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Motion of Particle with Friction 

In the previous, lecture we have seen how to solve problems by using free body 

diagrams, isolating subsystems and considering forces on each subsystem. Also how the 

subsystems affect the motion of one another was taken into account by looking at the 

constraints since equations were constraints.  
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Two examples that we took were one acquits machine where I had two masses moving 

around a pulley m 1 and m 2. The other example that we took was a mass sliding down a 

wedge like this, and the wedge could also move horizontally. In these examples we 

ignored a ubiquitous force, that is encountered everyday in our lives, and that is the 

frictional force. This lecture is going to be about, how do we take into account the 

frictional forces, and how does it affect the motion of a particle.  
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There are, when the body moves we see that its motion is usually resisted by the surface 

on which it is moving. So, if I apply a force F this way, there is the surface applies a 

force called frictional force that opposes this motion. Even if the body is not moving 

frictional force has a tendency to oppose a tendency to move. 

Another example of frictional force is the drag force or a viscous force that we encounter 

when a body moves through a fluid, this force also opposes the motion. In this lecture we 

would be looking at both kinds of forces. So, let us start with a force of this kind which is 

when a solid moves on another solid. 
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Let us take a mass m 1 and another mass m 2 and let me pull this mass with some force 

F. If you recall your everyday experience, you would see that the top mass or the bottom 

mass does not move until the force has reached certain value. And that is because their 

tendency to move is being opposed by the frictional force either between these two 

masses or between this mass and the surface on which this mass is resting. 

So, first question is, is the frictional force of constant amount or does it vary as I vary 

this force? Let us give an argument, if suppose the frictional force were of constant 

amount and that means, this mass m 1 which is on the top, experienced a constant force 

in this direction. Then, even if I did not apply any of this force F because of this forces, 

the mass would tend to move this way and I know that does not happen. And that means, 

a frictional force adjusts itself as I apply the force, how does it adjust itself? It is just 

sufficient to oppose the motion or the tendency to move.  
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So, for example if I take a mass sitting on a surface and I try to pull it by a force F, it 

will, its tendency to move would be opposed by this frictional force. It is observed 

experimentally that the maximum frictional force that a surface can apply on a given 

mass is given by mu, where mu is a constant times N and I will put a subscript s here, to 

indicate that this is static friction. Friction is slightly different when the body starts 

moving, and we will be discussing that. 

Notice that, I have written a maximum here and that is to indicate that, that is a 

maximum possible frictional force that is available. Of course, the friction force, the 

frictional force adjusts itself as I vary this force. So, the maximum possible is this 

otherwise, it is always less than just sufficient so, that this body does not move. What is 

N? N is the normal reaction of the surface on the body. So, N is a force that is 

perpendicular to the surface on which the body is moving.  
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So, the maximum frictional force on a block on a surface is given by f max, which is mu 

s times N. If I apply a force here, the frictional force adjust itself, so, that the body does 

not move. If I plot the frictional force against the applied force F which is given here, 

you would see that frictional force goes exactly as F, this angle being 45 degrees so, that 

the slope of this line is equal to 1. Right, when the applied force exceeds, the maximum 

possible frictional force the body would start to move, and the frictional force may 

become a constant. I am drawing this line because this force drops slightly as I will 

explain in coming few minutes.  
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Of course, once the body starts moving the frictional forces slightly less. So, that I write 

as friction kinetic, and it is given by mu k, the normal reaction. 

So, that if I again plot the applied force verses friction, it will go up at 45 degrees until 

the maximum value of the frictional force mu s N has been reached, N as I said earlier is 

the normal reaction of the surface. And as the body starts to move, the force drops a bit, 

but then is a constant, this is equal to mu k N, this point obviously is mu s N.  

(Refer Slide Time: 08:23) 

 

Let me redraw it for clarity so as I take a body, apply a force, the frictional force 

increases in proportion to the applied force, this as I said earlier is 45 degrees. And then, 

when it reaches the maximum mu s N, the body will start moving and the friction force 

drops slightly, this value being mu k N. To give you a feel for what mu s and mu k are, 

let me give their values in the next slide. For some materials, the value varies from 

material to material.  



(Refer Slide Time: 09:10) 

 

So, this is we will take steel, on steel dry surface. We will take steel on steel, greasy 

surface, and we will also take metal on ice, and tires on road mu, static for steel on steel 

is about 0.6 when they are both dry. Steel on steel on greasy is 0.1, you can see why we 

grease steel, it reduces a friction value quite a lot. Metal on ice, static is not known 

because slips passed were lot and tire on road is 0.9.  

