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Rotational Motion - I 

So, far we have been looking at the motion of a single particle or a collection of particle, 

but only that of it CM that is the center of mass. 
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So, for example, if we have a collection of particles like this and I apply different forces 

on each particle. Suppose, this happens to be its center of mass what we have been 

looking at is how the center of mass moves. That is the equation that we have been 

solving in the previous lectures was the total mass M R CM double dot where double dot 

refers to the second derivative of the R vector is equal to total force applied. 

Here, M is the sum of individual masses there is the total mass the vector R CM is 

defined as 1 over M summed over m i r i that is a vector for each individual particle and 

F total is the net force being applied on the system totally. Now, I want to look at 

individual particles how its motion takes place I want to go beyond the center of mass 

motion. 
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So, for example, suppose I have these particles connected by a spring for simplicity I will 

just take 3 of them and I apply different forces on each particle. Let me name this 

particle 1, particle 2, particle 3, let force on particle 1 be f 1 let force and particle 2 the f 

2 let the force on particle 3 be f 3. As we apply these forces in the next instant, I could 

have it different situation in which the particles could be may the spring has stretched 

this let us says rod which is cannot change. Maybe, this is spring has stretched further I 

could have change its orientation that is if this is particle 1 2 and 3 other situation I could 

have is may be particle 1 is here particle 3 is here and this is particle 2. 

In other words, under the influence of these forces f 1 f 2 and f 3 the body could deform 

that is the distance between the particles could changes and it could changes orientation 

none the less the center of mass still moves according to what the net forces. That is the 

center of mass would the still follow this equation, but in addition to that the translation 

of center of mass like a heavy point particle under the net force total force f total. There 

could be other things that is what I said may be the deformation may be a change in 

orientation. So, these are beyond the translation motion of center of mass and this is what 

we are going to focus on to start with let us again separate the deformation motion and 

the change in orientation motion. 
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So, I am going to make an assumption and this assumption defines what are known as 

rigid bodies the assumption is that given a system of particles when I move them. So, let 

me again number then 1, 2, 3, 4, 5 when I apply different forces on each of the particles 

the distance between 2 particles remains unchanged. These distances remain fixed 

similarly, distance between this and this distance between this and this particle and so on. 

In other words, in the previous example where I took 1 rod 1 particle here 1 particle here 

and there was a spring here I replace this spring by rods that cannot change their length 

So, the distance between 2 particles would remain unchanged you can feel right away 

when I apply a force it is not going to deform. 

The only thing this body can do is change its orientation, so for example 1, 2 and 3 could 

go to a different shape like this. Now, different orientation like this and this is known as 

a rigid body in rigid body the distance between any two particles of his body remains 

fixed. The only possible motion then is translation of center of mass plus a change in 

orientation; this is how we simplify the problem the deformation part we can add later. 

For example, deformation leads 2 say wave motion or plastic phenomena or by extension 

and shorting of a say spring under a force, we are leaving that right now, we are going to 

assume that the body is rigid. 
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Take as an example again a body consisting of 2 masses which are attached to a rod of 

fixed length l. So, I would call it a rigid rod. This is a rigid body, now if I apply force 

here and a force here, let us call it F 1 let us F 2 what will happen is F 1 and F 2 have a 

net force let us say this is F 1 this is F 2 this is a net force. So, center of mass of this body 

would move in this direction it would have moved, so center of mass would move, but 

the body could itself change orientation it could be in this orientation. In general, I would 

required three variables to describe translation of the CM and three more variables to 

describe the change in a rigid bodies orientation. You can think of these three variables 

to describe the change in a rigid bodies orientation as three angles from three axis. 
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So, in general what we learn is need six variables to describe the general motion of a 

rigid body. You may ask why six only in a rigid body there could be ten particles, fifteen 

particles, ten raise to twenty-three particles why only six. That comes because there is a 

big constraint we are working with the constraint is no matter how many particles the 

distance between two particles will always remains fixed. That constrained reduces the 

number of variables that I need to described the motion of a rigid body to six, three of 

these are for translation and three for rotation. What will happen if I take a rigid body, 

now I can make it a general rigid body like this all the distances are fixed between these 

points and fix one point of this body. 

