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Interpolation and Approximation (Continued) 

 

In our previous lectures we have derived various forms of interpolating polynomials to fit a 
given data which consists of an abscissa and the corresponding ordinate at n plus 1 points. Now 
we derived the various forms in the sense we have Lagrange interpolation, divided difference 
interpolation and if it as a equispaced data we have the Newton’s formulas of backward forward 
formulas and if now, if you add for this data one more item like the slope of the function that is 
representing the given data, then we can have a different type of polynomial all together, so let 
us now consider data of this particular form. 
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The data that is given to us shall be the abscissas that we take it as xi, this this is your x0, x1, so 
on xn, then we have the ordinates given to us as f0, f1, fn. Now this was the data that we 
considered earlier, let us now add to this slope at these points also, so let us also consider the 
case when we have slopes also at this, which we shall write it as f prime at 0, f prime at 1, so on f 
prime at n. Now what type of interpolating polynomial can we derive for this particular data, 
now if you look at this number of ordinates that we have, we have n plus 1 values of this 
ordinates. Now if you consider simply the data xi fi that is this data, then we were able to write 
down a polynomial of degree less than is equal to n which fits this data exactly. Now we have 
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added to it n plus 1 more values, these are again n plus more values. Therefore this implies that 
we have a total of 2 n plus 2 values that are available to us, therefore in this data we have 2 n 
plus 2 values available to us.  

 

Hence this implies that we can fit a polynomial of degree less than is equal 2 n plus 1 for this 
data, therefore a polynomial of degree less than or equal to 2 n plus 1 can be fitted and the 
polynomial which does this job, we shall call it as Hermite interpolation, so we shall call it as 
Hermite interpolation. That means we want to construct a polynomial P, such that p at xi is equal 
to f at xi and P prime at xi is f prime at xi for i is equal to 0 1 so on n. Now we shall follow the 
procedure that we have adopted in deriving the Lagrange interpolation, now the interpolating 
polynomial must be, now a linear combination of these ordinates and these slopes also, that 
means I must be able to write down the polynomial P(x) is equal to summation of i is equal to 0 
to n, some Ai(x) f of xi plus summation 0 to n Bi(x) f prime at xi, so the polynomial should be a 
linear combination of these ordinates, n plus 1 ordinates and n plus 1 slopes. Now since this 
polynomial is of degree than is equal to 2 n plus 1, Ai(x) and B(x) must be polynomials of degree 
2 n plus 1, these are polynomials of degree 2 n plus 1. Since this polynomial should fit this data 
exactly, we can find out the conditions under which this approximation is possible for us. 
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So let us substitute xi here and see what we would get the conditions on ai and bi, some xj, let us 
put xj, i is equal to 0 to n, Ai(xj) into f(xi) plus summation i is 0 to n, Bi(xj) plus into f prime of xi. 
Now this should be identically equal to, this is P2n+1, suffix P2n+1, this should be identically be 
equal to f of xj, that is your P of xj is equal to f of xj, that is the data given to us. Now if this is to 
be true it should be identically, now all this Bi(xj) must be 0 because there is no derivative here, 
so let us put it here in two ways Bi(xj) is equal to 0 for all i j, Bi(xj) must be equal to 0 for all i j. 
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You write it in the 2 columns, so we shall fill up the remaining data over here. Now let us look at 
Ai(xj), this should be equal to f(xj) therefore all of them would be 0 except when the both 
suffixes are same, so you will have here Ai(xi) is equal to 1 Ai(xj) is equal to 1, for i is equal to j, 
is equal to 0 for i not equal to j. Then this will give us simply 1 into f of xj so it will be identically 
equal to this.  

