my delta rho minus is q e n e; and what was my z, z was again q e E 

by k into A, this is your excess charge density, where A is the area of the cross section. 

So, let me multiplied by A here which gives me the total charge. So, the left hand side is 

the total negative charge to the left. So, now I want to replace it by an equivalent surface 

charge density. Therefore, my sigma minus is nothing but q e squared n e by k into 

electric field. So, this is indeed my negatives (Refer Slide Time: 20:32). 

The whole thing is of course of negative sign, because we have not bothered to (( )) track 

of (( )), this is the magnitude. This much of surface charge density is sitting to the left of 

the (( )). What we shall now do is to continue and see how much of surface charge 

density is sitting to the right and then ask, what is the net electric field, which is 

produced by the system? 
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Now, what is the picture that we have, the picture is a fairly simplified picture. So, my 

rho equal to 0 everywhere, there is a sigma minus and there is a sigma plus, my external 

electric field is along this direction which is taken to be the z axis; there is a sigma plus 

and there is a sigma minus here. And this material has a length l and the area of cross 

section is A, n e is the number density of the electrons, q e is the charge carried by the 

electron. 

Now, if you take the area to be quite large in fact we are not going to look at very, very 

small pieces of dielectric, let us say something of a millimeter or whatever that is the 

kind of experiment that we do in the laboratory. Then this is as if, there are what? Two 

charge plates with uniform charge density, this is a dielectric medium. 

So, we can imagine that there is a uniform charge density, because the charges move 

only along the z direction, they do not have any transverse motion. Therefore, I can ask 

what is my E induced? My E induced is obviously in the opposite direction, this is a very 

important thing; my E induced is in the opposite direction and this is simply given by 

sigma by epsilon naught along the minus k direction, is that right? Sigma by epsilon 

naught in the minus k direction. 

But in the previous example we already wrote an expression for the sigma. So, what is 

this expression this is nothing but minus 1 over epsilon naught; and for sigma, let me 

read the expression from the previous thing (Refer Slide Time: 22:57) q e squared n e by 



k into E. So, q e squared n e by k into E into k, which I can write as minus 1 over epsilon 

naught q e squared n e by k into E external. 

So, a certain fraction of the applied electric field becomes E induced, except that it is in 

the opposite direction, please note the occurrence of the minus sign. Because in the 

electric field the positive charges move in the direction of the electric field, the negative 

charges move in the opposite direction. Therefore, E induced tries to oppose whatever is 

happening with the external field; that is how the system actually tries to minimize its 

energy, we should never forget that we are looking at a static situation, we should never 

forget that. 

So, if this is indeed E induced all that remains for me is to write down E total. So, what is 

E total? My E total I will just call it as E is simply given by E external plus E induced; 

and this is nothing but let me pull my E external out 1 minus 1 over epsilon naught q 

squared n e by k. 

Please notice in writing this thing, we have 1 unknown parameter k otherwise, you can 

try to find out what the number density is the charge of the electron is known so on, and 

so forth. Therefore, we understand the response, we are trying to appreciate what the 

response of a dielectric is to be a model which has a single free parameter k namely the 

spring constant. 

Now, as I already told you this expression contains almost everything that I want to 

know about the dielectric. So, all that remains for me is to actually rewrite this 

expression in terms of what we shall call as the conventional symbols, let us do that. 
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In order to do that, what I have to do is to remind you whatever you people have studied 

in what your 12 th standard or you have already studied in your classes in your 

engineering. We do not deal with E external, we do not deal with free constant, but we 

deal with what is called as the displacement field D, which is due to the external charges. 

And we deal with the field E, which is indeed our total electric field. 

So, let me introduce this standard notation, the conventional notations and then compare 

it with the expression that we have derived from our model, and try to understand what is 

the physical meaning of each of the terms in the conventional expression. So, let us say 

that, there is a rho external; rho external is the charge density which is not there in the 

dielectric. It is something external that has been brought that is, you should imagine that 

you have not ionized your dielectric or anything. 

However, this rho external can be (( )) sitting either outside the dielectric or inside the 

dielectric, we do not have any prejudice regarding that. But for the time being you can 

imagine that, this rho external is sitting outside the dielectric; and we are asking for what 

is the response of the dielectric medium, the dielectric medium is overall neutral, let us 

have that picture. 