Suppose, I pin it here then it cannot translate anymore and therefore I would need only 

three variables for describing its rotation. So, I hope by now I have given you a feeling of 

what a rigid body is and how many degrees of freedom does it have when it moves it has 

6 degrees of freedom. On the other hand if I fix 1 point then it has only three degrees of 

freedom and that is the change in that angles required describing the change in its 

orientation. So, that is the rigid body and in next few lectures we are going to make this 

approximation that the bodies we are considering are rigid bodies and described their 

dynamics. 

We start with simple problem of rotation about 1 axis, then we let the axis also move and 

in third case we also let the axis change is orientation. So, these are slowly we are going 



to build up these problems, but we are not going to consider the deformations in that 

sense all the body motion that we are considering are rigid body motions. 
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 How about the dynamics of a rigid body, you recall when we considered the dynamics 

of a particle we started with second law of Newton that said that for a point particle force 

equals the mass times r double dot or mass. The second derivative with acceleration of r 

with respect to time, later when we learnt about momentum we said force is nothing but 

d p d t that is the rate of change of the momentum of the particle. The equivalent role that 

is played in describing the orientation of a body and rigid body dynamics is that of 

angular momentum that is the role that momentum placed in linear motion is played by 

angular momentum. 

Let me denote it by a vector L in describing rigid body dynamics angular momentum is a 

general concept a general quantity that could be defined for any motion and by it is 

particularly useful in in describing rigid body dynamics. So, in the next few minutes or 

may be the rest of the lecture, we are going to spend time on understanding the angular 

momentum to develop the feeling for angular momentum. We are first going to start with 

definition of angular momentum and then going to describe them for a single particle. 
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So, given a single particle moving in coordinate X Y and Z with origin at o suppose there 

is the particle moving like this with velocity v is mass m. Then, the angular momentum 

with respect to o and I emphasize with respect to o because angular moment of happens 

to be an origin dependent quantity is given as mass r cross v. Here, r there is the distance 

displacement of the particle at any given time this is the definition of angular momentum 

for a single particle, how about the dynamics that I was talking about the change in 

angular momentum with respect to time. 

Analogous to what we learn, a single particle dynamics is change of the momentum with 

respect to time here we discussed change of angular momentum with respect to time is 

going to be equal to the derivative m r cross v. I am now going to use the chain rule for 

differentiation for those of you who feel little uncomfortable, I will leave it as an 

exercise that you take the components of this cross product vector and do it in terms of 

component. 

I am going to write it directly as m d r d t that is I take the derivative of r with respect to 

time cross v plus the second term because I am using the chain rule m r cross d v d t. I 

said earlier if you are not comfortable using the vector quantities directly take the 

component of r cross v may be take the x component which would be equal to y v z 

minus z v y, take the derivative and see that finally, this emerges. So, derivative of r 

cross v is going to be d r d t cross v plus r cross d v d t m is common. 
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So, what we have obtained is DL with respect to o d t where let me just remind you that I 

have an origin o X Y Z particle is moving like this with momentum P this is r is equal to 

m d r d t cross v plus m r cross d v d t. We know that d r d t is nothing but the velocity 

itself and velocity cross velocity is going to give you 0. Therefore, what you are left with 

is this quantity in this d v d t the derivative of velocity with respect to time is the 

acceleration. So, I have d L o d t is equal to m r cross the acceleration m times the 

acceleration is the force. Therefore, this is equal to r cross F and we define this quantity 

to be the torque and I am going to denote it with this symbol call tau. 
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So, what we learn and I have derived for you is that given a particle moving, the change 

is in its angular momentum. I always denote with this o emphasizing the fact that angular 

momentum is a quantity that depends on the origin is equal to r cross F or the torque 

about o. Notice while deriving this I use the fact that F equals ma that is force equals 

mass times acceleration or the second law. Except that, now instead of talking about 

change in momentum, I am talking about change in angular momentum are the 2 

equivalent. 

So, question we know have is question is d L d t equals tau equivalent to F equals ma or 

d p d t. I am doing all these exercise to make if you familiar with angular momentum and 

related mathematics. Let us understand this by considering an example I will consider 

the example of conical pendulum. With that I will show you a couple of things first I will 

show you that the angular momentum indeed is origin dependent and number 2, these 

two are indeed equivalent. 
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So, let us do that let us take the example of conical pendulum this is a nice example to 

illustrate the angular momentum concept and its derivative. A conical pendulum is 

nothing but a regular pendulum with a rod rigid mass less rod of length l pivoted at a the 

point here. Instead of moving in a plane the bob goes in a circle it is going around in a 

circle and this rod makes say the angle theta with the vertical. 