You can see we really need a lot of friction for tires on the road so, that they do not slip. 

The moment body starts moving, steel on steel drop drops down to 0.5, steel on steel 

greasy drops down to 0.05, metal on ice is about 0.03, almost friction less tires on the 

road comes down to 0.8. I must give you the source of this, this is Merriam and Kraig 

dynamics, that is where I have taken these values from. So, what we have seen is as the 

body moves on the surface, it can feel either the static friction, and once it starts moving 

then, there is kinetic friction. Kinetic friction is slightly less than the static friction.  
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Let me now see, how I can estimate the coefficient of static friction between two bodies. 

This can be easily done if I consider the motion of a b lock on a ramp or an inclined 

plane of angle theta. Since, without friction the body has a tendency to move this way, 

there will be a frictional force trying to stop it this way. If I make a free body diagram of 

this block, it has its own weight mg pulling it down, a normal reaction N due to the 

surface, and a frictional force this way. Let us consider the body in equilibrium and see 

what happens. Value of the coefficient of static friction can be easily estimated. 

(Refer Slide Time: 12:18) 

 



If we consider a motion of a block on an inclined plane of angle theta. And here is the 

free body diagram as I previously made, there is weight mg, normal reaction N, and the 

frictional force this way, this angle is also theta. If the body is not moving then, I should 

have all the forces balancing each other and therefore, N equals mg cosine of theta and 

the frictional force, let me write it as F is equal to mg sin of theta these are my two 

equations. Let us see, what happens when I start increasing theta. 
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This body has weight mg, N, friction F, and mg this component of mg is pulling it down, 

which is mg sin theta. As I increase theta, mg sin theta goes up so, the body is being 

pulled down by larger and larger force. When it surpasses, the maximum possible 

frictional force it will starts sliding down. Let us see, what is maximum possible 

frictional force. Friction maximum as I told you earlier, is equal to mu s times N. N as 

we saw in the earlier.  
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N is nothing but mg cosine of theta because there is no motion perpendicular to the 

inclined plane. And therefore, f maximum value of friction is mu mg cosine of theta. 

And this implies that when mu mg cosine of theta, that is the frictional force becomes 

less than or equal to mg sin of theta, the body would start sliding down. Let me cancel m, 

let me cancel g and therefore, when mu s less than tangent of theta, the body will starts 

sliding down. So, you take an plane keep tilting it until the body just starts sliding down, 

and that angle you take the tangent of would give you an estimate of the static coefficient 

of friction. That is the practical way of quickly estimating, what the coefficient of static 

friction is.  
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So, we have seen that, frictional force is given by mu, depending on whether it is static 

or kinetic mu s, or mu k times the normal reaction of the surface on a body. Let me now 

take you back to acquits machine, that we discussed in the previous lecture. A slight 

variation of that and see how frictional force changes the tensions here. Recall when I 

solved this problem in the previous lecture then, I had assumed that all the surfaces are 

frictionless. Now, let me take the same problem where mass m 1 and m 2 are at two ends 

of a rope and it is passing over a pulley, pulley is fixed, pulley cannot move. 

So, it is a, let me just write fixed pulley, only the rope slides over the pulley, and there is 

friction between the pulley and the rope. Earlier when we solved this problem, we 

assumed that the tensions here were equal. Now, due to the frictional force the tensions 

are going to be different, let me call this T 2, let me call this T 1. Let the mass m 2 be 

greater than m 1. So, that the rope has a tendency to move this way. Let us see how 

friction affects things here. I am pretty much repeating what I have done in a previous 

lecture on static friction. I do it here for completeness. 
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Since, the rope has a tendency to move in this direction, the frictional force on the rope is 

going to act this way, this is the frictional force, this is mass m 2 as I said earlier, and this 

is mass m 1. If I want to see how friction changes, let me for that consider a small piece 

of rope, this is somewhere here that I am making slightly bigger here and consider it is 

free body diagram. If I join from the center of this to the center of this pulley, there is 

normal reaction on this small piece of rope, let me call it delta N. 

