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In the previous lecture we have defined what is approximation; we have also defined what is the 
best approximation. 
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If we take a function like P(x) is equal to some c0 phi0(x) plus c1 phi1(x) plus so on cn phin(x) 
then we define this as the best approximation if it minimizes the error norm, therefore this is the 
best approximation, best approximation if P(x) minimizes the error norm and the error norm we 
have written it as, error f vector c of the constants, norm of f(x) minus (c0 phi0 c1 phi1 plus so on 
cn phin). Now if we define the norm, suitable norm; then we get different type of approximation 
we mention that if we use the Euclidian norm we get the least square approximation and if we 
use the uniform norm you get the uniform approximation.  

 

So let us again just define, what is our Euclidian norm for this function to derive the least square 
approximation, so let us define the least squares approximation. Therefore we need to define 
what is our approximation first, f(x) is equal to P(x), approximately P(x), that is your c0 phi0(x) 
plus c1 phi1(x) plus so on cn phin(x). Let us denote the error as simply E, now we will write it as 
only E that is inside this norm, so that is your f(x) minus P(x), that is f(x) this quantity, f(x) 
minus c0 phi0 plus c1 phi1 plus so on cn phin. Now since we want to use the Euclidean norm, what 
we shall do is that the square of these errors then sum up, if there is a weight function multiply 
by the weight function also.  
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Therefore the total aggregate of the errors over the interval [a, b] is now minimized. Therefore 
we will define the least square approximation as the total squares of the errors, total squares of 
the errors that is the aggregate, aggregate of the error w(x) into E square, where w(x) is a weight 
function is greater than 0, is a weight function, is minimized. Therefore the total squares of the 
errors that mean the total aggregate of the errors w(x) E square, where w(x) greater than 0 is a 
weight function, is minimized. In many applications we just take the weight function as 1, 
therefore it will be a simply minimizing the aggregate of the errors E square over the entire 
interval that is given to us. Now why we are using this is, how the Euclidean norms give this, let 
us just look at what is the definition of Euclidean norm.  

 

The Euclidean norm of a vector say vector x that we have, then we have define this as norm of x 
is equal to summation of i is 1 to n, w(xk) or w(xi) magnitude of xi square whole to the power of 
half, this is the definition of the Euclidean norm of a vector x. I can square both sides and write it 
also norm of x whole square is simply summation i is 1 to n, w(xi) magnitude of xi square. Now 
in our application this vector x is nothing but the error vector, so this x is replaced by the error 
vector and therefore we are minimizing this particular quantity, if we are minimizing this norm 
we are minimizing this square of it, both are the same. Therefore we shall be minimizing this, 
therefore our x in this application is our error vector E that we have here.  
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Therefore by the definition of this, that the least square approximation definition, we can 
immediately say that we minimize, therefore we minimize this summation, let us write k is equal 
to 0 to n, w(xk) E(xk) square. Now since our data is, since data is, let us write it as (xk, fk), k is 
equal to 0, 1, 2, 3, n, that is why summation is running from 0 to n here, since our data is running 
from k is equal to 0 to n and we have taken the data is (xk, fk). Now let us denote this by some I, 
let us just write this as I, I is equal to a function of the constants (c0, c1, c2, cn) because E contains 
your error and this is your, k is equal to 0 to n w(xk) E(xk) square.  

 