 

Now we shall fill up here, I will just leave some space over here. Let us differentiate this and set 
xj here, so I am differentiating this particular polynomial and then to it, so it will give us 
derivative of Ai and here it will give derivative of Bi, these are constants so only derivative of Ai 
and Bi will come, so that we can write it as summation i is equal to 0 to n, Ai prime xj f(xi) plus 
summation i is 0 to n, Bi prime xj f prime at xi. Now you can see that this should be identically 
equal to f prime of xj because the interpolation condition is P dash xj is equal to f prime of xj. 
Therefore this should be identically equal to this, therefore this implies that there cannot be any 
ordinates here that means this Ai prime xj will be 0 for all i j, so that means I can now write here 
A prime i(xj) is equal to 0 for all i j. Whether it is equal or not equal, in all the cases the value of 
A prime xj will be equal to 0 and B prime xj will be equal to 1 when i is equal to j and it will be 
zero for i not equal to j because this should produce f prime at xj. Therefore we will have here Bi 
prime xj is equal to 1 for i is equal to j, is equal to 0 for i not equal to j. 
 

Now we need to construct, now Ai and Bi just as we have done in the Lagrange interpolation by 
looking at the property of Ai and its derivative, Bi and its derivative. Now we remember that Ai 
and Bi are polynomials of degree 2 n plus 1, so what we will do it, we shall take advantage of the 
Lagrange fundamental polynomials, which are polynomials of degree n. So if I consider li 
square, this will be polynomial of degree 2 n, polynomials of degree 2 n and this satisfies our 
properties that li(xj) is equal to 1 for i is equal to j, li(xj) is equal to 0 for, we know this property 
that li(xj) is equal to 0 for i not equal to j, is equal to 1 for i equal to j. Because of this property 
which is inbuilt for A construction of this, I shall take, use this li square Lagrange fundamental 
polynomials in building this Ai and Bi.  
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So what I would do since li square is a polynomial of degree 2 n and Ai Bi are only polynomials 
of degree 2 n plus 1, I need to multiply this only by linear polynomial that means we shall 
assume that let A(x) is equal to suffix I, some suffix i you put it, [ai plus bi into (x minus xi)] li 
square x and Bi(x) is equal to some ci di (x minus xi) li square x. Now li square is a polynomial of 
degree 2 n, I am now multiplying this by linear polynomial of the special form which I have 
taken it in this particular form because it is easy for us to find the constants in that case. Now this 
is a polynomial of degree 2 n plus 1 and this is also a polynomial of degree 2 n plus 1.  

 

If we are able to find uniquely ai, bi, ci, di from the data that we have, then we have what we have 
written in the formula is correct. So let us try to find that one, let us look at, let us just put this 
condition over here. We shall now determine the parameters ai, bi, ci and di using the conditions 
on ai and bi which we have obtain earlier as this, where Ai(xj) is equal to 1 for i is equal to j, it is 
0 for i not equal to j. Similarly Ai prime xj is equal to 0 for all i and j and similarly the conditions 
on Bi. We shall apply these conditions one after the other to determine the constants ai, bi, ci and 
di. Let us first of all substitute xi in Ai(x), so if I substitute x is equal to xi, I get here ai plus 0, this 
is 0, then I get li(xi) is 1 therefore li(x) square is equal to 1 and this should be equal to 1, ai is 
equal to 1 for all i. Now we have determined one of the parameters ai in this capital Ai. Now let 
us differentiate Ai therefore I will get Ai prime of x is equal to, it is a product of 2 functions, so 
let us write this product as [ai plus bi into (x minus xi)] derivative of this is 2 times li(x) li prime x 
plus the derivative of this gives us simply bi into li square of x. Now we have the condition that 
Ai prime xj is equal to 0 for all I j.  

 