Since, the tension on this side T 2 is going to be greater than T 1 because m 2 is greater 

than m 1 tension increases this way. Let this tension be T plus delta T, let the tension on 

this side be T I, I make a neater diagram in the next slide. Let this small piece of rope 

make an angle delta theta at the center of the fixed pulley. So, let us make a neater 

picture of this part only.  
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So, here is this piece of rope, it makes an angle delta theta at the center to tension, in this 

way is T plus delta T tension this way is T, this is the normal reaction, and the rope is in 

equilibrium. Am I missing any force? Of course I am missing a force because the rope is 

not moving, there is friction that balances things, balances T, the imbalance between T 

and T plus delta T so, that the rope does not move. Let us now balance forces. The 

components of the tension in this direction balance N, if I take the components parallel to 

this line and perpendicular to this line, this is a direction for N, this is direction 

perpendicular to it. The components of T in this direction balance N. 

And therefore, I am going to have T plus delta T, this angle as you can see is going to be 

delta theta over 2, and this is a very small angle so, sin delta theta over 2 can be 

estimated by delta theta over 2 itself, plus T sin delta theta over 2 is going to be equal to 

delta N. This angle again is delta theta over 2. And the second equation, T plus delta T 

cosine of delta theta over 2, minus T cosine of delta theta over 2, is going to be equal to 

the frictional force f.  
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Let us then try these equations again I have T plus delta T, sin delta theta over 2, plus T 

sin delta theta over 2 equals delta N, which can be approximated for a small delta theta 

as 2 T delta theta over 2. I replace this whole thing by delta theta by 2, plus delta T delta 

theta over 2 equals delta N. 

This is second order term. So, therefore, it is can be taken to be 0 in the limit that I take 

delta theta going to 0. So, I have this cancels T delta theta equals N, or which I had 

earlier written as delta N because this is a very small normal reaction. And the other 

equation which was T plus delta T cosine of delta theta over 2, minus T cosine of delta 

theta over 2 equals f. Can in the limit of delta theta going to 0 be written as delta T 

equals f. These are my two working equations, that will determine for me, how the 

tensions are related when the friction is present.  
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Let us now take the extreme case of when mass m 2 just balances mass m 1, this is the 

friction. So, that in that case friction is going to be maximum, and that is going to be 

equal to mu delta N on that small piece. So, I have equation from a layer T delta theta 

equals delta N, and delta T equals f max which is mu delta N which in turn from this 

equation is equal to mu T delta theta. So, I have a relationship between the tension 

change in it with respect to a change in theta.  
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That gives me delta T equals mu T delta theta, or delta T over delta theta equals mu T 

limit delta theta going to 0, it gives me dT over d theta equals mu T. This equation is 

quite easy to solve, and you have being doing it in many different places, the solution for 

this comes out to be. 
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T equals some T 0 e raise to mu theta, where this T is being measured as a function of 

theta, T 0 is at T theta equals 0. So, let me just again make a picture and show you that 

this was mass m 1, this was mass m 2, T 1, T 2, theta is increasing this way, T is 

increasing this way, and if I take this to be theta equals 0, as theta increases theta also 

increases. 

So, that you can see in this case T 2 is going to be equal to T 1 e raise to mu times pi. 

Since, the tensions balance the masses, I also have m 2 equals m 1 e raise to mu pi, g 

cancels from both the sides. You can see because of the friction mu, a very small mass m 

1 can balance a mass much larger than itself which is m 1 times e raise to mu pi. This has 

practical uses. In fact, unconsciously if you recall, you have been using it. Suppose, you 

tie a rope or a clothes line in your backyard, you generally put it on the nail and wrap it 

around a few times. You are unconsciously using the fact the tension. 
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As angle goes up goes as T 0 e raise to mu theta. So, that with a very small force on one 

side, you can balance a large force on the other side. Another practical use is the capstans 

on the dockyards where a huge ship is stopped from moving by taking a rope and 

wrapping it around these capstans. If you wrap it around many-many times, theta goes up 

so, that very tension on one side, very small tension on one side, a huge tension builds 

upon the other side and that can stop the ship from moving. You can also do an 

experiment to check the validity of this expression at home, how do I do that?  
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You take a pen and put a small object, may be a pen or a key on one side, and a large 

object on the other side of a string and try to balance it. As we said earlier suppose, this 

mass is heavier, m 2 would be in this case be equal to m 1 e raise to mu pi. 

