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Now in today’s lecture, we shall start discussion on interpolation and approximation.  
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Let us just define what we mean by interpolation and what we mean by approximation. Now let 
us consider the case when we are given a data, so the data could be a table of values, now the 
various types of data can exist.  

 

 

 

 

 

 

 

1 
 



(Refer Slide Time: 01:28) 

 

 
 

So for example, i may have simply, if i take x as a variable and the f(x) as the dependent 
variable, i may have set of values given to me, at a point x0 i have been given a value of x0, x1 
have been given a value of at x1 and so on i have given, given these n plus 1 values. So this is 
the, values are given by xi fi, which i am denoting xi f at xi this and these n plus 1 points at 
which the data is given to us, so i is going from 0, 1, 2 to n. Now the problem is to construct a 
polynomial which fits this data, so that shall be called an interpolating polynomial, to construct a, 
a polynomial which fits the data and this is called the interpolating polynomial, that means if the 
polynomial is say, p(x) then what we are saying is that p at xi will be equal to f at xi, so this is 
what we mean by saying by fitting this, a polynomial to the given data at n plus 1 points, so the, 
if i substitute x is equal to xi, i would get back my value of xi, so it exactly fits the given data.  

Now the use of the interpolating polynomial are many, one is, i can estimate or predict (Refer 
Slide Time: 03:25) the value of the dependent variable at any intermediate point from here. Let 
us say an experiment has been conducted in an intervals of say 15 seconds and you have done it, 
experiment over a few hours, now you want to find out approximately what is a value of the 
dependent variable at a certain instant of time, which is not one of this points, then we will able 
to predict the value of the dependent variable using the interpolating polynomial. Secondly, 
consider this as a point in a two dimensional plane, this is a point in two dimensional, a point in 
two dimensional plane, it will represent a curve in the two dimensional plane. You may like to 
have the slope of the curve at any point, that means you want to, like to know dy by dx or d 
(Refer Slide Time: 04:17) by dx at a point.  Now if i have the interpolating polynomial, which is 
a function of x, i can just differentiate this by with respect to x and then use that for finding the 
value of the slope at any, at any point, at any intermediate point or at these points. Alternatively 
you may like to integrate the function f(x) over this entire range, i can use this interpolating 
polynomial and again find the value of the integral from there, so the purpose of the interpolating 
polynomial are many and its application is in many areas.  
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The second problem is approximation; the problem of approximation is slightly different from 
interpolation. The problem of approximation is of two types, one type is, that we have been 
given a function f(x) already, so a continuous function is given, so f(x) is given, f (x) is given and 
it has got certain properties but the f(x) could be very complicated to, to actually find out what 
are the properties of this function or like what is the maximum ,what is its minimum, i mean how 
it is behaving, all this properties is unknown when its f(x) is complicated. 

What we would like to do is, we would like to approximate f(x) in terms of known polynomials, 
the known, known polynomials are mostly orthogonal polynomial. The orthogonal polynomials 
which we know are the Legendre polynomials, Chebyshev polynomials and there are other 
polynomials over the interval, given in an interval, we know the orthogonal corresponding 
polynomial. I would like to, when once f(x) is defined in a particular interval, i would suitably 
chose the orthogonal polynomials and then approximate f(x) in terms of those orthogonal 
polynomials, a finite series of them, so therefore the problem of approximation is what, that 
means to approximate f(x) in terms of known orthogonal polynomials, in terms of known 
orthogonal polynomials. Now when once we approximate it, now since it is a known orthogonal 
polynomial, i know all the properties of orthogonal polynomials and hence i can able to describe 
the properties of f(x) using the polynomial, so that, so that the properties of f(x) can be studied.   

Now will come back to this problem and take the suitable interval and then construct the 
approximation problem. The second type of problem is that we are given a data; instead of a 
continuous function we are given a data, so a data is given. Now this data represents a function 
f(x) but we do not know the function f(x) but i would like to write an approximation to the 
polynomial f(x) which may be representing this data, for example in the interpolation, we 
construct a polynomial exactly which fits the data. Now i want to construct an approximation 
here, which is an approximation to the f(x), which will be representing the data that means the 
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approximation here is not fitting the data, it is only approximating the function which represent 
the data.  