Let us now substitute and see here, if i put Ai prime xi here, I would get here is ai plus, x is equal 
to xi that is 0, then I will have here 2 times li(xi) is equal to 1, I will have li prime of xi plus li(xi) 
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is equal to 1 therefore I will have here bi into 1 and the value of Ai prime xi is equal to 0 that is 
the condition that we have here, that Ai prime xj is equal to zero for all i and j. Therefore I can 
determine bi from here therefore I will have bi is equal to minus 2 times ai into li prime of xi but 
ai is equal to 1 therefore I will get 2 times li prime of xi. Now similarly we shall apply the 
conditions on bi to determine the constant ci and di. 
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Now let us substitute x is equal to xi in Bi of x, so if I have put Bi(xi) that gives me, I am now 
substituting here in this the, I am substituting x is equal to xi in this, so let us keep this slide here, 
this is [ci plus 0] li square of xi and this is equal to 1 therefore this gives us ci into 1 but this is 
equal to 0, this is equal to 0. Therefore we get ci is equal to 0 for all i. Then let us differentiate 
Bi(x), let us differentiate Bi(x) from here, so I will have here Bi prime of x is equal to [ci plus di 
into (x minus xi)] derivative of li square is 2 times li(x) li prime of x plus derivative of the first 
one gives us di into li square of x. Now use the condition that Bi prime xi is equal to 1, so if I put 
Bi prime of xi here, I get here ci plus this is 0, that is 2 times li(xi) li prime of xi plus di into 1. 
Now Bi prime of xi is equal to 1 therefore this is equal to 1. Now ci is equal to 0 therefore this 
bracket goes off and we have simply di therefore we obtain di is equal to 1 for all i. Now we have 
determined all the 4 constants. So we can now substitute in the expression for Ai(x) and Bi(x) 
that is this expression Ai(x) and this. 
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Let us substitute it and see what we get, we get Ai(x) is equal to, is equal to A [1 minus 2 times 
(x minus xi) into li prime of xi] into li square of x. Now this we have obtained it because we have 
got here ai is equal to 1 and we have obtained bi is equal to minus 2 times ai li prime of this xi, so 
we have substituted for bi and this is (x minus xi) over here, therefore this is the expression in the 
brackets for Ai(x) and outside the bracket we have li square x. Similarly we get for Bi(x), this is 
equal to, now c0 is 0 and di is equal to 1 therefore I simply get (x minus xi) into li square of x and 
therefore for the required polynomial, P(x) is equal to summation of i is equal to 0 to n Ai(x) f of 
xi plus summation i is equal to 0 to n Bi(x) of f prime of xi.  

 

We call this as the Hermite interpolating polynomial, we call this as the Hermite interpolating 
polynomial, interpolating polynomial, which is of degree less than or equal to 2 n plus 1. Now to 
compute this interpolating polynomial we need to determine li(x), I need to determine li prime 
then substitute the values over here, determine my A(x) Bi(x) from here, sum them up, simplify it 
to finally arrive at the polynomial of degree 2 n plus 1 or less than 2 n plus 1 and that represents 
the interpolating polynomial which fits exactly that given data. 

 

 

 

 

 

  

6 
 



(Refer Slide Time: 20:23) 

 

 
 

Now let us take an example on this, let me write the example. Now construct an interpolating 
polynomial that fits the data x, let us take only 2 points, f(x) is 2 values 2 ordinates and the 
slopes f prime x is 4 and 32. Now we need to first of all write down our Lagrange fundamental 
polynomials li(x), there only 2 data points therefore we will have l0(x) is equal to (x minus x1) 
upon (x0 minus x1) that is (x minus 2) divided by 1 minus 2 that is minus 1, which is your 2 
minus x and we need the derivative also, let us differentiate it l0 of x also, lets write down x also, 
that is equal to minus 1. Here it is a linear polynomial therefore derivative is a constant otherwise 
this would not be a constant, if we take more data points it will be a function of x.  

 