So, if you did that in the absence of the medium, I would have got an electric field. So, 

that information is captured by the symbol D, how do we do do that, my D is defined by 

the equation my D is defined by the equation rho external, please notice that I do not 



write rho external by epsilon naught. Therefore, my D is not the conventional electric 

field, but it is something different. So, if you want to make comparison with our notation, 

my E external whatever I use to call is what? It is related to D by the following notation 

epsilon naught E external is D that completes the picture. Divergence, D is given by rho 

external. 

What is the next thing that we have to do? The next thing that we have to do is to relate 

D to E. I argued that, the total induced electric field is proportional to the external 

electric field; the external electric field is of course proportional to D, my total electric 

field is a sum of induced plus the external. 

Therefore, my total electric field is proportional to D that is summarized in the next 

equation and it is written as, D equal to epsilon E D equal to epsilon E and this is the 

next definition whenever I write three horizontal lines, it is the definition. And epsilon 

equal to epsilon naught means frees space epsilon equal to epsilon naught means free 

space, if epsilon differs from epsilon naught then we know for sure that, there is a 

medium. 

So, the deviation of epsilon from its epsilon naught therefore, let me introduce another 

variable this is the so called relative permittivity, which is epsilon by epsilon naught 

greater than 1 means medium. Actually, I should be careful it should be not equal to 1, 

but very soon I shall argue that, epsilon naught cannot be less than 1, it can only be 

greater than 1. 

So, we have introduced D we have introduced E from your books you know that, there is 

yet another quantity namely the polarization. So, let me also introduce that quantity and 

what is that, we now rewrite D equal to epsilon naught E plus P, but we have already 

defined this to be epsilon E. Therefore, P and epsilon cannot be independent of each 

other. So, if you compare these two expressions, this imply that P is nothing but epsilon 

minus epsilon naught into E. 

So, these indeed are the constitutive equations for electro dynamics or electro statics in 

the presence of a medium. Please notice that all the relations are linear, and I have been 

able to argue that, all the relations are linear by modeling my charge particles to be held 

by a simple harmonic force by a Hooke’s law. You people should go home and amuse 

yourself by putting an un harmonic term, minus k x minus k prime x cube if you did that 



you will get a non-linear term that in fact is the basis of what is called as a non-linear 

medium, which is very, very important in the presence of strong electric fields; that is 

something that you should certainly do. I do not have the time to get into it, but I have 

essentially defined all the quantities for you. 
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Now, all that remains for us is to actually go back and look at our expression for E 

compare it with the expression for D, and write one single expression in terms of the 

unknown parameter. In other words, the question that I am asking is you have to write 

down the relation between k and epsilon. Clearly you people can see that, k equal to 

infinity means epsilon equal to epsilon naught. If the spring is so stiff that my charge 

particle does not move at all that means the system does not respond; if the system does 

not respond, as far as electrostatic is concerned that medium has absolutely no role to 

play, it is as good as free space that is the statement. 

So, in order to write down a relation between k and epsilon, let me go back and look at 

the expression for E (Refer Slide Time: 31:18), I wrote E equal to E external into 1 

minus 1 over epsilon naught q e squared n e by k, so that is what I have to do. So, E I 

wrote was E external into 1 minus 1 over epsilon naught q e squared n e by k. It is not 

easy to remember this expression, which is the reason why I went to the previous page, 

this is my expression. 



And I wrote the relation between E external and D, let us not forget that D is nothing but 

epsilon naught E external. So, this is nothing but 1 over epsilon naught D into 1 minus 1 

over epsilon naught q e squared n e by k. However, our defining relation between D and 

E is given by what, D equal to epsilon E. So, please compare the left hand side and the 

rights hand side look at this equation, these two together imply that, epsilon is nothing 

but epsilon naught divided by 1 minus 1 over epsilon naught q e square n e by k. 

So, my permittivity in a medium change just by a quantity epsilon naught divided by 1 

minus 1 over epsilon naught q e square n e by k. So, my permittivity in a medium 

changes by a quantity epsilon naught divided by 1 minus 1 by epsilon naught q e square 

n e by k. And as I told you, if k becomes very, very large this term becomes a very small 

perturbation on 1 epsilon is roughly equal to epsilon naught, this is the thing about this 

expression. 