Let me call this point pivot point o and let this point where this vertical line meets the 

plane in which the circle is made. Let me call this because of the symmetry of the 

problem I am going to use cylindrical coordinates that we learnt in our second or first 

lecture to describe the motion of this bob of mass m. It is moving around in a circle let 

this be the origin to start with o, so first case I take o as origin in that case the r vector for 

the ball is going to be given as l sin theta l sin theta. This is l sin theta times r remember r 

unit vector is the radial unit vector in cylindrical polar coordinates minus l cosine of theta 

z. 

Let me also say that this bob is moving with velocity v in the circle v is always in phi 

direction. So, velocity v is equal to the magnitude v times unit vector phi, those of you 

who have forgotten let me remind you for a given origin the distance in the plane of X 

and Y the distance is given as r. Then, this v vector is r unit vector perpendicular to this 

is a phi vector and vector Z is a Z vector, so in X Y planar using planar polar coordinates 

and Z Z unit vector Z unit vector. So, these are given as r and v and now let us calculate 

the angular momentum for the conical pendulum. 
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We again remained you, this is my conical pendulum the bob is moving around in a 

circle with velocity v is going in this direction this is origin o. We have written r is equal 

to l sin theta r minus l cosine of theta Z v vector is v phi this is the bob this is where A is. 



Therefore, the angular momentum L about o is going to be m l sin theta r minus l cosine 

theta Z cross v phi R cross phi is Z. So, this comes out to be m v l sin theta Z and Z cross 

phi is going to be minus r you can check that. So, this is going to be plus m v l cosine 

theta r unit vector, therefore at any given point, let me make it again at any given point 

say here the angular momentum has a component in the Z direction m v l sin theta and in 

the r direction m v l cosine theta. 

Therefore, you can see that the angular momentum is going to be something like this 

with this angle being theta. This magnitude is m v l and this angle is 90 degrees and you 

work it out you will see after all this is r cross v, so it has to be perpendicular to r and 

then from these component you see this is the angular momentum. 
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So, what we have learnt by calculating angular momentum about this point o of this bob 

is that it is perpendicular to this and it is magnitude is m v l, this component has in this 

direction and a component in this direction. As the bob moves around the r unit vector 

changes and therefore this component changes direction whereas, the vertical component 

remains constant. So, let us understand the horizontal component which is m v l cosine 

of theta keeps rotating and the vertical component remains constant. You can already 

sense what d L by d t is going to be, so d L by d t L about o is going to be d over d t of m 

v l sin theta Z plus m v l cosine of theta r is derivative. 



In this m v l, theta Z all are constant, so this derivative is 0 in this m v l theta r constant, 

but r unit vector keeps on changing. If you recall from first or second lecture dr over dt is 

nothing, but, omega in phi direction, therefore I get d L o d t as m v l cosine theta omega 

and we will see what omega is in phi direction. This you could have also check because 

this vector is rotating in this direction with angular frequency omega therefore, the 

change has to be m v l cosine theta times omega. I mean this is when it moves here in 

omega times t time this change is roughly m v l cosine theta omega t, we divide by time 

and you get this answer. 
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So, what we learn from this is if I take this conical pendulum which is moving like this d 

Lo d t is equal to m v l cosine theta omega is going to be velocity divided by this by 

radius. So, velocity divided by l sin theta in phi direction which is mv square cotangent 

theta in phi direction is that equal to tau let us do that. If I calculate the torque about this 

point again r is nothing but m sorry l sin theta r minus l cosine theta Z cross the force 1 

force is mg and the other forces tension T. You can see is parallel to r it does not 

contribute to the torque, but, none the less let us write this tension T has a component. 

So, is this angle is theta is going to have a component T cosine of theta in Z direction 

minus T sin theta in r direction. 

I have a minus mg in Z direction you calculate all this and you are going to get r cross Z 

r cross Z gives you minus phi. Therefore, you get m g l sin theta in phi direction and 



everything else drops out you can work this out very easily. So, what we learn now is 

that this quantity which is d L d t and this quantity which is torque about o must be the 

same. 
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Therefore, we get m v square cotangent theta is equal to m g l. 
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Let me see it was m g l sin theta. 
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Here, m g l sin of theta both were in phi direction m drops out and therefore we get v 

square cotangent theta equals g l sin of theta. This is what we get maximum I can get 

from this is theta as the function of v and g l, so again I raise the question is d L o d t 

equivalent to F equals d p d t. The answer seems to be know because only thing I am 

getting from here is the angle theta, whereas F equals d p d t also gives me the tension, 

let us see that and then we will understand it better. 
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So, when this bob is moving in a circle like this is the tension T in the rod this is mg this 

component of T provide the centripetal acceleration. Therefore, T sin theta must be equal 

to mv square over the radius of the circle which is l sin theta and T cosine of theta must 

be equal to m g. We get 2 equations here and therefore, we can solve them to get 2 

quantities that is theta and tension both, whereas when are applying d L by d t equals tau 

we are writing only 1 equation. 

