Numerical Methods and Computation

Prof. S.R.K Iyengar

Department of Mathematics

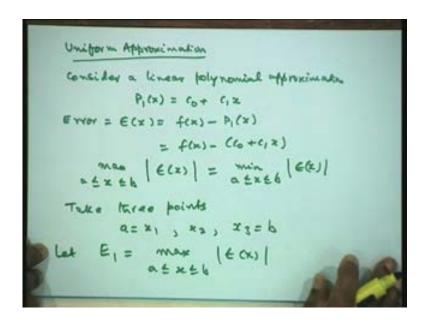
Indian Institute of Technology Delhi

Lecture No - 33

Interpolation and Approximation (Continued)

Now in our previous lecture we have defined the uniform approximation, let us briefly review what we have done last time.

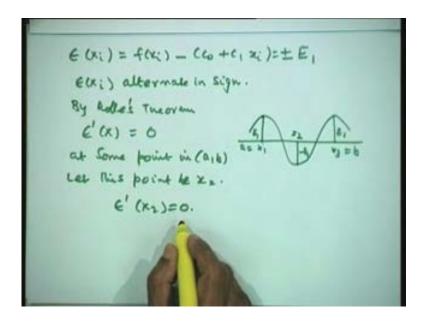
(Refer Slide Time: 01:13)



We consider the linear polynomial approximation, so let us write it as a uniform approximation and then to define this, we consider a linear polynomial approximation. We have taken this linear polynomial approximation as $P_1(x)$ is equal to some c_0 plus c_1 into x. Then we have defined the error, the error is defined as epsilon of x that is f(x) minus $P_1(x)$ that is f(x) minus (c_0 plus c_1x). Now the problem of uniform approximation therefore is, that the maximum of error should be equal to the minimum error in the interval, whatever in the interval are considered [a, b] that means maximum of the error in the interval a less than x less than or equal to x of this magnitude should be equal to minimum of a less than x less than or equal to x of error x. This would imply that all the errors are equal in magnitude because the maximum should be equal to the minimum,

therefore the errors at all the points would be identically same and that is got magnitude of epsilon of x. Now for considering the linear polynomial approximation, we will take three points x_1 , x_2 , x_3 , so take 3 points take three points. We will take the first point as x_1 , the second point as x_2 and the third point as x_3 , x_3 is equal to b. If we define the largest value of epsilon(x) in magnitude as E_1 , let us define E_1 as maximum of a less than x less than or equal to b in magnitude of epsilon(x).

(Refer Slide Time: 03:45)



Then uniform approximation would mean that the error at these points epsilon (x_i) that is equal to f at x_i minus c_0 , I am substituting x is equal to x_i in this equation so c_1 of x_i , they would be equal to either with a plus sign or with a negative sign of E_1 , E_1 is the maximum magnitude therefore they would be having plus minus signs that means we require that epsilon (x_i) alternate in sign. It may start with plus E_1 then it becomes minus E_1 and then plus E_1 or it may start with minus E_1 then it may go to plus E_1 and minus E_1 . For example, in the simple case of a example of a graph of the error like this, looking like this, if I take this line as this, then I will take this as x_1 , this as x_3 and this is my E_1 and this is minus E_1 and this is equal to E_1 . Now I have not yet numbered this, I will just number it. Now since the error here of the graph is, this is E_1 , this is the E_1 therefore I can apply the Rolle's theorem immediately on the error function, so we have by Rolle's theorem, by Rolle's theorem epsilon dash(x), derivative epsilon(x) is equal to 0 at some point in (a, b). This is x_3 is equal to b, a is equal to x_1 between some point and we take this point as x_2 , so we will take this point as x_2 , let this point be x_2 . In other words we are setting epsilon dash (x_2) is equal to 0, so the x_2 satisfy this equation epsilon dash (x_2) is equal to 0.