So this is an approximation, approximation to the function which represents the data. We are 
going to consider both of them through, simple examples also we shall take it up and see how the 
approximation is useful for us and how interpolation is also useful for us. So let us first start with 
interpolation, so let us define interpolation.  
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Now here the Taylor series which you already know can be looked after as an interpolation 
polynomial. So for example let us describe how it is an interpolating polynomial. Now we will 
take the given data as this, so the given data is at x0, at x0, f at x0, f dash at x0 so on fn at x0 are 
prescribed. So we are taking the ordinate of x0 and its first end derivate, they are all prescribed 
for us, so we have data f n plus 1values prescribed, this is n derivative plus 1, so there are n plus 
one values, n plus values are given. Then i can write down the Taylor series, which is a 
polynomial of degree n at x, as f at x0 plus x minus x0 f dash of x0 plus 1 x minus x0 to the 
power of n by factorial n nth derivative at x0 plus off course Rn(x), we can write down the error 
also, plus Rn(x). Rn(x) is the remainder, Rn(x) is the remainder or will call it as error and the 
value of Rn(x) error is given by x minus x0 to the power of n plus 1 by n plus 1 factorial f (n+1) 
plus some intermediate point zhi, where x0 zhi less than x, zhi is a point between x0 and x which 
we are considering.  

 

Now this Taylor series can be taken as an interpolating polynomial but interpolating this type of 
data, so the values at x0 or given n derivatives and then we can write down this as an 
interpolating polynomial. In all the interpolating problems the error place a very important role, 
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the error will govern what is the step size that we can use in a particular data or what is the step 
size you can use for a particular problem for solving it or what is the error bound, what is the 
largest error which you are committing in a particular interpolation problem, you may be like 
given a data of say thousand points, you may like to use only set of few points to construct a 
polynomial, now what will be the error in that particular approximation or interpolation will be 
known through this error term, that is we have got here or the reminder term, therefore we can 
always bound this.  
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So i can find the bound of the error as, so i can write the magnitude of Rn(x), that will give me 
the bound of this, that will be 1 upon n plus 1 factorial x minus x0 magnitude n plus 1 magnitude 
of f(n+1) of zhi. Zhi is a point which is unknown for us between x0 and x, therefore we shall 
replace this by its maximum value, so then i can write down this as less than or equal to 1 upon n 
plus 1 factorial x minus x0 magnitude to the power of n plus 1 and this i will write this as Mn+1 
and Mn+1 is maximum of x lying between, given an interval x0 to some b that is given to us, as 
f(n+1) of x. Now we proposed to use the Taylor series starting from the point x0 to a point b, so the 
maximum of f n plus 1th derivative over the interval x0 to x b shall be taken as the quantity that 
we want to use it here, so Mn+1 be the quantity that will be using here.  

How we can use the knowledge of this error bound to say something about this Taylor series, 
now let us say that are estimate of Mn+1 is available to us, assume an estimate of n plus 1 is 
available, now a way of doing, getting an estimate is, suppose you are ask to construct a 5 term 
Taylor series, so let us suppose you are ask to construct a 5 term Taylor series, 5 term Taylor 
series means starting with this 1 2 3 4 5, that means up to fourth derivative so, x or x minus x0 to 
the power of 4, factorial 4 f 4. Now the remainder term will be of fifth derivative, so what we do 
is to find an estimate of the required derivative, of fifth derivative, i will construct the Taylor 
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series with one more non vanishing term that means one more term that we want. We want 5 
terms series, so i will construct the sixth term which is a non-zero, because there may be many 
zeros in between, so will i have the next non-zero. When once i construct the next non-zero term, 
i will now differentiate this required number of times and take that as an estimate, because you 
want a certain number of terms, so we construct the next higher order polynomial, differentiate it 
the required number of times and that can be taken as an estimate, because this, we want to lay a 
rough estimate of this, so we will assume that an estimate of Mn+1, this n plus 1 derivative is 
available. Let us say you want that, the error should be less than some tolerance epsilon, so this 
is our tolerance given to us, error tolerance is given some 10 to the power of minus 4, 10 to the 
power of minus 5 is given to us.  