The reason is that when you take cross products some components drop out, so what is 

the way out, so let us first solve this. So, from here I get T equals mg over cosine of theta 

and when we substitute in this equation we get mg over cosine of theta equals mv square 

over l sin theta and there was a sin theta here also, m drops out. 
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Therefore, we get g l sin theta equals let us see what it was. 
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G l sin theta equals v square cotangent theta. 
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This is an equation that we had obtained earlier, however these equations also give me T 

to find T using the torque equation what I have to do I have to find another equation. 

That equation comes if I take torque about this point, earlier we took torque about this 

point angular momentum about that point now we going to do it about point A. So, let us 

again see if I take A as origin then r with respect to A is going to be equal to l sin theta 

that is this distance l sin theta in the r direction. 



The velocity is nothing but v phi and therefore angular momentum about A is going to be 

m v l sin theta r cross phi is Z. You see when I take angular momentum about point A 

only the vertical component remains the horizontal component has vanished. Therefore, 

when I take d L A over d t, everything on the right hand side is constant and therefore 

this comes out to be 0, if that is the case, torque about point A must also be 0 and let us 

figure that out now. 
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So, what we have learnt if I take l about point A, I get d L A d t is equal to 0 and this also 

must be equal to torque about point A, this is the tension. Let us calculate torque about 

point A and I am using strictly mathematical definition. Here, r cross F r is nothing but l 

sin theta in r direction cross F is nothing but T cosine of theta in Z direction minus T sin 

theta in r direction minus mg in Z direction, r cross r r cross r is 0. Therefore, when I take 

torque about A I get T r cross Z r cross Z is minus phi T cosine of theta minus mg times l 

sin theta in minus phi direction and this must be 0 because d L A d t is 0. 
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This gives me T cosine theta minus mg is equal to 0 or T equals mg over cosine of theta, 

which is the same result as I obtained from the Newton’s second law direct application F 

equals d p d t. So, what we conclude is conclude is that d L d t is equal to tau is 

absolutely equivalent to d p d t equals F, the only certainty is that in applying this I may 

have to take torque and angular momentum about two different points. 
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Having learnt that d L d t although for a single particle is equal to tau, now we enunciate 

the principle of the conservation of angular momentum and that else if tau is 0 this 



means d L d t is 0 or L is a constant. You are already familiar with the use this condition 

in a previous in may be your lectures in twelfth grade, let me just show it to you. 
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You are all familiar with Kepler’s laws and one of them is when the earth is moving 

around the sun or any planet is moving around the sun in equal time they cover equal 

areas. This is nothing but a manifestation of the conservation of angular momentum let 

me show you how. If I take this sun as the origin the force is always directed towards the 

origin and therefore tau the torque r cross F because r and F are parallel is 0 and 

therefore the angular momentum must be conserved. Now, you see in these case the 

velocity at any given point, recall your planar polar coordinates could be in r dot 

direction and perpendicular to this. 

So, velocity in general is r dot r plus r phi dot in phi direction and therefore angular 

momentum is r r r cross v v is r dot r plus r phi dot phi times m. This is equal to r cross r 

0 mr square phi dot in Z direction, m is the given mass for a given particle r and phi dot 

keep changing Z is a fix vector. So, therefore, d L d t is equal to 0 implies that d over d t 

is of r square phi dot is equal to 0. 
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You can see that this r square phi dot is nothing but r square phi dot is equal to 0 r square 

phi dot therefore is a constant and r square phi dot is nothing but rate 2 times rate of area 

sweep. That is given an r this area you see is roughly r square delta phi in time T divided 

by 2, this is r this is r delta phi. So, the change of area in time delta T is r square delta phi 

divided by 2 divided by delta t give it r square phi dot over 2 as rate of change of area 

and constancy of this implies constancy of rate of area sweep. 