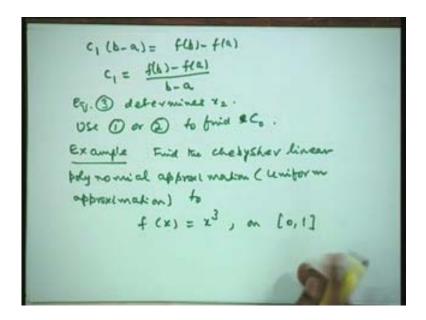
(Refer Slide Time: 06:12)

Now I have got 3 equations, let me repeat this equation here, so let us take i is equal to 1 and 2 from here so this first equation reads, put x i is equal to 1, x_1 is equal to minus epsilon(x_2) they should alternate in sign. Error at the next point will be opposite sign of the error at the next point, of course you can view this as epsilon(x_1) plus epsilon(x_2) is 0, epsilon(x_2) plus epsilon(x_3) is equal to 0 and the third equation is derivative at x_2 is equal to 0. Now the quantities that we have to determine in our approximation are, x_2 is to be is determined, x_2 is unknown, so I need to determine x_2 is unknown, so I need to determine x_2 in and x_2 , therefore I have got 3 equations in 3 unknowns therefore these are 3 equations in 3 unknowns.

Now we can solve this, however this is going to be non-linear equations, however there is a simple way of solving them because this equation is going to be simpler than this but if you look at this first two equations, interestingly it will be $epsilon(x_1)$ is equal to minus $epsilon(x_2)$, continue the next equation this is $epsilon(x_3)$. I just combine the 2 equations, now if I take these two as an equation out coming out of this for solving gives an interesting equation which simplifies and obtain the solution of one of the parameters immediately and that will give you substitution backwards and then how can obtain the solution of the problem. Now let us look at how we are going to do this in this problem, now our polynomial is the epsilon(x) is equal to this, I am substituting $epsilon(x_1)$ that is $ext{x}_1$ is equal to a, so that is f at a minus $ext{c}_0$ plus $ext{c}_1$ at a, so I will, let us take it f at a minus $ext{c}_0$ minus $ext{c}_1$ at that is this, on the right hand side I have $ext{epsilon}$ at $ext{x}_2$ so this will be [f of $ext{x}_2$ minus $ext{c}_0$ minus $ext{c}_1$ at a minus $ext{c}_0$ minus $ext{c}_1$ at a minus $ext{c}_1$ minus

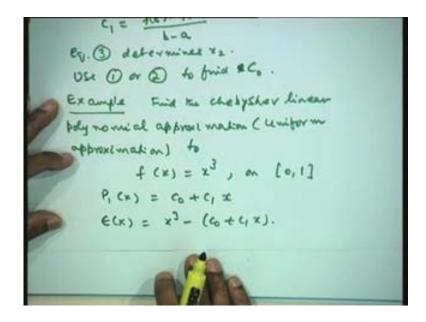
Now I need to solve these three equations, let us use this equation that is I subtract these two equations, so let us number it as 1, 2 and 3. I take it to this side and then write it as add it, I can take addition of these two equations or as equating these two equations that will then give me f of a minus c_0 minus c_1 a is equal to f of b minus c_0 minus c_1 of b that is epsilon(x_1) is equal to epsilon(x_2). Now here I can see that c_0 cancels with c_0 , so I can bring this E_1 b to this side and then solve for c_1 .

(Refer Slide Time: 10:29)



Therefore I can have c_1 of (b minus a) is f of b minus f of a, therefore solution of c_1 is obtained f of b minus f of a divided by b minus of a. Now when once I get c_1 from here, equation 3 gives me x_2 , now equation 3 determines x_2 . When once c_1 and x_2 are determined, I can use any one of equations 1 or 2 to find out x_1 , so we use 1 or 2 to find to find c_0 and that completes the determination of the polynomial and we can also find out what is the maximum error, I can take anyone of the points and find out the error because the error is in magnitude is the same, so I can use the first point or the last point or any point to find out what will be the uniform error here in this particular case. Now let us take an example for this to see how we are going to use this, so we shall use the same example which we have done in the least square approximation so that we can have a comparison. So find the Chebyshev linear polynomial approximation which is same as the uniform approximation to the function, let us take the same function which we have done earlier, f(x) is equal to x cubed on [0, 1].

(Refer Slide Time: 12:48)



Now as we have done just now, let us take the required approximation $P_1(x)$ is equal to c_0 plus c_1x and define our error as epsilon(x) is equal to x cubed minus c_0 plus c_1 x. Now I need to choose 3 points in the interval 0 to 1 including the end points.