So, I will take this pen, wrap a string around it once and this relationship would be 

satisfied. Let me give it one more wrap, if I do that then I should be able to have m 2, let 

me call it m 2 new equals m 1. Now, it has gone around one more time so, I add another 

2 pi to theta e raise to 3 mu pi. Let it go around one more time, m 2 new prime is going 

to be m 1 e raise to 5 mu pi. By seeing how much mass can you balance with a given 

mass as you wrap the string around, you should be able to conform the validity of this 

formula that we just derived. 

You should see that, m 2 new prime divided by m 2 new is equal to e raise to 2 mu pi, 

and that is also equal to m 2 new over m 2. This ratio would remain the same as you keep 

wrapping the string around more and more and more. Let us now solve a few problems 

involved in friction, three of these problems are taken from the textbook of Merriam 

dynamics.  
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The first problem is if I have a truck moving at a certain speed and suppose there is a box 

here, the truck suddenly breaks, you know from experience if the truck breaks the crate 

or the box is going to move this way. If I am given the coefficient of friction here, that is 



going to resist this motion of the box so, frictional force is going to oppose this 

movement. 

What I want to know is suppose, initially the truck is moving at a speed of 72 kilometers 

per hour, and it breaks. And suppose mu is given to be 0.3 between the box and the bed 

of the truck, what is the minimum distance S over which the truck should stop? If it 

uniformly decelerates so, that the box does not move. To repeat, I am breaking and I 

want the truck to stop, I want to find the minimum distance S so, that the box does not 

move. 

Obviously, when the truck slows down, I need the box also to slow down, it should not 

happen that truck slows down faster than the box can slow down. If that happens box 

will start sliding. So, the maximum deceleration on the box that I can have is f max, the 

maximum friction divided by the mass of the box is maximum deceleration or negative 

acceleration. And it is this deceleration that is, that is what the truck can also have. If it 

slows down faster than that, the box will start sliding, the friction will not be able to stop 

it. 
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So, let us see what is the maximum friction f max is going to be mu mass of the box 

times g because for this box which is not moving in vertical direction, N is same as mg. 

So, f max is given by this formula. So, maximum deceleration a is going to be mu mg 

divided by m which is equal to mu g, which in our case if I take g to be approximately 10 



meters per second square, is going to be 0.3 times 10 which is 3 meters per second 

square. And that is the maximum deceleration that is allowed for the truck also. 
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And so, v final square for the truck which is 0 is equal to v initial square minus 2 times 

the acceleration time s, this is going to be 72 kilometers an hour. Which if you change 2 

meters per seconds comes out to be 20 meters per second, and 20 meters per seconds 

square is 400 minus 2. I have already calculated a to be 3 times s, that is maximum a so, 

s minimum that much, and that gives you s equals 200 over 3 which is 67 meters. Of 

course, if the truck slows down and stops at a distance larger than this, I can do with 

smaller a, that is no problem. But the maximum a allowed is 3 and therefore, s minimum 

has to be 67 meters. That is one example of solving problems using frictional forces.  
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As a second example, I take a crate or a trolley which can move on its wheel without 

friction . This is taken to be 100 kilograms, on top of it I put a box of 20 kilograms and 

pull it with a pulley here, pull it by a force P other side of the string attached to the wall. 

The coefficient of friction whether static or dynamic, let us take it to be the same, 

between these two masses is given to be mu s almost the same as mu k is equal to 0.5. 

And we would like to know, what are the accelerations of the two masses in case P is 60 

Newton’s case 1. And case 2, when P is 40 Newton’s. Let us see what happens in the two 

cases. Obviously when this P is pulling it since, this is a rope going around a pulley, the 

net force on the upper mass is going to be equal to 2 P, that I need not go over again. 

And since this mass has a tendency to move this way, it will be opposed by a friction f, 

that is the free body diagram of mass 20 kg. Similarly, the free body diagram for the 

trolley is going to be there is nothing here, the only force that by Newton’s third law is 

applied on this, is the frictional force in opposite direction f. If I draw it again showing 

only the relevant forces for horizontal motion. 
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A free body diagram for the 20 kg mass is 2 P this way, friction this way, and for the 

trolley is friction this way. So, the trolley would move in this direction, and accelerate in 

this direction due to this frictional force. The 20 kilogram mass will also move in this 

direction because of 2 P and the force. 