The Kepler’s second law with says that the radius vector in a planets motion sweeps 

equal areas and equal time is nothing but a manifestation of the conservation of angular 

momentum. This becomes a powerful tool to solve problems involving angular 

momentum as we will see in the examples as we go along. Having done all this for a 

single particle are now going to move to many particles because after all when we deal 

with a rigid body, it consist of many different point particles. 
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So, now we are going to go to make our self familiar with angular momentum for a 

system when I say system that means, many particles of particles. So, what we have 

going to consider is there many different particles given and by definition angular 

momentum is going to be the sum of angular momentum for each 1 of these particles 

where I runs from 1 through m 4, 5, 6. They may be m particles 7, 8, 9, 10 and so on, so 

this is nothing but summation m i that is mass of the i th particle m 1, m 2, m 3, m 4 r i 

cross v i. 

That is it, L total is nothing but summation over m i r i cross v i, we can use this 

definition now to relate the total angular momentum to the angular momentum of the 

center of mass and plus angular moment of about the center of mass. Recall from out 

previous lectures where I was talking about center of mass and I kept on a emphasizing 

the center of mass is a very important quantity. I will use it again and again and you will 

see again a rigid body dynamics, it becomes a very central concept. 
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So, let us now write L total which is equal to summation I m i r i cross vi as summation I 

m i, let me write r i as suppose I just make a 2 dimensional plot this is the center of mass 

of distribution of particles. I will call center of mass coordinate R CM and the coordinate 

of a point particle i th point particle with respect to CM is r i time. So, this is R CM and 

with respect to this the point is given at r i prime and this is r i. Similarly the velocity 

would become V of CM plus vi prime where let me write explicitly r i prime is 

coordinate of point I with respect to the center of mass v i prime is the velocity of point I 

with respect to the CM. 
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So, what we get is given a distribution of particles L total is equal to summation I mi R 

CM plus r i prime cross V CM plus v i prime. This I can open up and write as summation 

I m i R CM sorry cross V CM plus summation I m i R CM cross v i prime plus 

summation I m i r i prime cross V CM plus summation I m i r i prime cross v i prime, 

look at this term second term R CM is common to all. 

So, this can be written as R CM cross summation I mi v i prime, similarly look at the 

third term V CM is common. So, this can be written as summation m i r i prime cross V 

CM a minutes thought will tell you this is the total momentum with respect to the center 

of mass and that is always 0. Similarly, this is coordinate of the center of mass with 

respect to the center of mass that is also 0, so these two terms drop out what I am left 

with? 
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Therefore, that L total is equal to summation I m i R CM cross V CM plus summation I 

m i r i prime cross v i prime again this is the common quantity. So, this is only 

summation m i which is the total mass R CM cross V CM plus this is nothing but 

coordinate with respect to center of mass velocity with respect to center of mass 

therefore this becomes nothing, but, L about CM. This quantity is nothing but as if there 

is a massive particle of mass m moving with velocity V CM at distance R CM. So, this is 

nothing but the angular moment of center of mass and therefore I can write L total as 

equal to L of CM plus L about CM. 



This is general result irrespective of whether a body is rigid or not, you see we have not 

used the rigid body condition anywhere. The total angular momentum of the body is 

going to be a sum of the angular moment of a center of mass plus angular moment about 

the center of mass. 
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This equals L CM plus L about CM and you can see if total momentum of a body is 0 

that is MV CM is 0 this implies L equals L about CM. Therefore, in that case the angular 

momentum of the body no matter where I take it from is independent of the origin 

because this is always come out to be L about CM. This is only because the total angular 

momentum total momentum of the center mass is 0. In general, this is the result you can 

see, this is also a result which depends on the property of the center of mass that is 

summation m i r i prime with respect to center of mass is 0 and similarly summation mi v 

i prime is equal to 0. 

So, this is decomposition cannot be done about any arbitrary point that is I cannot say L 

equals L some point o prime plus L about that point o prime it is only with the center of 

mass. The center of mass satisfies these two equalities that I can decomposed the angular 

momentum in this manner this must be kept in mind. 
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So, what we see is that L is equal to LCM plus L about CM let us take a simple example 

of it. Let us take a bicycle wheel rolling on the ground if it is rolling this point is not 

moving instantaneously and therefore, if it is rolling with the speed V and it is radius is R 

I have omega equals V over R. So, I can consider this motion as if the center of mass is 

translating with velocity V and top of it the. So, this body let me just see this is point A 

point B this whole thing is translating with velocity V and on top of it with respect to 

center of mass, this is moving with omega equals V over R, so that instantaneously this 

point is at rest.  
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So, the angular momentum for this if I take the origin here this is R is going to be this is 

R CM this is V CM. So, you can see right away that L of center of mass is going to be M 

R V CM where R is the radius R CM cross V will give you only the projection. Then, L 

about CM this is going to be in the direction perpendicular R cross V is going to be 

perpendicular going into the page I am not worrying about the direction. Now, L about 

CM since this is rotating like this is also going to be M R V CM you can calculated that 

and therefore with respect to o the angular momentum is going to be 2 M R V CM. 