Now let us write down what is E(xk), so I can write this as summation of w(xk), now we shall 
remember that is k is 0 to n, so let us drop that notation, just write down summation here. This is 
error of xk that is f at xk minus c0 phi0 of xk plus so on cn phin of xk, all of them evaluated at xk 
and this square, this should be minimum; this should be minimum. Therefore it is a simple 
minimization problem of calculus, so we require that the partial derivative of I with respect to the 
constants (c0, c1, c2, cn) should be equal to 0 in order that it has a minimum or maximum. So we 
shall show that it is a minimum that is required later on, so therefore for a minimum we need 
delta I by delta ci is equal to 0, for all i, i is equal to 0, 1, 2, so on n. Therefore we will have n 
plus 1 equations for determinant c0, c1, c2, cn. Let us know differentiate this with respect to to i.   
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So I can differentiate this with respect to i, delta I by delta ci that will be equal to summation of, 
we have a 2 here, so I will write z w(xk), this is [f of xk minus {c0 phi0 of xk plus so on cn phin of 
xk}] and multiplied this by, this is, now I would differentiate it with respect to ci, therefore I will 
get phii(xk) as a multiplicative factor with a negative sign, lets put it in a bracket, phii of xk and 
this should be equal to 0, delta I by delta ci must be equal to 0. Now let us simplify this equation, 
we cancel this and then take this term to the right hand side, so I will retain this on the left hand 
side. Therefore this will give us c0 summation phi0 into phii, this is phi0(xk) phii(xk) and of course 
w(xk) is also there. So the first term will be c0 phi0 phii(xk) both of them evaluated xk, multiplied 
by xk, then plus c1 phi, that is next term is phi1of xk multiply by phii of xk then we multiply by 
w(xk) plus so on, the last term will be cn phin this is phin of xk, this is phii of xk into w(xk).  

 

This is the left hand side that we have retained and this term f(xk) goes to the right hand side, so I 
can write this as summation of w(xk) f(xk) phii(xk) and i running from 0, 1, 2, 3, n. Now these are 
n plus 1 equations in n plus 1 unknowns, these are n plus 1 equations in n plus 1 unknowns c0, c1, 
c2, cn, so these are n plus 1 equations in n plus 1 unknowns and these are called the normal 
equations, we call them as normal equations. Therefore in any particular problem when once our 
phii are given to us, weight function is given to us, we just evaluate these sums over here and the 
substitute it here, solve the n plus 1 equations in n plus 1 unknowns and then substitute back in 
P(x) for the values of c0, c1, cn and that gives us the least square approximation and we can also 
find out the least square error. We can write down the expression, we can substitute the values of 
c0, c1, c2, cn over here, just simplify the whole thing, square this one, multiply by xk sum over this 
and that gives you the least square error, the total least square error. 
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Therefore if I put this as 1 then I can say that the substitute, substitute the values of c0, c1, cn in 1 
to find the least square error, find the least square error that is the total error that we have 
committed under the least square approximation, we would get by substituting the values of c0, 
c1, c2, cn in this particular equation. Now let us take some simple case, let us take the particular 
case of when which we would like to normally use as a polynomial approximation. Now let us 
take the case when phii is simply equal to xi that means the functions that we are talking phi0 is 1, 
phi1 is x, phi2 is x square so on phin is equal to x to the power of n.  

 

Now let us substitute this in the equations that we have just now obtained here and we have here 
phi0 is 1 then we have got here phii(xk) into w(xk) then you have c1, this is phi1 is equal to x, so 
we are going substitute phi0 is 1, phi1 is equal to x, phii is equal to x to the power of i. So if I just 
substitute it over here what I would get here is, now let us see the first term that comes out over 
here and also we can still particularize it, let us take w(x) also as 1, w(x) also as 1. Then we can 
see that the first coefficient will be w(x) is 1, this is your 1 and you are now multiplying by the 
first equation for i is equal to 0, for i is equal to 0 this is phi0 square, then we have phi0 square is 
1 square, therefore what we have here is the first term will look like c0 summation of 1, c0 this is 
phi0 square into 1, this is your c0 of 1 that is total summation is the total values i is equal to 0 1 
up to n. Therefore this will be simply equal to c0 into n plus 1, this is total observations that we 
have here. Therefore the first term here would be c0 into n plus 1, then we are taking the case i is 
equal to 0, therefore this is 1, this is x and this is c1, therefore this is summation of xk, therefore 
plus c1 summation of xk.  

 

Now if I take the next term, this will be c2, phi2 is multiplying by phi0 and phi2 is multiplying by 
phi0 that is x square that is xk square, therefore the next term will be plus c2 summation of xk 