(Refer Slide Time: 13:20)

```
Choose 3 points on

x_1 = 0, x_{2-1} x_{3} = 1

E(x_1) = -E(x_2); -c_0 = -[x_2^3 - c_0 - c_1 x_2]

E(x_1) = -E(x_2);

+[x_2^3 - c_0 - c_1 x_2] = -[1 - (c_0 + c_1)]

-c_0 = 1 - c_0 - c_1

E(x_1) = E(x_1)

C_1 = 1

E'(x_2) = 0; 3x_2^2 - c_1 = 0

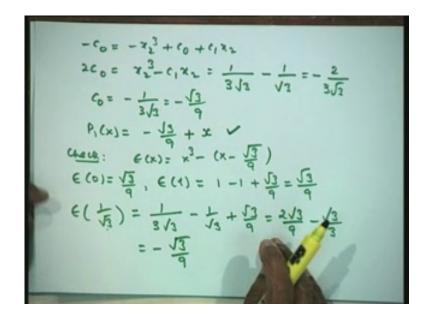
x_2^2 = \frac{1}{3}, x_3 = \pm \frac{1}{\sqrt{3}}

x_4 = \frac{1}{\sqrt{3}}
```

So I choose the 3 points as x_0 , x_1 is equal to 0, x_2 is x_2 , x_3 is equal to 1. Now the first equation reads epsilon at x_1 is equal to minus epsilon at x_2 . Now let us substitute x_1 is equal to 0, so this gives us 0, this is 0 therefore I will have minus c_0 from here and that is equal to minus epsilon at x_2 that is $[x_2$ cubed minus c_0 minus c_1 $x_2]$. The second equation reads epsilon(x_2) is minus epsilon(x_3), so let us substitute $[x_2$ cubed minus c_0 minus c_1 $x_2]$ and the right hand side, this is plus, will take this and minus epsilon(x_3), now x_3 is equal to 1 so I will substitute x_1 is equal to 1 in this that is x_2 minus x_3 cubed these two first and then solve it and then write the third equation afterwards, so I add these two, so I will therefore have minus x_2 0, now I am adding these two so these two have canceled, so I am going to or we are looking at, writing the third equation as epsilon(x_1) is equal to epsilon(x_3) that is epsilon at 0 is equal to epsilon at 1. So that is what we mean by adding these two equations, so this is epsilon at 0 that gives you, epsilon at 0 gives us minus x_3 0 so that is what we have here and epsilon at 1 is equal to 1, so the value of x_3 1 is equal to 1.

Now I will write the third equation epsilon dash at x_2 is equal to 0. Now I differentiate my epsilon(x) that is 3 x square minus c_1 , 3 x square minus c_1 and this should be equal to 0. c_1 is 1 so let us take it to this side and write x_2 is, x_2 square is 1 upon 3, x_2 is equal to plus minus 1 upon root 3 but we are in the interval 0 to 1 therefore I can throw away the value minus 1 upon root 3 therefore the required value of x_2 is 1 upon root 3. Now I can use any one of these equations to get my value of c_0 so let us take the first equation and write it.

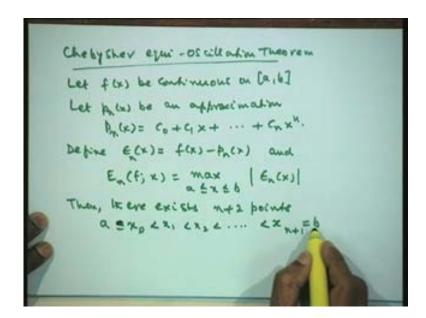
(Refer Slide time: 16:53)



Let us just rewrite this first equation here, this is minus c_0 is minus x_2 cube plus c_0 plus c_1 x_2 . So if i take it to this side, I will have here 2 c_0 and bring it to this side x_2 cubed minus c_1 x_2 and x_2 cubed let us take the cube of this that is 1 upon 3 root 3 minus 1 upon root 3, x_2 , is c_1 is equal to 1. Therefore this is minus 2 upon 3 root 3. Therefore c_0 is equal to minus 1 upon 3 root 3 or we write this as root 3 by 9. Therefore $P_1(x)$ the required polynomial is minus root 3 by 9 and c_1 is equal to 1 that is equal to x. Now let us just see whether what we have started with and what is uniform approximation is really satisfied by this, just let us have it as a check, let us call it as a check. So our error is x cubed minus (x minus root 3 by 9) c_0 plus c_1 x we are substituted, let us get the error at 0, error at 0 is root 3 by 9 substitute x is 0.