Now interestingly this will then give us, let us write it here, this will be 1 upon n plus 1 factorial 
x minus x0 to the power of n plus 1 Mn+1 is less than epsilon, now here if the tolerance is given 
to us and number of terms that we have in the Taylor series, that is n, n describe the number of 
terms in the Taylor series, n plus 1 is the, if you have got a Taylor series of order n number of 
terms are n plus 1. So when, if n is given and epsilon is given, then i can find out up to which 
point i can use the Taylor series with that accuracy, because we want to use the Taylor series 
from x0 to certain point b. Now when once where given epsilon and n, i can now find out what is 
this distance, what is this value x minus x0, that will give me how far i will be able use the 
Taylor series with this accuracy. Therefore you can say given n and epsilon, we can find x minus 
x0 that is, the interval in which the Taylor series holds, in which the Taylor series holds.  
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If you can represent this x minus x0 is equal to h, the distance h, then it is actually giving what is 
the maximum distance you can go from x0, so that the Taylor series is valid with this tolerance 
of this or alternatively, we can say that if you are given the interval and tolerance then, this will 
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tell me what will be the value of n, so that means how many terms of the Taylor series we should 
take, if you want an accuracy of say ten to the power of minus 6, so i can say that this many 
terms 10 terms, 11 terms, 12 terms, should be taken in order that we have this particular 
tolerance. So we can say, given epsilon and h so, this is the h which we are talking of, given 
epsilon and h, we can find, we can find n, the n is number of terms, number of terms required in 
the Taylor series, so that accuracy epsilon is retained.  

 

Now we are finding n, when once i find n, i will say that number of terms will be equal to n plus 
1, the number of terms will be, because f at x0 is the 0th term, so it will be, total number of terms 
will be n plus 1 terms, that will be required in the Taylor series. So a number of observations or 
number of conclusions can be made when once we have the remainder of this particular Taylor 
series. Now let us illustrate these two points with an example. Let us take an example on this, so 
let us say obtain polynomial approximation, let us give the function, to the given function let us 
take a simple function, 1 minus x to the power of half over 0 1, by means of Taylor series, by 
means of Taylor expansion, let us take the point x is equal to 0, about x is equal to 0. Find the 
number of terms required in the expansion; find the number of terms required in the expansion.  
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To obtain results correct to 5 into 10 to the power of minus 3, for 0 less than x less than half, less 
than or equal half. I am taking a particular problem; i am giving the interval and then say, giving 
the accuracy also and then asking, what is the number of terms in the Taylor series that will be 
required in order to achieve this accuracy. So the first part let us just do it, let us differentiate it 
and find out what is the, what are the values. We are given f(x) is equal to 1 minus x to the power 
of half; therefore f of 0 is equal to 1. Let us differentiate it, f prime of x is half 1 minus x to the 
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power of half, i have taken the minus sign already outside, minus sign i have taken it. So if i said 
f prime at f is equal to 0, i will get minus half.  

 