6 
 



squared plus cn summation xk to the power of n and the right hand side is, for i is equal to 0 this 
is 1, f(xk) this is 1, so simply summation of f(xk), so the right hand side is simply summation of 
f(xk). This is your first equation, the second equation I will take i is equal to 1, when I take i is 
equal to 1 in this then I am multiplying phi0 by phi1 therefore I am multiplying 1 by x, this is 1 
and the next term will be phi1 into phi1 that is phi1 square that is your x square and so on. 
Therefore the next term will be c0 summation xk plus c1 summation xk square plus so on cn 
summation xk to the power of n plus 1. On the right hand side we have got here phii that is phi1 
that is x, therefore I will be multiplying by xk on the right hand side, this is your xk f of xk. You 
can now see that each of them because this is a polynomial, these will be, just last term of this 
will be coming here and then this will come here and then next term will be, if you are taking the 
next equation, you will have here c0 phi0 into phi2 that is your x square into 1.  
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So the the next equation would therefore read as c0 summation xk square plus c1 summation xk 
cubed plus so on cn summation xk

n+2 that is summation xk square f(xk) and so on, the last 
equation reads c0 summation xk to the power of n, c1 summation xk to the power of n plus 1 plus 
so on, cn summation xk to the power of 2 n that is n plus n that is 2 n and this is xk to the power of 
n f of xk. These are the normal equations when you take it as a polynomial, what we have taken 
here is, P(x) we have taken it as a polynomial c0 plus c1 x plus c2 x squared plus so on cn x to the 
power of n, so this is the polynomial approximation that we have taken here. Let us see how 
trivial it will look like to the particular cases, let us take the linear case; from here let us just 
write down the linear least square polynomial approximation that means I am just taking my 
polynomial as simply c0 plus c1 x. Therefore in this system that I had written it, I will just cut out 
the terms up to only 2 coefficients c0 and c1.  
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Therefore the normal equations in this case would become, the normal equations are (n plus 1) c0 
plus c1 summation of xk is summation of f(xk), c0 summation of xk plus c1 summation xk square is 
summation xk f(xk). Now in any given data we just have to find what is the summation of xk, 
summation of xk square, summation of f(xk) and summation of this xk f(xk), solve the 2 by 2 
equations and we have the solution for c0 and c1 and that will give you the least square 
approximation and if I want the least square error, I would substitute in the expression that we 
had written it the in equation 1 and we can find out what is the total least square error under this 
linear approximation. Now if I want a quadratic approximation that is 2, I will have 1 more term 
over here c2 summation xk square, we will have c2 summation xk cubed and you will have one 
more equation, okay let us write down the quadratic also.   
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So let us write this as quadratic approximation, therefore this will give us (n plus 1) c0, c1 
summation xk plus c2 summation xk square is summation f(xk), so that will be our first normal 
equation. Then I have c0 summation xk, c1 summation xk square plus c2 summation xk cubed is 
summation xk f(xk) and the third equation is c0 summation xk square plus c1 summation xk cubed 
plus c2 summation xk

4 that is equal to summation xk square f(xk). These will be the normal 
equations in the case of the quadratic approximation. Now we can normally go up to cubic or of 
fourth degree approximation or any approximation, however the one disadvantage of the 
polynomial approximation, we are talking of the polynomial approximation is that when you take 
the system of equations for very large n, system of equations become ill conditioned that means 
the solution is prone to the effect of the round off errors that even if you have a minor round off 
errors in any of these numbers, the cumulative effect of that will be destroying the solution.  
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So the disadvantage of high degree polynomial approximation is that the system of equations is 
ill conditioned. Therefore we do not normally use beyond a degree or 3 or 4 in the least square 
approximation, so that is the disadvantage of the least square polynomial approximation, of 
polynomial approximation that the normal equations become ill conditioned for large n. What 
really computationally as I said it would mean is, that the round off errors that is there in your 
f(xk) xk and then these summation that we are doing, the round off errors can really spoil the 
solution of the particular problem that means if you round off to 4 places, you may get a different 
answer, round off to 5 decimal places you will get a different answer. So that is the effect of the 
round order is seriously felt in the solution of the problem, that is what we really mean by ill 
conditionedness in terms of the computational aspect. Now let us first taken example on this.   