Now, what is the point that we want to make, this expression we have already seen is 

arising because of the displacement of the charge. But we have said that the displacement 

is very, very small that means 1 over epsilon naught q e square n e by k, which is a 

dimensionless quantity should be much, much less than 1. 

So, let me make that statement 1 over epsilon naught q e square n e by k is obviously 

much, much less than 1. And whenever we have such a situation, it is good to replace the 

expression in the denominator by an expression in the numerator by a binomial 

expansion. So, let us do that. 
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So, perform a binomial expansion perform a binomial expansion, and what does it give 

me, it gives me epsilon equal to epsilon naught 1 plus 1 over epsilon naught q e square n 

e by k plus higher order terms, which are small. How small they are, we will come to that 

later. 

Now, you people will appreciate why I have written in this particular form, although that 

result will also follow from the previous expression. The important point that you have to 

notice is that, (( )) the bracket the parentheses is always greater than or equal to 1; it is 

equal to 1, if and only if q e equal to 0 that is there are no charge particles, or n e equal to 

0, which is the same thing; or k is equal to infinity that is the spring is very, very stiff. 

Otherwise, this expression is always greater than or equal to 1 therefore, this tells me that 

epsilon r is greater than 1 in any media medium. 

This is a result which is independent of the nature of the medium. So, long as it is a 

dielectric even more importantly, so long as you have an electrostatic condition that is 

the only assumption that we have made; it is not even depend on the details of the kind 

of potential that we wrote, epsilon are be greater than 1 in any medium. So, this 

condition is necessary and sufficient for both electrostatic and thermo dynamic 

equilibrium. 

Please remember that we are looking at a macroscopic system. So, when I say 

electrostatics, I am looking it at a certain temperature at a certain pressure. And we are 



saying that, the system is in equilibrium, I do not produce any current is that right. So, it 

is electrostatic and thermodynamics equilibrium, because epsilon r greater than 1 follows 

from the minimization of energy minimization of energy. My system responds in such a 

way so as to minimize the energy in the medium. 
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Indeed what is the expression for energy? My energy density u was nothing but epsilon 

naught by 2 mod E squared from the macroscopic thing. So, if you look at it, epsilon if I 

if I want to minimize this, I have to decrease this decrease this quantity by re 

arrangement of charges and that is exactly what the system is doing by produce charges 

of the opposite polarization. 

So, now you appreciate why we have used words like polarization etcetera, etcetera. So, 

for completing our description of notation, let me also write one more expression which I 

forgot to write earlier, I wrote D is equal to epsilon naught E plus P. One also write, P 

equal to epsilon naught chi e E I want to separate this epsilon naught factor therefore, 

this will be epsilon naught 1 plus chi e into E. 

So, this chi e is called susceptibility, which is positive by the way from our expression. 

Chi e is the susceptibility and you people can easily see that, my epsilon r is equal to 1 

plus chi e. So, all that remains is to try to actually get a feeling for the value of chi for the 

value of epsilon r by looking at various materials that is something that I am going to do 

in a few seconds. 



However, you know that today we know much better than what people like Maxwell 

knew, people did not have the atomic model of matter, people were actually trying to 

understand electrodynamics properties through the elastic properties of matter. So, they 

wanted to understand electros magnetic interactions through what Young’s modulus or 

coefficient of linear expansion spring so on, and so forth. But today, we know it is the 

other way round. 

We know that, the electron is held by some kind of a Hook’s law, because deep down 

there is an electromagnetic interaction and that manifests us what some kind of a 

harmonic force, if I actually expand the (( )) equilibrium position. And you people have 

already studied a little bit of modern physics and then, the second part of this course you 

will know a little bit more of modern physics. 
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So, what I invite you just to look at the following problem before we continue. So, what 

is the problem let me phrase it now, so this is the first problem for you to solve. So, I 

want to make only an order of magnitude estimate, take n e to be of the order of 10 to the 

power of 28 per meter cubed, we know the value of what? The charge of the electron, we 

know the value of epsilon naught. 