Now let us write down l1(x), this is (x minus x0) divided by (x1 minus x0) that is (x minus 1) 
divided by 1 that is your (x minus 1). We need its derivative also, let us differentiate it, this is 
equal to 1. Now we need to find the quantities A0, A1, B0, B1 to use this particular expression. 
Now we set i is equal to 0 in this to get A0(x), now we shall say, set i is equal to 0 in Ai(x) then 
we get A0(x) is equal to, now we are setting i is equal to 0, therefore I will get here x0, this is l0 
prime x0, this is l0 square x, so I will get here [1 minus 2 (x minus x0) l0 prime x0] into l0 square 
of x. Now I will substitute the values of l0 prime x0 is minus 1, l0(x) is equal to (2 minus x), 
therefore I will get here 1, this is negative sign so I will write it as plus 2 (x minus x0) is 1, l0 
square is (2 minus x) whole square. We can simplify and write this as (2 x minus 1) into (2 
minus x) whole square. 
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Now set i is equal to 1 in Ai(x), we get, I am setting i is equal to 1 so I will have here x1 l1 prime 
x1 l1 square x, therefore I will get here A1(x) is [1 minus 2 times (x minus x1) l1 prime x1] into l1 
square of x. Now x1 is equal to 2, l1 prime of x1 is 1 and l1(x) is (x minus 1), therefore I get here 1 
minus 2 into (x minus 2) l1 prime of x1 is 1, so I will have this as 1 and l square of x is (x minus 
1) whole square, that is (x minus 1) whole square. Therefore this I will get it as 4 plus 1, [5 
minus 2 x] into(x minus 1) whole square.  

 

Now set i is equal to 0 in Bi(x), therefore I will get B0(x) is equal to [x minus x0] into l0 square x. 
Again our l0 is (2 minus x) therefore this will simply give us (x minus 1) into (2 minus x) whole 
square. Now set again i is equal to 1 in Bi(x) therefore I will get B1 is (x minus x1) l1 square x, 
therefore I get B1(x) is (x minus x1) l1 square of x, x1 is 2 therefore I get, here I get x1 is 2 and we 
have got here l1(x) is (x minus 1), therefore this is equal to (x minus 1) whole square. Now I got 
this 4 quantities and which we can substitute now in P(x) to get our polynomial. 
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Therefore the required Hermite interpolating polynomial is, P(x) is equal to A0(x) f of x0 plus 
A1(x) f of x1 plus B0(x) f prime of x0 plus B1(x) f prime of x1. Now we can substitute the values 
that we have obtained earlier that gives us (2 x minus 1) into (2 minus x) whole square into 2 
plus (5 minus 2 x) into (x minus 1) whole square into 17 plus (x minus 1) into (2 minus x) whole 
square into 4 plus (x minus 2) into (x minus 1) whole square into 32. Now we can simplify it and 
we get the result as (8 x minus 6) into (2 minus x) whole square plus (21 minus 2 x) into (x 
minus 1) whole square. Now you can easily verify that this fits our data exactly.  

 

Now before we proceed further we should make some comments or a little word of caution on 
using the interpolating polynomials. If a large data is given say n plus 1 points, we can construct 
a polynomial of degree less than or equal to n to fit the data but the data that we have got is 
usually from an experiments or from some observations, therefore if you are given a, say 4 plus 
accuracy table, the last digit of this is always due to round off errors because you are rounding it 
off is there. Now if you are constructing a polynomial of degree 99 say for the data given as 100 
data is given, if you are constructing polynomial of degree 99, we are now using the 
multiplications of these ordinates by numbers which are the coefficients in the polynomial. 
Therefore the round off error that is there in each data item gets multiplied and cumulatively the 
total round off error will be enormous and no experiment you can give the result exactly, 
therefore it is not advised and it is not used to construct higher order degree interpolating 
polynomial even though the data is very very large. The only alternative would be, to at the most 
go up to cubic or the forth degree polynomial beyond that we do not go and hence it is possible 
for us to break the data into blocks, say for example if you have got, suppose we have got a data 
of say at the 6 points, well let us write down this data.  
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Suppose I have given the data is the seven points are given, I know that I can construct the 
polynomial of degree 6; if slopes are given we can construct the polynomial of degree 13 but 
what we are stating is in practice we should not use that. What we use it, for example I can break 
this into two blocks of these points, so this contains 4 points and this contains 4 points, 
continuously x0 to x3, this is your x0 to x3, this is x3 to x6. Then I construct interpolating 
polynomial on each of these blocks, so construct interpolating polynomials on each of these 
blocks. Now in this case they are cubic polynomials, in this case they are cubic polynomials. 
Then we shall call such interpolation as piecewise interpolation, so we shall call this as piecewise 
interpolation.  