Now let us go to the last point epsilon at 1 that is 1 minus 1 plus root 3 by 9 that is equal to root 3 by 9. Then the x_2 is 1 upon root 3, x_2 is 1 upon root 3, so this gives me 1 upon 3 root 3 minus 1 upon root 3 plus root 3 by 9. So this is root 3 by 9, this is root 3 by 9, so I can write this as 2 root 3 by 9 minus root 3 by 3, so this gives you minus root 3 by 9. Now you can see that the error epsilon(0) is plus root 3 by 9, epsilon at 1 by root 3 is minus root 3 by 9 and epsilon at 1 is root 3 by 9, the errors of equal magnitude and they are alternating inside, so the maximum error is equal to minimum error and we have got this as the best approximation in the uniform sense that is the Chebyshev polynomial approximation. Now would like to generalize the result for any polynomial, so let us generalize this result and we call this result as Chebyshev equi-oscillation theorem.

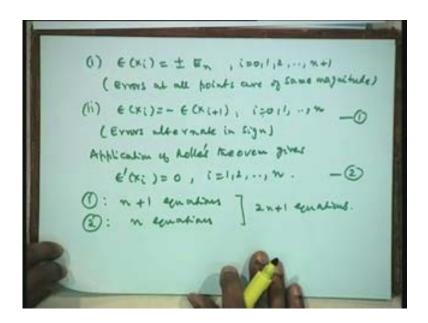
(Refer Slide Time: 20:01)



So we call this as Chebyshev equi-oscillation theorem, this is the basis of the uniform approximation for a general polynomial. Now we are given a continuous function so let us start with a continuous function, let f(x) be continuous on a given interval [a, b]. Then we have an

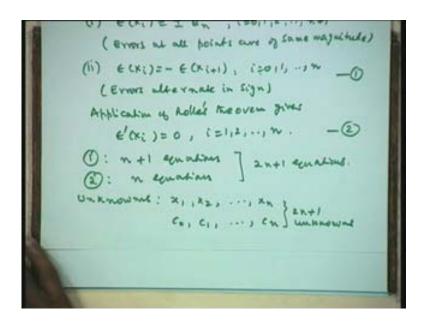
approximation, so let $p_n(x)$ be an approximation, let $p_n(x)$ be an approximation that means we are writing $p_n(x)$ is a polynomial c_0 plus c_1 x so on $c_n x$ to the power of n. Then we define the error, define epsilon(x) is equal to, epsilon_n(x) we can now put, is f(x) minus $p_n(x)$ and the maximum value will denote by capital A, so epsilon_n x (f, x) is equal to maximum of this error in the given interval this. These are all the definitions that we have used earlier, now we state equioscillation theorem out of this, we will say then there exist n plus 2 points, there exist n plus 2 points, will take a is equal to x_0 less than x_1 less than x_2 x_n plus 1 is equal to b. We are considering x_0 to x_n plus 1, n plus 2 points, the first point is a, the last point is equal to b.

(Refer Slide Time: 22:22)



Now there exist n point such that (1) error at x_i is plus minus E_n that is your, E_n is the maximum magnitude of the error therefore error at this will have either plus or minus sign of E_n and this is for i is equal to 0, 1, 2, n plus 1 that means this actually is telling us that errors at all points are of same magnitude, so this is stating that errors at all points are of same magnitude. Secondly error at x_i is equal to minus error at x_{i+1} starting from i is equal to 0, 1, so on n. Epsilon at x_0 is equal to minus epsilon₁ and lastly error at x_n is equal to minus error at x_{n+1} and this states that the errors alternate in sign. Now this second part would therefore give us, the application of Rolle's Theorem can be applied using this, so we can now state that this implies application of Rolle's Theorem gives that derivative at x_i is equal to 0, i is equal to 1, 2, 3, n. There are total of n plus 2 points and we have got errors at all these points are same in magnitude and hence the Rolle's theorem can be applied and we will have n intermediate points at which the errors will be equal to 0. Now we can say that 1 gives us n plus 1 equations, these are n plus 1 equations and this gives us n equations, therefore n gives us, 1 gives us n plus 1 equations and 2 gives us n equations, so that we have a total of 2 n plus 1 equations.