So, you ask yourself that, if my epsilons vary from 1 to 100 what is the range of values 

for k? Obviously, if epsilon equal to 1, k equal to infinity and it starts from k equal to 

infinity and comes down. And you should ask yourself, whether such a value of k is 



reasonable that is the whole thing you know a little bit of modern physics; you know for 

example, that the binding energy of the electron is what 13.6 electron volts. If you take 

other atoms not hydrogen, but let us say beryllium or even calcium, the binding energy 

becomes smaller. So, let us say it is of order of an electron volt. 

And if you go and ask your chemistry instructor, who studies vibrational modes, they 

will tell you what the vibrational modes are. What is the binding energy for the charges, 

which have a vibrational mode, and that is what we are looking at; compare the number 

that you are going to get, and compare with whatever your instructor or book gives you, 

and they should tell you that whether the model that we have built is robust or not. If we 

do not do that then, all this will be only up in thin air that is not of much of use. 

So, what is it that you have to do? Compare with known values if you do not know 

where to look for, ask your teacher and decide whether the value you get the estimated 

value is reasonable or not. So, this is the way one touch tests various models and I think, 

it is a worthwhile example. Now, I made a statement that you should look at epsilon in 

the range 1 equal to 100; obviously, when a write epsilon I mean what, the relative 

permittivity we are not interested in the free space permittivity, that is simply a number 

coming because of a peculiar choice of the units the great S I units. 

So, we are I said that it goes in the region, where range 1 to 100. So, we might as well 

ask ourselves what indeed is the range of the values of epsilon for real materials. So, let 

us look at a table and let us compare all this numbers it is a fairly long table, but I am 

going to concentrate on a few of the well known materials. And perhaps, you will get an 

idea of why I gave you the range epsilon equal to 1 to 100. So, let us do that. 
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This table is not a very precise table as it is very clear from the very first line; it says air 

as an epsilon equal to 1. So, it has a value which is approximately equal to 1. And in fact 

one should be careful it says see, these are giving values between minimum and 

maximum; because these are all macroscopic materials, the composition changes they 

had they can have different values of epsilon corresponding to for example, different 

temperatures or different doping etcetera, etcetera. 

So, we are looking at the values of epsilon r. So, it says it has a value 1 that is really 

approximate, it should actually be greater than 1 slightly greater than 1. So, I should 

write slightly greater than 1. And you people should actually go back look up a hand 

book, where precise values are given and that you should compare and convince yourself 

what you mean by epsilon is equal to 1.  

But anyway, this is not a bad statement it is not a grossly incorrect statement as far as our 

laboratories are concerned. Because we are going to treat air to be what a as good as a 

free space for almost all our electrostatic experiments. So, relative to air or free space we 

are now going to look at a large number of materials. 

Amber is the most famous material because amber is what started the subject matter of 

electro statics, you see my epsilon is going to be around 2.5, 2.6, and 2.7. So, that is 

going to already cause considerable screening. Asbestos fiber has something of the range 

3.5. And interestingly, there is this material called Barium Titanate, which has a 



minimum of 100. So, the strength of your electric field falls by a factor of 100, D equal 

to epsilon E that is what we are rating. It falls by a factor of 100 that is the minimum by 

which it falls whereas, it can fall by a factor of 100 cubed. You see, Barium Titanate 

probably can be used as an excellent material for electrostatic screening, if you cannot 

get a faraday cage or whatever. 

(Refer Slide Time: 44: 21) 

 

So, there are other materials like for example, Beeswax, Celluloid etcetera, etcetera. So, 

let me go on to the next one, Alcohol has a fairly large value of epsilon 6.5 to 25; you 

should certainly do an experiment and see and ask your chemistry teacher as to why it 

has such a large number. 

Mica is a favorite sample to study the electrostatic properties that has a value of 4 to 9, 

Glass indeed is a very, very well known dielectric medium. And Glass of course comes 

in many, many species. So, here we have what Glass ranging from 3.8 to 14.5. The Pyrex 

Glass of which you make test tubes has something like 4.6 to 5. 
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And then of course, there are certain other very, very important objects for us let me 

come to that. 