Let us see, what P I should apply so, that they do not slide. That would happen when f is 

maximum possible, let us calculate what is x maximum possible. That is mu mg, mu is 

given to be 0.5, m is 20 for the upper mass, N, mg, and free body diagram I should also 

show these forces here mg N prime. And there is an N here, alright times 9.8 and that 

comes out to be 98 Newton’s, and that comes out to be 98 Newton’s. And therefore, if 2 

P happens to be greater than 98 Newton’s, this fellow would accelerate in this direction. 
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This fellow is moving this way, maximum force it can have in this direction 98 

Newton’s, this is has a force 2 P, and this has a force f maximum 98 Newton’s. So, the 

maximum acceleration for 100 kg trolley is equal to 98 Newton’s over 100 kg, which is 

0.98 meters per second square. If the acceleration of the top mass 20 kg is happens to be 

larger than this then, there will be sliding, if it is less then, there will be no sliding.  
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So, let us see what happens when I apply a force of 2 P here, and this is 98 Newton’s. In 

case of P is equal to 60 Newton’s, which was my case. The acceleration of the upper 



mass 20 is going to be 120 minus 98 over 20, which is 22 over 20 which is 1.1 meters 

per second square.  
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And therefore, in this case the two masses the 20 kg mass and the trolley are going to 

have acceleration. This is going to move with 1.1 meters per seconds square, and this is 

going to move to 0.98 meters per second square, and they are going to slip on each other. 

Let us see, the other case when P is equal to 40 Newton’s which implies the 2 P is going 

to be 80 Newton’s, and in this case 2 P happens to be less than the maximum force. 
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Maximum frictional force, this is 80 Newton’s and f max is 98 Newton’s. So, the friction 

will adjust itself just to 80 Newton’s so that, this fellow, this mass does not slip. And 

therefore, you can conclude that, in this case, this is going to be 80 Newton’s and there is 

going to be just sufficient force f so that, this does not slip. Is f equal to 80 Newton’s? 

The answer is obviously no. You can see it in two ways.  
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First if I consider the trolley and the mass sorry, 100 kg, together then, on this entire 

system there is a net force 80 Newton’s, there is no relative acceleration, they are moving 

together. And therefore, their acceleration together is going to be 80 divided by 120 

which is Newton’s kg, which is going to be two-thirds meters per second square. But 

what about the frictional force in between? The question we started with is, is it 80 

Newton’s?  
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The answer is no because you see the trolley has only one horizontal force acting on it, 

that is the frictional force, there is nothing to stop it. So, the moment there is friction, this 

trolley is anyway going to move, if it moves and there is no slipping between the upper 

mass and the lower mass then, this mass is also going to move and both move in the 

same acceleration. 

Let us look at it from that point of view in that case, the trolley has an acceleration which 

is going to be equal to the force, frictional force which I do not know over 100. And 

similarly, the mass, let me write it trolley so, 100 kgs mass 20 kgs is going to have an 

acceleration, which is going to be 80 with the force with which I am pulling it minus f 

over 20. And since, there is no slipping because 80 Newton’s happens to be less than the 

maximum frictional force, these two accelerations, this and this one must be equal.  
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And therefore, I should have f over a 100 equals 80 minus f over 20 that is 5. So, I have f 

over 5 plus f, 6f over 5 equal to 80 or f equals 400 over 6 or 200 over 3 Newton’s. 
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And that gives me the acceleration a, 200 over 3 times of 100 equals two-thirds meters 

per second square. So, you see how friction changes the acceleration, and how it affects 

the motion between two bodies that can apply frictional force on each other. 

As the third example, let me take a chain which is on a rough surface. So, this is a rough 

surface, and let us take this to be x equal to 0, and beyond this is, is a smooth surface, 



this is rough surface. And I start pulling this chain with a constant force P large enough 

so that, it comes into motion. So, we are not making that any complicated. It starts 

moving and I want to know when this chain is fully outside the rough, it has come fully 

out, what is the speed? So, let us now make a picture in between when it has come out. 
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Partially from x equal to 0, the chain is like this, is being pulled by force P, let this 

distance be x, let the total length of the chain be L, this then it is going to be L minus x, 

let the mass of the chain be M. And I want to know when the chain has come out to fully 

form rough, what is this P? 