 

It has all the properties of the interpolating polynomial that we have discussed here except that 
the entire data is being made into small blocks and on each of them we are constructing a cubic 
polynomial, for example four data points, if we are taking three data points  we will have a 
quadratic, quadratic, quadratic. Therefore we are going to write down the interpolating 
polynomial as something like, for example here I would write this as P(x), P(x) is equal to some 
A1(x) cubed plus B1(x) squared plus c1(x) plus d1, for x0 less than x less than x3 and I can put 
equal to because we have taken the point in both it is, both of them are fitting exactly at x3 
therefore continuity at x3 is available for us. This is some A2(x) cubed plus B2(x) square plus 
c2(x) plus d2, x3 is less than x less than or equal to x6, either put equal to here, equal to here, 
because both of them are going to be the same thing. That of course that P at x3 is equal to f(x3), 
so both of them would satisfy this. Therefore in this way we can give for the entire data, we can 
say that for this first block this is the polynomial, second block this is the polynomial, third block 
this is the polynomial and then use this piecewise interpolating polynomials for predicting the 
data values at any of the intermediate points. This is what we normally do in practice if you have 
a very huge data. Even though theoretically we construct very high degree polynomial but in 
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practice we shall not be using it. Now let us look at the second problem in this that is your 
approximation. 
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Now we mentioned earlier that the problem of approximation is of two type, one type is that data 
is given to us, data is given, we know that it represents a function f(x), it represents a function 
f(x) but without actually constructing this function f(x), we would like to write down an 
approximating polynomial or a function which approximate f(x) for this given data. Now the 
problem is therefore to find an approximating function, approximating function to f(x) without 
constructing f(x) that means we would like to construct the function without actually going 
through the process of interpolation. 

Now the second is that we are given a function f(x), here we are given f(x), if the problem is to 
approximate f(x) by a suitable function, what is this function? It could be polynomials or 
orthogonal polynomials; that is they are functions of polynomials or in terms of orthogonal 
polynomials. So that the properties of the function given to us, which was a complicated function 
can be studied through these polynomials because when once we write it in terms of an 
orthogonal polynomial, we know all the properties of the orthogonal polynomial implied there 
and we can use those properties to say about the behavior or any other property that we need of 
the given function f(x). Now if I want to construct these two, first of all we must guarantee 
ourselves that such a representation in terms of polynomials or in terms of orthogonal 
polynomials is guaranteed for us otherwise we are not sure whether what we are obtaining is 
correct or not, the answer for this is, yes we have a theorem called Weir Strass theorem, which 
states that if we have a continuous function over internal [a, b] then we can always approximate 
it by a polynomial. So that is known as Weir Strass theorem, which guarantees that what we are 
doing is correct and we will be able to get a unique polynomial from there. 
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Let us define what our Weir Strass theorem is. So we have a function which is continuous, 
belongs to the class of continuous function over the interval [a, b]. Then the theorem states, then 
given an epsilon greater than 0, there exists a number n which is a function of epsilon such that 
f(x) minus Pn(x) is less than epsilon for all x contained in [a, b], where Pn(x) is a polynomial of 
degree n, where Pn(x) is a polynomial of degree n. 
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Therefore the Weir Strass theorem guarantees that we can approximate a continuous function by 
a polynomial of degree n, so we will take this assumption that it is possible. Then how to 
construct this particular function using this particular, the definition that f(x) minus Pn(x) should 
be less than epsilon. Now the problem is therefore is to how to find Pn(x). What we do is, we 
take Pn(x) in terms of some function x that is polynomial or orthogonal polynomials whatever 
that we have given here, therefore f(x) will be approximating polynomial in terms of the variable 
x and we introduce some constants c0, c1, c2, cn, c0 to cn that means what we are essentially 
writing here is some c0 phi0 of x plus c1 phi1 of x plus so on cn phin(x). phii’s are the known 
functions, these phii(x) are the known functions, are the known functions, phii(x) are the known 
functions.  