(Refer Slide Time: 45:04) 

 

And then come back to the other one, what is that, that is water look at water, the value 

being given is from 34 to 78. In fact, the common value quoted for water in most of the 

books is that epsilon is equal to 80; and by the way, it is indeed a very, very interesting 

physics problem to find out has to how water gets epsilon is equal to 80. And then there 

is a variety of Plastic, Synthetics whatever you see, you have Teflon, Styrofoam, Steatite 



and these numbers are important; because they are what parts of many, many electronic 

and electric components, we know that ok. 

So, let me go back to the previous slide, Quartz has an epsilon of 5, Rubber has an 

epsilon of something like 2 to 4. And mind you, we gave a value of resistibility for of a 

Rubber and it was an enormously of the large number of the 10 to the power of 13. 

Paper, which is actually used in many, many capacitors in order to increase the 

capacitance, has an epsilon ranging between 1.5 and 3. 

Polystyrene has between 2.4 and 3, so that should give you a fair idea; so, Barium 

Titanate which where the value went all the way up to 10 cubed. You see, that the values 

are all sort of close to 10 and occasionally going to 50 or 80 or 100, which is the reason 

why I asked you to estimate the value of k in the range epsilon 1 to 100. 

It would be an excellent thing actually, if you could also study the chemical properties of 

this substance. And try to reconcile the value of epsilon, which comes from a 

macroscopic measurement with the value of k, which is a microscopic estimate; if you 

did that one can say that, you have developed a better appreciation. A better tool to find 

out, whether you have appreciated whatever modern physics tells us. It is in fact not 

necessary to do very complicated physics quantum mechanics or anything; this itself will 

give you a fair idea of what the relation between epsilon and k S. 

Let me repeat, epsilon is a macroscopic phenomenological parameter in the absence of 

anything I introduce it by hand. Now, I am trying to relate it to a microscopic parameter 

and I am trying to tell you that, it is not difficult to understand what that microscopic 

parameter by actually looking at what our chemist colleagues give us. So, those of you, 

who are interested in pursuing for example, electrostatics electronics, semi conductor 

physics, even being engineers; you people should not ignore this question you should 

actually proceed and then try to make an estimate. 

So, it may not be a big problem mathematically speaking, but certainly it is quite an 

interesting problem from the view point of the subject matter of making a model. So, 

what we shall now do, is to proceed to continue with our studies. I have given you a table 

of what all these materials and I have given you this problem. Now, yet another problem 

probably that I should write, because I do not want to write is to obtain the expression for 



it is a very simple thing, but you should do it; chi e in terms of what is our parameter q e 

squared n e by k, which has the dimension of epsilon naught. 

So, obtain the expression, so we have a reasonably good understanding of what 

permittivity is, what susceptibility is what polarization is and what else, also to 

understand why materials have that particular value. 

Most importantly we have argued that, the dielectrics screened the electric field partially, 

it always tends to decrease the energy of the carried in the electric field. And therefore, 

we also understand why epsilon is greater than 1. Please do not think that, this is a trivial 

statement, when it comes to electro dielectrics and electro static response, epsilon will 

always greater than 1. 
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However, you people know even from your 12 th standard that the same thing is not true 

in magnetism. What happens in magnetism? In magnetism, you have the corresponding 

magnetic permeability, mu can be greater than 1 mu can be less than 1. This correspond 

to paramagnets, this correspond to diamagnetism. 

There are two different kinds of responses; the paramagnets tend to increase the strength 

of the magnetic field, diamagnets try to decrease the strength of the magnetic field; 

whereas, my epsilon always tends to decrease the strength of the electric field. Therefore, 

there is a certain inherent asymmetry between the electrostatic response and the so called 



magneto static response. This is very important. Because books in electro dynamics tell 

you that after teaching the electrostatics, they say in order to grow magnetism, you 

replace this by this quantity, this by this quantity, replace electric dipole moment by 

magnetic dipole moment, it is not that simple. 

The analogy cannot be carried completely beyond a certain point. So, it is good to 

remember that, whatever we have argued is eminently physical and not at all trivial. 

Now, there is a last bit of formalism a little bit of jugglery that is remaining and that is 

regarding polarization, why is that? P is called the polarization vector. So, in order to 

appreciate this, let me return to my expression and see what the meaning of P. That again 

makes use of (( )) law, which is all pervasive in electrostatics, either to estimate the fields 

or to draw rich physical conclusions. 