 

(Refer Slide Time: 25:32) 

 

 
 

Now find a least square, let us take a straight line approximation, straight line fit for the data x, 
f(x) 1, 3, 1 point 5, 4 point 7 5, 2, 7, 2 point 5, 9 point 75, let us also say find the least squares 
error, find the least square error. Now here we have asked for a straight line, a straight line fit 
therefore what we are talking of is approximation by using the polynomial c0 plus c1 x. Now the 
problem is very simple, we just have to find these quantities; these 4 quantities, substitute it and 
solve it here. So I need here the quantity summation of xk that is the sum of all these x’s, I would 
give this valued that is equal to 7 point 5. Then I square all these numbers and then take the 
summation, so I will have your summation of xk square that is we are squaring this abscissa and 
then summing up and this comes out to be 13 point 7 5. Then I need summation of fk that is sum 
of these numbers, so I will have summation of f(xk) and this comes out to be 25 point 2 5 and 
lastly we need the sum of this products xk fk that is this into this, 1 into 3 and so on and then sum 
up that is your xk f of xk and this is 48 point 1 2 5. Summation f(xk) is the, we are the writing the 
product of these two, summation xk is equal to 7 point 5, 6 okay, yes 6 point 5.  
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Using these values of the summations, we shall write down the normal equations. The data 
points are 5 points, so you have 5 times c0 plus 6 point 5 c1 and that is equal to summation of xk 
25 point 2 5. This is 6 point 5 c0 plus summation xk square is 13 point 7 5 c1 and that is equal to 
48 point 1 2 5. Now you can solve this for c0 and c1 and then you substitute in the, we want to 
find out what is the least square error. The least square error definition was summation of, here 
w(x) is equal to 1, therefore it is simply f of xk minus c0 plus c1 xk whole square, this is f(x) 
minus P1(x), so [f(xk) minus (c0 plus c1 xk)] whole square. Now we have got the values of c0 and 
c1 over here, now we have got the data points xk fk, we can substitute in this entire and then find 
out the total error in the least square this one.  

 

Now we would like to repeat that this is not fitting the data, whatever we have got here, the 
approximation is not fitting this data at all, it is not an interpolating polynomial, it is only an 
approximation to this function that is representing this data, therefore there is least square error. 
If it was an interpolation, this is exactly fitting this; therefore there is no error in fitting this 
particular data but this is an approximation, therefore even if you just write down, say a quadratic 
polynomial, artificially take quadratic polynomial, write down the values and write down to fit a 
straight line from there, you would still get the least square error here because what really would 
mean is, if I take the a graph of this and let us say we have taken points like this, point like this, 
point like this, then what we are fitting is some straight line like this for this such that the total 
squares of these errors. These are the errors, this is the straight line that we have now 
approximated for the function, now the error is this particular part here with respect to this point, 
this is the error, this is the error; this is the error. 
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Now this least square error is sum of squares of all these errors is this, so we are not fitting this 
function exactly for this data, it is a approximation to the function which must be representing 
that particular data, so that is why we have this least square errors in the problem and this is the 
best approximation because we have minimized sum of the squares of the errors, therefore we 
have got that best value of c0 c1 which minimizes this least square error. If you take any other 
straight line, for example here we would get error which is larger than this particular error 
because this is minimized. Let us now discuss how we can apply the least square approximation 
as we have defined earlier when a continuous function is given.  
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Let us take continuous function as f(x), therefore I will again write our I of (c0, c1, cn), now if you 
just look at this what we have done in the previous case, this is we have minimized at this 
particular expression, this is nothing but the summation, if you change the summation to the 
integral for continuous functions, this will be simply in an integral form. So we will convert this 
into an integral form and write this as, that is integral given interval a to b that is your first point, 
a0 is your first point, a0 is your first point and b is your last point xn. So an interval [a, b] is given 
here, so which corresponds to that one, this is equal to w(x) weight function and multiplied [f(x) 
minus (c0 phi0 cn phin)] whole squared dx. Where I have written phii is equal to function of x, this 
is the phi, is the function of x because it is a continuous function.  