For example they can be taken as polynomials, I can simply take it as phii(x) is equal to x to the 
power of i, I can take phii(x) is equal to x to the power of i, that means phi0 is 1, phi1 is x, phi2 is 
x square that means what I am really writing here is c0 plus c1(x) plus c2(x) square plus so on 
cn(x) to the power of n that is simply a polynomial, that is what we have this or I can take phii(x) 
as orthogonal polynomial, orthogonal polynomials,  orthogonal polynomials which are 
orthogonal with respect to a weight function, orthogonal with respect to, with respect to a weight 
function. Now what we are really talking of is the Legendre polynomials and the Chebyshev 
polynomials. The Legendre polynomials are orthogonal with respect to 1; weight function is 1, 
whereas the Chebyshev polynomials are orthogonal with respect to weight function 1 upon under 
root 1 minus x square, that will come later on but we are just saying why we are introducing a 
w(x) here, because these orthogonal polynomials have a weight function over which they are 
orthogonal. Now further the phi(x) could be any other function which represents your experiment 
properly, for example if in an experiment the solution of the variable is in the form of sine or a 
cosine wave, we can write down this as, for example I could simply write the as some a plus b 
sin x. 
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I can take an approximation for this as, a plus b sinx but I must be able to determine the 
parameters a and b. Now therefore these c1, c2, ci, these ci are parameters to be determined, 
parameters to be determined. Now we must give the rule under which these parameters can be 
determined, for that we shall consider the error that is coming from here. 
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So we will take the error here, therefore the error, let us write down E of (f; c), c is the vector of 
this c0, c1, c2, c3 and we will take this as norm of f(x) minus (c0 phi0(x) cn phin(x)), where this is a 
well defined norm, it is a one of the norms that we know, it is a well defined norm. Now 
therefore the problem reduces to how do you find this ci, therefore the problem is to find ci, to 
find ci such that the error is minimized, the error should be smallest, to find ci such that error 
norm is minimized. That particular approximation for which error is minimized that means that 
particular approximation, this approximation for which this error is minimized shall be called as 
the best approximation, so this shall be called as the best approximations. Of course we should 
qualify it as with respect to that norm which we have used, with respect to that norm. Now we 
have specified what we mean by this error, what are the things that we have to do, we have to 
find ci such that the error norm is minimized. Now the next step we shall define is; what is norm? 
We have earlier given a number of definitions of norms of which we shall use two of the norms. 
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One norm that we shall use is the Euclidean norm, Euclidean norm. Now let us define what is 
this Euclidean norm, let us suppose we are given a data then we shall define this norm as, norm 
of x is equal to summation of magnitude of xi square to the power of half. So we are taking the 
summation over all the elements, magnitude of xi square whole to the power of half. 
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However if we are given a continuous function f(x), then we define the norm of f(x) is equal to 
integral of a to b w(x) f square of x to the power of half, where w(x) is the weight function that 
we are talking of earlier, is the weight function and which is greater than 0. So we can use this 
definition of Euclidean norm to obtain the values of the constants that we have just now defined 
in the error. In this case we would get what is known as the least square approximation; we 
obtain the least squares approximation, if I use this particular norm and determine the constants 
ci such that this norm is minimized. Now we use another norm which we shall call it as uniform 
norm, uniform norm. Again if you are given a data, I would define norm of x is equal to the 
largest element in magnitude, maximum of xi, of xi and if you are given a continuous function 
again, if you are given a continuous function then we define this as, norm of f(x) is equal to 
maximum in the interval a to b of magnitude of f(x). Now we use this, either for the discrete data 
that is given or if you are given a continuous function, now if I use this particular norm to 
determine the constants ci then what I would get is known as the uniform approximation, we get 
uniform approximation in this case. Now in our next lecture we shall see how we have actually 
apply this minimization problem that is the minimization of the norm to get least square of 
approximation or minimize these norms to get uniform approximation and thereby construct a 
polynomial or a function in terms of the orthogonal polynomials which gives us the best 
approximation gives us the best approximation. Okay, thank you. 
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