So, let me see what we have to do. So, let me start with this expression again, D equal to 

epsilon naught E plus P, which is actually equal to epsilon E, this is my expression. Now, 

the statement that we want to make is, whenever I put the material in a medium, it is 

going to polarize the system, net charge is equal to 0, but the charge density is not equal 

to 0. 

How do I understand that, the statement that we make is that rho d cubed r is equal to 0 

within the medium. That is very clear from the picture that I wrote for the dielectric 

medium. What did I do? I wrote a cylindrical slab and put some negative charges here, 

positive charges here, in an external field. What is the next thing that I can do, if the total 

charge is 0; try to find the total dipole moment. So, let me start evaluating that. 
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So, what I will now do is to look at rho r d cube r, and v refers to the volume of the 

medium, what is this expression? I do not know what my rho is, however I can relate rho 

to E. So, let me proceed slowly this is nothing but r, rho is divergence E by epsilon 

naught. Therefore, I will put a 1 over epsilon naught into divergence E. This is the 

fundamental expression for determining whatever quantity we are not going to alter this. 

However, my electric field you know is dependent on (( )) to the relation let me repeat 

that, D is equal to epsilon naught E plus p. I think I made a mistake I am very sorry about 

that (Refer Slide Time: 53:15), what I should have is not 1 over epsilon naught, but 

epsilon naught into E, where divergence is equal to rho by epsilon naught very good. 

So, if I compare the two expression epsilon naught E is nothing but D minus P. So, this I 

will write integral this the volume of the dielectric. So, divergence (( )) is nothing but 

epsilon naught is divergence D minus divergence of P, r divergence D minus divergence 

P d cubed r. But however, divergence D is rho external, and the rho external is placed 

outside the medium. So, let us not forget that, divergence D equal to rho external by 

definition, but I am interested in the induced charge density. 

Therefore, within the medium it is equal to 0 in the medium. So, what are we left with? 

So, now therefore, we are left with the expression, let me introduce a symbol d for this, 

the total dipole moment, it is nothing but minus integral r divergence P d cubed r. Now, 

as I told you, I want to make use of (( )) theorem, and write this as an expression 



involving a surface integral plus a volume integral. I will use that as an exercise, because 

I have done such integrals ever so many times therefore, let me write the answers 

straightaway. So, I invite you to perform this integration, this will simply turn out to be P 

into d cubed r. 

So, let me repeat this this is nothing but r rho d cubed r, where V is the volume of your 

dielectric medium. I will get another term corresponding to the surface integral, which 

vanishes. If you cannot prove that the surface integral vanishes, go back to the picture 

that I made with a cylindrical block of the dielectric that will provide you enough 

physical motivation to get the right mathematical reasoning. 

Therefore, what do we conclude? We conclude that, P is the induced dipole moment per 

unit volume, and that explains the notation polarization. So now, we also appreciate the 

language called permittivity, because whenever there is a medium, epsilon is a measure 

of how much of electric field is permitted; actually it is an inverse measure therefore, by 

extending that epsilon naught is also called as the free space permittivity. 

So, in this lecture, what we have done is to essentially gain an appreciation try to gain 

and understanding of the physical significance of the quantities like D, P, chi, which is 

introduced in the literature. Now, what we shall do is to take up a few applications in the 

next lecture. 
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However, before I do that, I want to give you one last problem to solve. It is a standard 

text book problem, and that is you take a conductor of radius R 1, put a charge Q on that, 

surround it by a concentric sphere. This is a spherical conductor; this is another spherical 

dielectric of radius R 2. The dielectric is in the region R 1 to R 2, this has the permittivity 

epsilon, the relative permittivity epsilon r. So, what is the problem? Find E everywhere, 

find induced rho everywhere, determine chi and P also as well. 

As I told you, this is a text book problem which is found in many, many books; you have 

to determine the induced surface charge density both in the inner radius R 1, and outer 

radius R 2. Find out the direction of the E induced, find the total E that will give you 

some kind of a warm up for the examples that we are going to discuss in the next lecture, 

where I will consider as many application as possible; that will be exclusively for 

applications. So, we shall stop here. 