 

Now again for a minimum the necessary condition is that the partial derivative of I with respect 
to ci must be equal to 0, for i is equal to 1, 2, for 0, 1, 2, n. Now let us differentiate this with 
respect to ci partially, so I would get integral a to b 2 times w(x) [f(x) minus (c0 phi0 plus so on cn 
phin cn phin)] and derivative of this is phii dx with a negative sign, let us put this minus sign that 
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is here outside, this is equal to 0, this is equal to 0. Now again we will retain the integrals with 
respect to c0 c1 on the left hand side and we take this to the right hand side.  
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Therefore I can write this as c0 integral a to b cancel of 2 also, so I would here have phi0 phii 
w(x) dx that is the first term, this is phi0 into phii into w(x) plus c1 integral a to b next one is phi1, 
this is phii and this w(x) dx plus so on, the last term will be cn, cn a to b, this last one is phin so 
phin into phii w(x), on the right hand side we have w(x) f(x) phii so this integral goes to the right 
hand side, this is your w(x) f(x) phii dx. Now I would like to write down all these values for phi 
is equal to 0, 1, 2 because we would like to make some observations on that. 
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Let us take the case i is equal to 0, then this gives us c0 a to b phi0 square, i is equal to 0 therefore 
we have phi0 square, w(x) dx c1 integral a to b, this is i is 0 this is phi0 phi1, so I will have phi0 
phi1 w(x) dx plus so on cn is outside, integral a to b, this is phi0, this is phin, phi0 phin w(x) dx, on 
the right hand side we have w(x) f(x) phi0 dx. I would like to write 1 more equation, therefore 
this will be c0 integral a to b, now this is i is equal to 1, therefore I will now get phi0 phi1 w(x) dx 
c1 a to b, now this is 1 therefore this is phi1 square, therefore I will have here phi1 square w(x) dx 
plus so on cn integral a to b, now this is last term is, now this is phi1 into phin, phi1 into phin w(x) 
dx and the right hand side is a to b w(x) f(x) phi1 dx.  

 

Now let us write down the last equation i is equal to n, I will therefore have integral a to b phi0 
phin w(x) dx plus c1 a to b phi1 phin w(x) dx plus cn a to b phin square w(x) dx is integral a to b 
w(x) f(x) phin dx. Now these give us the required n plus 1 equations in n plus 1(Refer Slide 
Time: 38:58), I have to evaluate these integrals all these integrals, they are functions of x, I can 
integrate all of them and one once I integrate it, i substitute it over here and then find out what is 
my c0 plus c1 x. 
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Therefore these give us n plus 1 equations in n plus 1 unknowns. Now let us again take a 
particular case here, there will be 2 particular cases I would like to discuss here,  
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let us take the case 1 as simply phii is equal to xi, let us take again phii is equal to xi, i is equal to 
0, 1 so on n. So we are taking phi0 again as 1, phi1 is equal to x and so on phin is equal to x to the 
power of n. Now let us get the approximation, linear polynomial approximation, therefore we are 
considering the case P1(x) is equal to c0 plus c1x therefore our phi0 is 1 and phi1 is equal to x. 
Now I just have to substitute these values over here, phi0 is 1, phi1 is equal to x and then retain 
only two terms, there are only two unknowns c0 and c1 and then I can write down the equations.  

 

Therefore the first equation will read as c0 integral a to b w(x) into phi0 square that is simply 1, 
therefore it is w(x) plus c1 integral a to b w(x), the second term is your phi0 phi1 w(x) dx 
therefore I will have product as x, therefore I will have here x into dx and the right hand side is 
integral a to b again your phi0 is 1 here, so I simply have w(x) f(x) here, so I will have here w(x) 
f(x). And the second equation is c0 integral a to b w(x) x dx plus c1 a to b w(x), now this is x 
square phi1 square dx, phi1 square is x square and the right hand side is integral a to b w(x) x f(x) 
dx. So I just again have to evaluate these integrals then solve for c0 c1 and then we have the 
required linear least, linear polynomial approximation, I can again find out the total least square 
error also using this one. 

 