Let us write down the second derivative, this i will write it as, 1 up on 2 up, therefore this is plus 
and again minus sign, so i will have 1 upon 2 square 1 minus x to the power of 3 by 2, so that 
second derivative is equal to minus 1 upon 2 square. Now let us write down one more and then 
write down the series, now this is 3 by 2 with a negative sign, so this is plus 3 by 2 cubed with a 
negative sign, that is 3 by, i will write 1 into 3 by 2 cubed 1 upon 1 minus x to the power of 5 by 
2, so that f triple dash 0 is equal to minus 3 by 2 cubed. Therefore our series is f(x) is 1 minus, x 
minus x0, x0 is 0 so, 1 minus x into, i will put it, i will put it, let us put it here 1 plus x into minus 
half x minus x0 whole square by factorial 2, second derivative 1 upon 2 square x cubed by 
factorial 3 minus 3 by 2 cubed plus so on. So that i can write this as 1 minus x upon 2 x squared 
by 8 minus x cubed by 3, 3 cancels i will have 16 plus so on.  
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Now i need to find the nth derivative and i want to find the bound for this, so i want to find Rn(x) 
is less than equal to 1 upon n plus 1 factorial, x minus x0, that is the x to the power of n plus 1 
and mn+1 that is maximum of, the interval given to us is 0 half, 0 half and i need n plus 1th 
derivative of x. Now let us write down what is our nth derivative, now we have the expression, i 
have written this in a particular fashion, you can see, this is next derivative is going to be given 
me minus 5 by 2, so i absorb this minus sign, always minus sign comes 1 3 then 5, so i will have 
the products in numerator as 1 3 5 7 9 and so on because, this is 5 by 2, 7 by 2, 9 by 2 and so on 
and the denominator becomes 2 cube, 2 to the power of 4, 2 to the power of 5 and so on.  
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Therefore my nth derivative is with a negative sign, 1 into 3 into 5 into 7 into 2 n minus 1, 2 n 
minus 1, this is 2 to the power of n plus 1 1 minus x to the power of 2 n plus 1 by 2. This is, this 
is 3, this is 5 by 2, so this will be 2 n minus 1 and this will be 2 n plus 1 by 2. This is our f n plus 
1, this will be f n plus 1. Let us find the maximum of this, i want the maximum of this in this 
interval, so maximum in the interval, 0 to half f n plus 1 of x is 1 3 5 so on 2 n minus 1 by 2 to 
the power of n plus 1. I need the minimum here, so that it will give the maximum of this, so the 
minimum of this in 0 half will occur it half, i will have here 1 by 2 of this power, that is 2 to the 
power of 2 n plus 1 by 2. Now let us put it here, therefore i will have Rn(x) is less than or equal 
to 1 upon n plus 1 factorial, the maximum of x to the power of n plus 1 in this interval is at half, 
so 2 to the power of n plus 1 that comes from here and let us do one more simplification, i will 
insert here 2 into 4 into 6 into 2 n, all the even terms i will supply, so that this numerator will 
become 2 n factorial, so i can make this as 2 n factorial in the numerator, now i multiplied by, in 
the denominator 2 into 4, i multiply 2 into 4 into so on 2 n, so i will have this in denominator 
here but this is, i can take 2 common here each factor, a 2 from here, 2 from here, 2 from here, 
that is n terms are there, 2 to the power of n, 1 into 3 into 3 into n that is n factorial, so the 
denominator will be 2 to the power of n, n factorial and this 2 to the power of 2 n, 2 n plus 1 by 
half and this should be less than, we are given the 5 into 10 to the power of minus 3, 5 into 10 to 
the power of minus 3. Now it is a matter of simple cancelation and using the calculator because 
these are all factorials involved, using the calculator by setting in integer value n and we can find 
out when this particular value is less than 5 into 10 to the power of minus 3. In this case the 
example comes out to be, n is equal to 11, n is equal to 11 is a value that is required and therefore 
number of terms is 12, is n plus 1 that is equal to 12 times. This is how the Taylor series can be 
used, however the Taylor series is not the one that is commonly encountered.  
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The most commonly encountered problem, we shall call it again as interpolation is the data given 
to us, a table of values. As i said 2 types of problems are encountered, we are given x f(x), x0 f at 
x0, x1 f at f (x1) so on xn f at xn, therefore we are given n plus 1 data values. We could also call, 
in the two dimension plane this is a point, so we can also say n plus 1 data points are given. Now 
first of all, we know that in the two dimensional plane, if 2 points are given i can always pass a 
straight line through these 2 points, so this is a straight line, that means given two points i can 
always construct a linear polynomial to go through those two points. Therefore we have through 
two points, through two points, they are distinct points, these are n plus 1 data points but let us 
make it clear, they are all distinct points that we are considering. Through these 2 points a 
straight line, let us call it as p1(x), polynomial of degree 1 x can be constructed, through 2 points 
a straight line a p1(x) can be constructed.  