(Refer Slide Time: 25:25)



Now what are the unknowns that we have here, the unknowns that we have are x_1 , x_2 , the first point and the last point are known to us therefore x_1 , x_2 , x_n are the points in the middle and then we have the parameters in the polynomial c_0 , c_1 , c_2 , c_n and these are 2 n plus 1 unknowns. Therefore we have 2 n plus 1 equations in 2 n plus 1 unknowns and these are of course nonlinear equations and we have way of as we have shown earlier, there is a way of solving them, we can solve this and then get the uniform approximation and finally we can determine, find using any point x_0 or the first or the last point, we can finally determine what is the maximum value of this and then take that as our uniform error. Now let us take a an example for a quadratic polynomial.

(Refer Slide Time: 26:26)

```
of Second degree for

f(x) = x^3, on [0,1]

P_2(x) = c_0 + c_1 x + c_2 x^2

E(x) = (x^3) - (c_0 + c_1 x + c_2 x^2)

choose 4 points: 0, x_2, x_3, 1

E(0) = -E(x_2)
E(x_2) = -E(x_3)
E(x_3) = -E(x_3)
E(x_3) = 0

E'(x_3) = 0
```

Let us do the same example for the quadratic approximation so let us take it as, obtain the best uniform approximation of second degree for f(x) is equal to, I will take the same example x cubed on [0, 1]. Now I need to consider a polynomial of degree 2 therefore I will consider $P_2(x)$ as my polynomial (c_0 plus c_1 x plus c_2 x square) and error is equal to (x cubed) minus (c_0 plus c_1 x plus c_2 x square). Now given a polynomial, the number of points that should be chosen is given over here, so we need to choose a total of n plus 2 points given a polynomial, so given a polynomial of degree 2 so I need to have n plus 2 that is 4 points. Therefore we say choose 4 points, the first and last will take as this 0 then will take x_2 , will take x_3 and x_4 ; x_0 , x_1 , x_2 , x_3 , x_4 .

Now let us first write down all the equations which we should get here that is epsilon (0) is equal to minus epsilon at x_2 , epsilon at x_2 , epsilon at x_2 is equal to minus epsilon at x_3 , epsilon at x_3 is minus epsilon at x_1 then we have the derivatives epsilon dash at x_2 is equal to 0, epsilon dash at x_3 is equal to 0. Now while solving this system as I mentioned earlier, we shall first solve the which one that combines the first and the last because then there is no parameter, so if you look at that one, what that equation would be epsilon (0) is minus epsilon (x_2) so substitute a minus sign here that is plus epsilon (x_3) and plus epsilon (x_3) is minus epsilon (1), minus epsilon (1). So that particular equation which you are looking for which simplifies the first equation is, we start with epsilon (0) is minus epsilon(1) and that will give me, it will have only one parameter therefore I can solve that particular equation immediately and then substitute backwards in this equations to get the values of the other parameters.

(Refer Slide Time: 29:53)

```
\begin{aligned}
& + (0) = - + (x_3); \\
& - c_0 = - \left[ x_2^3 - (c_0 + c_1 x_3 + c_2 x_2^3) \right] - \bigcirc \\
& + (x_3) = - + (x_2); \\
& + (x_3) = - + (x_2) + (x_2 + c_2 x_2^3) = - \left[ x_3^3 - (c_0 + c_1 x_3 + c_2 x_3^2) \right] \\
& + (x_3) = - + (1); \\
& +
```

Now let us first of all write down what these values are, so you will have here, let us write down again epsilon (0) is minus epsilon(x_2). Now this gives us, I am substituting in this particular equation therefore I will have simply minus c_0 that is the left hand side and the right hand side is [x_2 cubed (c_0 plus c_1 x_2 c_2 x_2 square)] that is our first equation, so let us again number it as 1, 2, 3 here. Now the second equation is epsilon(x_2) is minus epsilon(x_3) so that is your [x_2 cubed minus (c_0 , c_1 c_2 , c_2 c_3 square)] this is at c_3 , will have [c_3 cubed minus (c_3 , c_4 , c_5 , c_7 , c_8 , c_8 , c_9 , c