Let us see, what are the forces acting on the chain. There is obviously this force P pulling 

it this way, there is frictional force, but the frictional force acts only on this part. And so 

friction. And since, it is moving friction is going to be as its maximum is going to be mu 

kinetic M over L, L minus x that is the mass of the part in the rough times g. This whole 

thing is the normal reaction on the part on rough.  
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And therefore, if I write the equation of motion the total mass M of the chain moves with 

acceleration x double dot because the chain has come out by distance x, this acceleration 

is going to be x double dot, and this is going to be equal to P minus mu M over L, L 

minus x times g. 

So, for simplicity I have dropped the subscript k here, where its understood mu is kinetic 

frictional force. So, x double dot therefore, is given as P minus mu Mg, plus mu Mg over 

L x. Since, I want to know, what is the speed when the chain has been fully pulled out? I 

am not really interested on the variation of x with respect to T so, I use an old trick 

which I used in the previous lecture. I write x double dot which is really d by dt of x dot 

in terms of x and x dot. So, this I can write using the chain rule as d over dx x dot times d 

over dt of x which is nothing but x dot d over dx x dot, which is 1 half d over dx of x dot 

square.  
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And therefore, my equation becomes M over 2, d over dx of x dot square is equal to P, 

minus mu Mg, plus mu Mg x over L now, we can easily integrate it from x equals 0 to L. 

So, if I do that and, let the speed be v when the chain has been pulled out completely that 

is x equals L.  
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So, by integration I get I am integrating the equation M by 2, d over dx x dot square 

equals P, minus mu Mg, plus mu Mg x over L, by integration I get M over 2 v square 



equals PL, minus mu Mg L, plus mu Mg L over 2, which is nothing but PL minus mu 

Mg L over 2. And that gives me the speed of a chain after it has been pulled out fully. 

We will see in our later lecture, we talk about work energy theorem that, this is a gain in 

kinetic energy which is equal to the work done by the external force which is PL. When 

the force moves the chain by distance L, minus the average frictional force, which at the 

highest is mu Mg, and the lowest is 0. So, average is mu Mg by 2 times L, this is the loss 

due to friction. So, energy gained by P work being done, minus loss due to friction is 

equal to the kinetic energy, and this is how we can calculate the kinetic energy.  
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As a last example, let me take a cylinder which is moving around x axis an angular 

frequency omega, and let me take a mass here which is free to slide, but because of this 

rotation, it stuck on the wall. The coefficient of friction between the wall of the cylinder 

and mass M is mu. 

I want to know, what is omega minimum when this mass is stuck on the wall? If I may 

take a free body diagram of this mass m, it is being pulled down by its own weight, and 

the friction opposes this and there is a normal reaction N. These are the three forces that 

are acting on this mass. Again since, this is a rotational motion, I am going to go to 

cylindrical polar coordinates because it is rotating this way, I will use r and phi this 

direction, and for this direction I will use z. So, let us see what happens to this mass. 
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This is at a distance equal to radius of the cylinder from the center is being pulled down 

by weight mg, there is force N on it, and there is frictional force f on it. Its acceleration 

in cylindrical coordinates is going to be r double dot, minus r phi dot square r, plus r phi 

double dot, plus 2 r dot in phi dot in phi direction, plus z double dot z in z direction. 

However, in equilibrium when it is moving stuck on the wall, r is constant and this is 

equal to R and therefore, r dot equals r double dot equals 0. Similarly, phi dot is fixed to 

be omega and this implies phi double dot is also equal to 0 and it is not moving up and 

down therefore, z double dot is also equal to 0. Therefore the acceleration of the mass is 

given as. 
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A is equal to minus R phi dot square r, ma therefore, is minus mR phi dot square r. How 

about the forces on the mass? There is a force in negative radial direction N, there is mg 

and there is friction. So, this should be equal to N in negative r direction, plus f minus 

mg in z direction. Equating the two sides, we get N is equal to mR phi dot square which 

is nothing but mR omega square.  
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And the other equation gives me f equals mg. Remember f max is mu N so, that is going 

to be mu m R omega square. For the minimum omega. I should be applying the 



maximum possible frictional force for that omega. And therefore, for omega min my 

condition becomes that, mu R m omega square is equal to f equals mg, this m cancels 

and I get omega minimum to be square root of g over mu R, and that is your answer.  

So, what we have seen in this lecture is, how frictional force acts on two bodies when 

they slide or tend to slide over each other, and how we use this in solving problems. In 

the next lecture, we are going to look at another form of frictional force which arises 

when bodies move through fluids, and that is the viscous or drag force. 