Similarly I can write down the quadratic polynomial from here by just taking one more term in 
this, but the reason why we made it into case 1 and case 2 is, we mentioned earlier that these 
functions phi0 phi1 is our choice, if our choice makes the things better than we would prefer that. 
In the previous case we have seen, we have taken the linear approximation or quadratic then high 
degree then we said the system of equations is become ill conditioned for larger. However if we 
choose these function phi zeroes as orthogonal polynomials, orthogonal with respect to the 
weight function w(x) then there is no ill conditioness that comes there because the solution 
comes directly. Let us see what would happen in this case. 
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Let us write down this, let phii(x) be orthogonal polynomials, let us take them as orthogonal 
polynomials. Now what is the definition of orthogonal polynomial? The definition of this is 
integral a to b, it has a weight function w(x) phii(x) phij(x) dx is equal to 0, for i not equal to j. 
These functions are orthogonal with respect to a weight function over the interval a to b that is 
for i not equal to j the integral is 0, for i is equal to j it has some value, that value depends on 
what that particular polynomial is but we are interested mainly in this particular property. For 
example, if you are choosing the Legendre polynomials here, if you are taking the Legendre 
polynomials Pn(x) p0, p1, p2 that Legendre polynomials Pn(x), then in that case the weight 
function for this is 1, weight function is 1, the interval (a, b) is minus 1 to 1 that means what we 
are saying is integral minus 1 to 1 Pm(x) Pn(x) dx is equal to 0, for m not equal to n, this is the 
property of the Legendre polynomials. I can choose other polynomials, the other polynomial that 
is very useful is the Chebyshev polynomial, is called the Chebyshev polynomial it is denoted by 
Tn(x).  
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In this case the weight function for Chebyshev polynomial is 1 upon under root 1 minus x 
square, the interval (a, b) is equal to minus 1 to 1. Now we are going to define the Legendre and 
Chebyshev polynomials in the next lecture because this we are going to use it later on in 
numerical integration also, we are going to use them, these are very important polynomials. Tt 
has Chebyshev polynomials have very very important property that the, if you take the 
magnitude of this over the interval and approximate it by any of the function, the error on this 
will be minimum compared to any polynomial over that particular interval but that we will 
discuss it little later. Now what this really means is, if I take integral minus 1 to 1 Tm(x) Tn(x) by 
under root of 1 minus x square, there is your w(x) Tm(x) Tn(x) dx is equal to 0, for m not equal to 
n. Now we shall show that if I choose these coordinate functions phii as the orthogonal 
polynomials then everything gets immediately simplified, let us see why it is so.  
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Let us just go back the previous equations which we have written the entire set, now let us put 
your orthogonal polynomial here. The orthogonal polynomial here if I put it here, this is phi0 
square w(x), this is phii phij i is equal to j is equal to 0, therefore this is a non-zero quantity. Phi0 
phi1 by definition it is 0, all of them are 0, the right hand side is there. Therefore the first 
equation simply gives c0 a to b phi0 x w(x) dx is equal to this and hence I found out c0.  

 

Go to the next equation, by definition again phi0 phi1 w(x) is 0, integral is 0, this integral exist, 
this integral vanishes, therefore except if you look at this as your matrix, except your diagonal 
elements, this is c0, c1, c2 diagonal elements, all the half diagonal elements are going to be 0 
because of the orthogonal property. Therefore I can immediately determine my ci’s without any 
solving a system of equations, the  trouble arose in the previous case we are now solving a 
system of equations there which turned out to be ill conditioned system, here there is no question 
of solving the system of equations.  
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What I would therefore have here is, I will have here c0 integral a to b phi0 square w(x) dx is 
equal to the right hand side a to b w(x) f(x) phi0 dx and so on. I will therefore have ci, we can 
write down the denominator as integral a to b phii square w(x) dx, so I am taking this coefficient 
and putting it in the denominator and in the numerator you have a to b w(x) f(x) phii dx for i is 
equal to 0, 1 so on n. Therefore here it is just simply evaluating the integrals and then the ratio of 
these integrals would immediately give you the value of ci and hence there is no ill conditioness, 
ill conditioness does not arise here, does not arise if we choose phii as orthogonal polynomials. 
Now we could of course as well have chosen in the previous case also, the discrete data case also 
phi(x) is orthogonal polynomial, the answer is yes.  
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In that case instead of integral a to b or this one, you will have summation, summation over k 
w(xk) phii(xk) phij(xk) dx is equal to 0, so I could as well have used this orthogonal polynomials 
in the discrete data set also where from, we will use as I said we will replace this integral by 
summation and therefore we can find out ci there also by just taking the ratio of 2 summations 
also. So the use of the orthogonal properties in the least square approximation is very useful and 
in particular if you have a continuous function it is, the values of these integrals, these are 
available for us when m is equal to n, we can straight away use those property of the orthogonal 
polynomials to get arrive at the approximations, so will take the example next time.    
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