Now let us write down the last two equations that we have here, that is the derivatives at x_2 and derivative at x_3 is equal to 0. So if I now differentiate, if I now differentiate this epsilon(x) here, I would get here 3 x_2 square minus (c_1 plus twice c_2 x_2) is equal to 0, I differentiated this, (c_1 plus twice c_2 x) is equal to 0 and similarly 3 x_3 square minus (c_1 plus twice c_2 x_3) is equal to 0. So I have got this equation 2, this is 3, 4 and 5. I would like to use this particular equation which gives me a solution immediately, epsilon (0) is equal to minus epsilon (1), so if I do that, that is epsilon(0) is minus c_0 , epsilon(0) is minus 0 and minus epsilon(1) is here, so I can lift it as it is, so this will be equal to minus 1 plus c_0 plus c_1 plus c_2 . Right, this gives me 2 c_0 plus c_1 , plus c_1 plus c_2 is equal to 1. Now I think I will leave this is an exercise for you to complete the problem, I will give the solution of this problem; you can verify the values of c_0 , c_1 , c_2 , so on.

(Refer Slide Time: 33:34)

$$C_0 = \frac{1}{33}, C_1 = -\frac{9}{16}, C_2 = \frac{3}{2}$$

$$\frac{3}{2}(x) = \frac{1}{32} - \frac{9}{16}x + \frac{3}{2}x^2$$
built uniform approximation

Legendre Polynomiall of first kind

$$P_n(x)$$

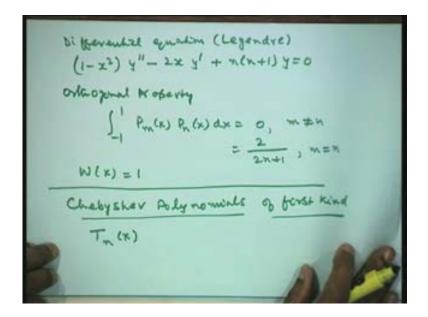
$$P_0(x) = 1, P_1(x) = x, P_2(x) = \frac{1}{2}(3x^2 - 1), \cdots$$
Recurrence relation
$$(n+1) P_{n+1}(x) = (2n+1)x P_n(x) - n P_{n-1}(x)$$

So I would give the values of x_2 is 1 by 4, x_3 is equal to 3 by 4, c_0 is 1 by 32, c_1 is minus 9 by 16 and c_2 is 3 by 2. Therefore our best uniform approximation is 1 upon 32 minus 9 by 16 x plus 3 by 2 x square, so this is the best uniform approximation and we can actually find out what the errors, what the error is, we can find out the error that will be equal at any of these points particularly with respected to, at the first point we can find out what will be the maximum error and that will give you the maximum error in that in this equation.

Now we have earlier talked about least square approximation and in the least square approximations we wanted to use the orthogonal polynomials which will give the values of the coefficients immediately as a ratio of two integrals, if it is a continuous function or the ratio of sums of the some w (x_i) into the orthogonal polynomials and would now would like to define the two polynomials which can be used in least square approximation as well as we shall be using in the next topic that is a numerical integration also. So let us define these polynomials, orthogonal polynomials which you must have done in your earlier course also but let us just briefly revise what are those polynomials and what are the properties of those polynomials which makes them very powerful. Of all of them, the Chebyshev polynomial is supposed to be the best and will see why Chebyshev polynomial is the best. So let us just briefly describe these polynomials, the Legendre polynomials, now we are really talking of Legendre polynomials of first kind because the polynomials, Legendre polynomials that we talk of normally is only the polynomials of the first kind that is the polynomials $P_n(x)$. The first polynomial is 1, P_1 of x is equal to x, $P_2(x)$ is equal to half 3 x square minus 1 and so on. I can generate all of them through a recurrence relation, if once I know two of them it is sufficient for me, I can now write down the recurrence relation and get any Legendre polynomial I want from here.