On the other hand, let this be the ground if I shift my origin here let us call it o prime say 

by distance R prime. Then, L CM is going to be equal to M R plus R prime V CM. 

However, L about CM is going to remain the same and then if you sum the two, you get 

L about o prime. 
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This fact that L About any point is equal to L CM plus L about CM also gives raise to 

something known as the parallel axis theorem in relation with the moment of inertia. I 

am sure you heard of this theorem, but we will come back to it later when we do rigid 

body dynamics. Now, we have trying to make our self familiar with angular moment, 

how about the dynamics, now how about the d L I am dropping these suffix t, now d L d 

t for a many body system let us work that out. 
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Recall when we are doing the momentum change for a Many body system we had this as 

d over d t summation m i r i dot which had given us mi d 2 r i d t square. This was 

nothing but summation over fi where fi that is on if particle the force was nothing but the 

external force that is something I apply externally plus the force j not equal to I on i th 

particle due to other particles. We had shown them and that is how we came to center of 

mass motion that this summation over I and j gives me 0 if f ij the forces between the 

articles satisfy Newton’s third law. That is f ij is equal to minus f ji, the force on i th 

particle due to j is opposite and equal to force on j f particle due to i. 
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A similar derivation now we are going to do for the angular momentum and let us write 

this is d over d t of summation I m i r i cross vi which gives me summation over I m i d r 

I over d t cross v i. This being the velocity this term cross product is 0 plus summation I 

m i r i cross d v i d t m i times this acceleration d v i d t is nothing but the force on the i 

th particle. So, this gives me summation I ri cross fi, where fi is the total force on the i th 

particle that is the force including the external force plus the force due to other particles. 
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So, d L d t for a many particle system that is they are many particles which are 

interacting with each other they may be interacting with the each other. There are 

external forces applied only each 1 of them is equal to summation I m r i cross f i which 

explicitly I will write as I r i cross fi external plus summation over j that is all the other 

particles applying a force on the i th have particle j not equal to i. 
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This I can now write as d L d t equals summation I r i cross fi external plus summation ij 

I not equal to j ri cross f ij recall this term. Now, I want to show to 0 in order to prove 

that dL dt equals ri fi external only. So, I can write summation ij I not equal to j ri cross f 

ij since I and j are being summed over I can interchange them and write this as 

summation rj cross f ji I will jut interchange j and I ij I not equal to j. 
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Therefore, I can write this term Summation ij I not equal to j ri cross f ij is equal to 1 half 

of summation ij I not equal to j ri cross f ij plus rj cross f ji and f f ji is equal to minus f ij. 



This term becomes equal to 1 half summation ij I not equal to j ri minus rj cross f ij and f 

f ij is parallel to ri minus rj parallel or anti parallel then this term is 0. Fortunately, in 

mechanical problems, most of the forces are such at they are along the line joining the 2 

particles and therefore, this term always 0. 
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Therefore, we get d L d t for a many particles system also is equal to tau external, this is 

going to be our dynamics equation as I showed in the example of 1 particle solving this 

gives me the resultant motion of the particles. 
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Let me conclude this lecture by saying by getting our main results number one, 6 degrees 

of freedom to describe to the freedom for rigid body motion. Here, 3 for translation and 3 

for orientation change the tremendous reduction in the degrees of freedom comes 

because there is a constraint of 2 particles being at the same distance no matter what the 

motion is. 
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Number 2 the dynamics is going to be described by d L d t by d t equals tau external 

under certain condition that is the forces are equal and opposite and along the line joint 2 

particles. This gives me the dynamics and L for is system is equal to L CM plus L about 

CM and both if tau external therefore is 0. Then, L is the constant that is the conservation 

of angular momentum, having developed these ideas on angular momentum, next lecture 

onwards, we are going to apply them to describe the motion of a rigid body. 