Suppose now we have 3 points, now if i have 3 distinct points, i can try to pass a, a parabola, 
these are the 3 points, i can try to pass a parabola through this, that means a polynomial of degree 
2 can be constructed. Even though there may be a degenerate case in which all the 3 points may 
lie on this, on a straight line, therefore through 3 points a polynomial of degree less than or equal 
to 2 can always be constructed. The degenerate case is a straight line otherwise will have a, has a 
second degree polynomial, that is a parabola, that means a polynomial of degree less than or 
equal to 2 can be constructed. We can construct a polynomial of degree 2 like this, which is of 
course a parabola, which is a parabola in 2 dimensions. As i said the degenerate case could be, 
that it all the points are lying on the straight line, therefore i can have a polynomial of degree 1, 
which is passing through all the 3 points. Therefore in general, i know have n plus 1 points, 
therefore through n plus 1 points, through n plus 1 points a polynomial of degree less than or 
equal to n can be constructed. Now the existence of this can be proved mathematically also, let 
us suppose this is our, pn(x) is a polynomial of degree n, which is given by a0 a1 x a2 x square so 
on an x n, let us suppose this is our polynomial. This polynomial is fitting the data, n plus 1 data, 
so it fits the n plus 1 data, xi f(xi), i is equal to 0, 1, n, that means this polynomial is exactly 
satisfied by this, therefore let us substitute the values x0 x1 x2 xn here. So will have here f of pn 
at xi, x0 that is f(x0) is a0 a1 at x0, a2 x0 square an x0 to the power of n. Similarly x1 also 
satisfies, therefore will have a0, a1 x1, a2 x1 square, an x1 n and so on, will have f of xn a0, a1 xn, 
a2 xn square plus an xn to the power of n. Now you can see that, this is a system of n plus 1 
equations, in n plus 1 variables a0 a1 a2 an, we have to determine a0 a1 a2. If the unique solution 
for a0 a1 a2 an exist, then this polynomial exists uniquely. Therefore i need to determine this a0 
a1 a2 an and for that we may have n plus 1 equations, these are n plus 1 equations in n plus 1 
unknowns, in n plus 1 unknowns a0 a1 an. Now the condition for the existence of this will be, the 
determinant of this coefficient should not be equal to 0, then the solution exists.  
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So the condition for this is, therefore will have the existence condition or condition for existence 
of non-trivial solution is the determinant of 1, i am just writing the coefficients of this system, 
that is 1, x0, x0 square, (xo)n, 1, x1, x1 square, (x1)n, 1, xn, xn square, xn to the power of n, so that 
will be 1, x0, x1, x0, x0 square, x0 to the power of n, 1, x1, x1 square, x1 to the power of n, 1, xn, 
xn square, xn to the power of n. This determinant has a name, it is called Vandermonde’s 
determinant, it is called the Vandermonde’s determinant.  

Now we can expand this determinant by the rules of the evaluating the determinant, i can 
subtract the first row from the second one and then you take common x minus x0, x2 minus x0, 
xn minus from the rows and i can simplify this and this is a varies trivial case. Value of 
determinant product of all xi xj, i comma j going from 0 to n but i greater than j, i am taking x1 
minus x0, x2 minus everything common, similarly i will have all the factors that comes in to the 
product is this one. We have started the problem with saying that these points are distinct points, 
so the data was distinct, so distinct xi, since there are distinct xi, xi minus xj is never 0, therefore 
this is not equal to 0. Since this is not equal to 0 we have proved that the, the solution exists, 
therefore this a unique solution exists. Therefore we have now determined that this polynomial 
can be determined uniquely but i would now like to show that the polynomial is unique, we are 
now shown the solution for the a0 a1 a2 an exists and it is unique but i want show that this 
polynomial also, there cannot be more than 1 polynomial which can feed the given data, so the 
polynomial is also a unique polynomial, the interpolating polynomial is unique.  
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Interpolating polynomial pn(x) is unique; the proof of this is just 2 lines. Let us assume that there 
is another polynomial, let Pn some star x be another polynomial which fits this given data, be 
another polynomial which fits the data, that means we are talking that pn star of xi is equal to 
f(xi) for all i. Then let us define the difference between these two polynomials as a function 
Q(x), define Q(x) is equal to Pn(x) minus Pn star of x. Now Pn(x) is the polynomial of degree 
less than or equal to n, Pn star x is also polynomial f degree less than or equal to n, therefore this 
is a polynomial of degree less than or equal to n, this is the polynomial of degree less than equal 
to n.  