So the recurrence relation for this is this, (n plus 1) $P_{n+1}(x)$ is equal to (2 n plus 1) x $P_n(x)$ minus $P_{n-1}(x)$. Therefore when once I know P_0 , P_1 , I can now generate from here by taking n is equal to 1, I can get my P_2 , I can get my P_3 all of them, so I can generate all the polynomials, whichever polynomial I want using this recurrence relation. Now these Legendre polynomials are obtained as the solutions of a differential equation, they all belong to the problem called the strum levelly problem in which the co efficients can be taken differently and the solutions of this differential equations of the strum levelly problem gives rise to this orthogonal polynomials that is a one class of problems which produces a large number of orthogonal polynomials and these polynomials are defined in the interval, let us write it here itself, they are defined in the interval minus 1 to 1, they are defined over the interval minus 1 to 1.

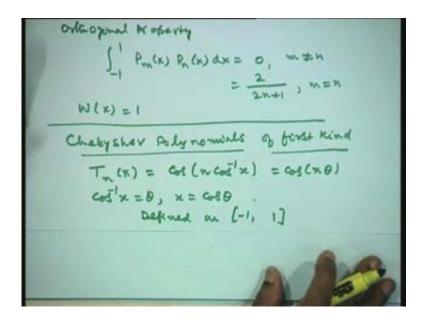
(Refer Slide Time: 37:52)



Now the differential equation governing this is this, (1 minus x square) y double dashed minus 2 x y dashed plus n into (n plus 1) of y is equal to 0, this is also called the Legendre's differential equation; this is called the Legendre differential equation. I can write down the series solution for this differential equation, you have done the series solution of differential equations, so I write the series solutions of the differential equations and one of the solutions would give me the orthogonal polynomial that is Legendre polynomials of first kind with a suitable coefficient that has been prefix to it and that coefficient is determined with some property that P_n of 1 is equal to 1. You can see that P_n of 1 is 1 always, so using that one can determined what will be the coefficient that is there. The orthogonal property is the one that we have been used earlier, the orthogonal property is with the weight function 1 here, minus 1 to 1 $P_m(x)$ $P_n(x)$ dx is equal to 0, for m not equal to n, 2 upon 2 m plus 1 for m is equal to n and in this case the weight function w(x) is equal to 1.

Now this is one of the set of polynomials that we shall use, the Legendre polynomials of second kind are not used because that they are not of great use, it is only the Legendre polynomials of first kind are of use. Now let us define the Chebyshev polynomials, here again we shall be considering only the Chebyshev polynomials of first kind, these polynomials are denoted by T_n of x.

(Refer Slide Time: 40:20)



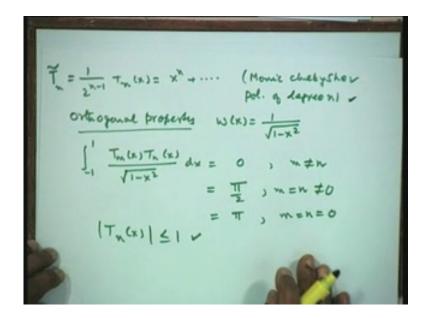
Interestingly even though it is a polynomial, it can be written in a nice close form in the trigonometry function form as cos (n cos inverse of x) or simply cos of (n theta), cos n theta that means we have set cos inverse of x is equal to theta or x is equal to cos of theta. So if I set cos inverse x is theta, I would get x is equal to cos theta and therefore they are all defined on minus 1 to 1, defined on minus 1 to 1, the same as in the Legendre polynomial.

(Refer Slide Time: 41:03)

The differential equation that governs this is (1 minus x square) y double dashed minus x y dashed plus n square y is equal to 0, this is the Chebyshev differential equation. Now I can set n is equal to 0, 1, 2 here and then get the values of the Chebyshev polynomials of first kind again T_0 of x is 1, T_1 of x is equal to x, the first 2 polynomials are the same $T_2(x)$ is equal to 2 x square minus 1. In both the Legendre polynomials as well as Chebyshev polynomials, we can write x in terms of, in terms of polynomials also, so I can write down reverse relation also that is 1 can be written as T_0 , x can be written as T_1 then I can solve for x square from here, 2 x square is equal to T_2 plus 1 but 1 is T_0 so I can write this as T_2 plus T_0 and therefore I can write down x square as half of (T_0 plus T_2). Therefore it is possible for me to write down, express the polynomials in terms of the Chebyshev polynomials starting with that degree that is T_2 and lower ones and here since it is even so it will contain only (T_2 plus T_0). If it is an odd power, it will contain your odd Chebyshev polynomials, degree Chebyshev polynomial that is T_1 , T_3 , x cubed will be in terms of T_3 and T_1 .