Now let us see what happens for Q(x) at these values xi, therefore Q at xi is equal to Pn at xi 
minus Pn star at xi, both the polynomials are fitting the data, therefore this is f xi, this is also f xi, 
therefore this is equal to 0, for i is equal to 0 1 to n. Now you observe that Q(x) is now vanishing 
at n plus 1 points, therefore Q(x) has got n plus 1 roots or n plus 1 zeros, therefore Q(x) has n 
plus 1 zeros but Q(x) is a polynomial of degree less than or equal to n only. Therefore the only 
possibilities that Q(x) is trivially 0 or identically 0, therefore the, therefore Q(x) has n plus 1 
zeros at xi but Q(x) is a polynomial of degree less than or equal to n and it is having more 
number of zeros.  
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Therefore the only possibility is that Q(x) is identically equal to 0 and when once Q(x) is 
identically 0 we will get Pn(x) is equal to Pn star x that means Pn(x) is equal to Pn star of x. 
Therefore the interpolating polynomial unique, in other words what we want to state here is, that 
we will it see later on also, we will shall be constructing the polynomial using different methods 
or different ways. The form of the interpolating polynomial can be different but when once you 
simplify the whole thing and bring it to the form the both will be identical, therefore we cannot 
have 2 interpolating polynomials for fitting the data but all are them will be the same, but the 
form in which you write down the polynomial would be different, i mean one may write it in a 
ratio form, which one simplified this and this or you write down in a different form or in product 
form it will be in a different form but all of them would identically same when you bring out 
everything into the expanded form and write it, therefore in that sense interpolating polynomial 
is unique. 
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Let us now construct the interpolating polynomial; the most fundamental interpolating 
polynomial is called the Lagrange interpolating polynomial. Now let us again take the data, as 
the given data is xi, f(xi) or we let us use a short rotation xi fi, i is equal to 0 1, this is the data 
given to us. Now if i want to construct a polynomial that fits this data, this polynomial must be a 
combination of fi, it must use all the values of 0 f1 f2 fn therefore you should be linear 
combination of all fi. Therefore the polynomial is a linear combination of fi that means it should 
be of the form Pn(x) is equal to some; i will write it has l0 x, some function of x into f(x0), that is 
because it is a polynomial of degree n in x, therefore this f x f1 f2 f3 they are all numbers, they 
are all constants, therefore l0(x) into f(x0) plus l1(x) into f of x1 plus so on ln(x) is equal to f(xn).  

 

Now as i said this is a polynomial, what we want here is a polynomial f degree less than or equal 
to n, f(x0) f(x1) f(xn) they are all numbers, since these are all numbers the only possibilities is 
that l0(x), l1(x), ln(x) all these must be also be polynomial of degree n, polynomials of degree n. 
Now the less than or equal to n we shall not put it here, it is n, if it is less than n when you 
simplify this f(x0) f(x1) f(xn) they are all numbers, when you simplify automatically the leading 
terms would cancel and it will agree with the left hand side. Therefore these l0 l1 ln(x) must be 
polynomial sub degree n in order that the given data can be represented by an nth degree 
polynomial, but if this is the polynomial this is fitting this data, so let us just satisfy, that is pn of 
x0 must be equal to f(x0), must be equal to f(x0) but this is equal to l0(x0) f(x0), l1(x0) f(x1) plus 
so on ln(x0) f(xn). Now this should be equal to f(x0) only, therefore i cannot have f(x1) f(x2) 
because this is a identity, therefore this should be containing only this, the only possibilities is 
that l0(x0) must be 1 and all this should vanish, only then this will be equal to this one. Therefore 
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this implies that l0(x0) must be 1 and all other values l1(x0) must be equal to 0 so on, ln(x0) must 
be equal to 0, only then this is going to be same as this particular polynomial.  
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Let us do one more and generalize it, this is f(x1), l0(x1) f(x0), l1(x1) f(x1), ln(x1) f(xn). Now if 
this is to be again to be equal, f(x1) is here, f(x1) is here, the only possibilities is l1(x1) must be 1 
and the remaining all l should be 0. So this would imply that l1(x1) must be equal to 1, l0(x1) is 
equal to 0 and this is l2(x1) is equal to 0 so on ln(x1) must be 0. Therefore it is possible for us to 
immediately generalize it by just writing xi is equal to f(xi) that is l0(xi) f(x0) plus li(xi) f(xi), 
ln(xi) f(xi). Now i can generalize from here that this li(xi) will be 1 and all the remaining will be 
0, therefore i would get the result that li(xj) is equal to 0, for i not equal to j, this is equal to 1, for 
i is equal to j and those who are used to the rotation of chronicle delta we will can write this as 
simply delta ij, so this is the chronicle delta, this is definition of this is that is equal to 0, when i 
not equal to j and when it is will be equal to 1 and when y is equal to j. Therefore all this 
polynomials, they should satisfy this and these polynomials are called Lagrange fundamental 
polynomials, Lagrange fundamental polynomials. We shall actually construct the form of this 
Lagrange fundamental polynomial using this idea from here and we will be able to construct the 
Lagrange interpolating polynomial from there. We should stop here.    
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