Now again I can generate all of them through the recurrence relation, the recurrence relation for the Chebyshev polynomials are T_{n+1} of x is 2 x $T_n(x)$ minus $T_{n-1}(x)$. Now I can expand this cos and cos inverse x to determine what is the leading coefficient for me in $T_n(x)$ because that is something very important and useful for us. The $T_n(x)$ is equal to, I can show that this is equal to 2^{n-1} x to the power of n plus lower degree terms, so that the leading coefficient of $T_n(x)$ is 2 to the power of n minus 1. Now I can define from here, what is the monic Chebyshev polynomial that is a polynomial with leading coefficient as 1, so if I define T, divide $T_n(x)$ by 2^{n-1} then I will have a monic Chebyshev polynomial.

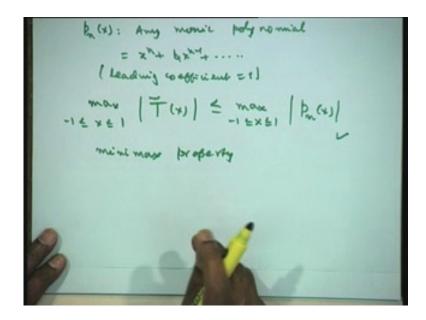
(Refer Slide Time: 44:24)



So I can write this as 1 upon 2 to the power of n minus 1 $T_n(x)$ is equal to x to the power of n plus so on, so this defines a monic Chebyshev polynomial of degree n. Now before I mention where I am going to use it in a moment, let us just also write down what is the orthogonal property, orthogonal property. The weight function for Chebyshev polynomials is 1 upon under root 1 minus x square, so the weight function for Chebyshev polynomial is not a constant but it is this particular form. Therefore integral minus 1 to 1 w(x) into $T_m(x)$ $T_n(x)$, so will now substitute for that $T_m(x)$ $T_n(x)$ into w(x) that is 1 minus x square under root dx this is equal to 0, for m not equal to n. If I put m is equal to n, I will get pi by 2, m is equal to n not equal to 0 but this will be equal to pi if it is equal to 0.

Now the most important thing here is that magnitude of $T_n(x)$, now what is the definition of $T_n(x)$, it is a cosine function, it is a cosine function therefore its magnitude is going to be less than 1 always, therefore magnitude of $T_n(x)$ is always less than or equal to 1. Now this is something very useful for us that the magnitude of any Chebyshev polynomial is less than or equal to 1. Now as I was saying the, I wanted to use this particular property, what is the, what is so great about this one, so if I, you can just denote this by tilde, T tilde x, tilde T_n .

(Refer Slide Time: 46:51)



Now I consider, now any polynomial with leading coefficient 1, $p_n(x)$ is any monic polynomial that means leading coefficient is 1 that is of the form x to the power of n plus some b₁ x to the power of n minus 1 and so on, therefore the leading coefficient is equal to 1. Now if I consider the monic Chebyshev polynomial and arbitrary monic polynomial on the interval minus 1 to 1 and consider its magnitude, then the monic Chebyshev polynomial is the smallest in magnitude of all the polynomials on minus 1 to 1, there is no polynomial whose magnitude will be less than this particular Chebyshev polynomial. So the property that we want to show is, the maximum over minus x to 1 of T this, that is your monic Chebyshev polynomial is less than or equal to minus 1 to 1 this of $p_n(x)$. This is the property which makes Chebyshev polynomials as a rarest of the orthogonal polynomials because you cannot find any polynomial whose magnitude will be less than the polynomial, therefore in all the approximations we would prefer to use Chebyshev polynomials because its error is going to be smallest and this property is called the minimax property of Chebyshev polynomials. That is why you will find that when we are applying in any particular problem even though Legendre polynomials can also be used, Chebyshev polynomials can also be used, Chebyshev polynomials are preferred because of this particular property. Okay would stop at this.