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Solution of a System of Linear Algebraic Equations (Continued) 

In our last lecture we derived two methods for the solution of the system of linear algebraic 
equations Ax is equal to b. 
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We have we have mentioned that the Gauss Seidel method is at least two times more faster than 
the Gauss Jacobi method. However in practical applications when we have thousands or lakhs of 
equations even the convergence of Gauss Seidel is not sufficient, because it will take too much 
of time. Therefore we need to develop or need to have some methods which works faster than the 
Gauss Seidel methods. In this direction we have words known as relaxation methods. So we will 
discuss what is known as the relaxation method. This is a generalization of the Gauss Seidel 
method. Originally the method was discovered when the matrix has special properties and that is 
the matrix A has properties which is symmetric and it is has what is known as property A. It’s 
called what is known as property A. This is property A; given the co efficient matrix A, you must 
able to use inter changes of rows and interchanges of column, that is apply a permutation matrix 
similar to transformation PAP transpose similarity transformation; such that it can be partitioned 
as the these two corners. Top and bottom is diagonal matrices and remaining are square matrices 
or they are any other matrices which is not diagonal.  

 

Let’s use another name matrix B as property A.  If there exists a permutation matrix P such that 
PBP transpose can be partitioned as A11 A12 A21 A22, where A11 A22 are diagonal matrices, these 
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are diagonal matrices, these are diagonal matrices; what this really implies is we have pre 
multiplied by P post multiplied by P transpose. Therefore this gives you interchanges of rows 
and the corresponding interchanges of columns that is if you interchanges column two and five 
then it will interchange the rows two and five. So it is the corresponding interchanges of this; 
then I must be able to bring these matrices A11 A22 as diagonal matrices. Then the matrix is said 
to have property A, in fact this was done because we will see that the method requires finding the 
optimal value of a relaxation parameter which gives us fastest convergence for the given method. 
So that is why we needed this particular formulation to have the analysis of the methods. 
Therefore without going through whether the matrix property A or now or not even though it is 
symmetric we use the relaxation methods.  

 

Now let us define what a relaxation method is. We start from the Gauss Seidel method.   

(Refer Slide Time: 00:08:29 min) 

 
We write the Gauss Seidel method as D plus L xk plus one minus U xk plus b. Now let us take 
the second term Lxk plus one to the right hand side. So I will write Dxk plus one is minus Lxk 
plus one minus Uxk plus b. Now we shall call this solution of this system as an intermediate 
value. So let us call it as intermediate value.  Let us give a new notation to it. Let’s call it is as 
some x tilda k plus one. Therefore x tilda k plus one is minus D inverse Lxk plus one minus D 
inverse Uxk plus D inverse of b. Now this intermediate value has really no meaning as it is. We 
shall use this intermediate value to construct the final solution and hence I mean we will not 
specifically say that this is going to approximate our solution or anything here. Now we shall use 
this intermediate value and the previous iterated value xk to build the final solution. So let us call 
this as a final solution. Let us first take difference between the two values; that difference 
between the two values will be x tilda k plus one minus xk. Therefore this will be the difference 
of the intermediate value and this is the value at the previous iteration. I multiply this by a 
parameter omega. I will call this as a relaxation parameter, the value of which we shall determine 
later on using the property or the condition that this iteration should converge. And the analysis 
of the convergence would give us what will be the omega that should be used in order that the 
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solution of the problem can be obtained. Now we shall add this product to the previous iterate 
xk, this we shall say is our final solution xk plus one. Now we can use this as a correction using 
the parameter omega to the previous iterated value to get the current estimate. I can simplify the 
right hand side and write it as one minus omega into xk plus omega x tilda k plus one. Now I 
want to simplify this further. Therefore I shall substitute the expression for x tilda plus one from 
here into this particular equation.   

(Refer Slide Time: 00:08:45 min) 

 
Therefore I would get here one minus omega xk plus omega into minus D inverse Lxk plus one 
minus D inverse Uxk plus D inverse b. Before I simplify it further I would like to pre multiply 
this equation by D, so that I can remove this D inverse from here. Therefore I would get Dxk 
plus one is one minus omega Dxk plus omega minus Lxk plus one minus Uxk plus b. I mean we 
have pre multiplied throughout by D, so that this will simplify and become minus L. This is 
minus U and this is simply b. Now this xk plus one belongs to the left hand side because it is a 
current iterate, it belongs to the left hand side. So let us bring it to the left hand side, then we will 
have D plus omega L xk plus one is equal to one minus omega one plus omega one minus omega 
into Dxk plus omega minus Uxk plus b. Now let us combine this xk term and this xk term. So I 
will have one minus omega into D minus omega into U into xk plus omega into b. Now the 
solution of the system is our xk plus one. Therefore let us inverse this matrix and find xk plus 
one. Therefore xk plus one is minus D plus omega L inverse one minus omega into D minus 
omega U xk plus omega D plus omega L inverse of b. Now this is our iteration method, therefore 
we shall write it as Hxk plus some c, where this H is iteration matrix given by this particular 
expression. 

  

Therefore our iteration matrix H is equal to minus D plus omega L inverse. There is no minus 
sign here, there is a plus sign. There is a plus sign D plus omega L inverse one minus omega of 
D minus omega of U.  

Now the properties of this iteration matrix, we shall study it later on. If the method is to converge 
then the Eigen values of this matrix has to be strictly less than one in magnitude. We are going to 
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prove this in our later lectures. Therefore what we would like to say now here is that the behavior 
of this iteration matrix will tell us whether the iterations are going to converge or it’s not going to 
converge. However for computation purposes this particular expression is not useful for us 
because it is going to take a lot of computer time, therefore we would like to use the error format 
to derive it. Now let us write the error format of this particular method.  

(Refer Slide Time: 00:12:45 min) 

 
I add and subtract xk on the right hand side, therefore I can write xk plus one is equal to xk plus 
minus I D plus omega L inverse one minus omega into D minus omega into Uxk plus omega D 
plus omega L inverse of b. Now I take D plus omega L inverse outside, so I get xk D plus omega 
L inverse into minus D plus omega L plus one minus omega into D minus omega Uxk plus 
omega D plus omega L inverse of b.  

 (Refer Slide Time: 00:14:12 min) 
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Now let us simplify it further. I can take this xk to the left hand side and write this as xk plus one 
minus xk. Now if you just look at this particular factor there is minus D here and there is plus D 
here, so minus D cancels with plus D and I have minus omega L minus omega D minus omega 
U. So what I have here is D plus omega L inverse of minus of omega into A. This is D and D 
cancels, this is minus omega L minus omega D minus omega U. So I have minus omega 
common, therefore D plus L plus U that is A xk plus omega D plus omega L inverse of b; 
therefore I can write this as D plus omega L inverse, I can take omega outside and this is b minus 
Axk. Therefore in the notation that we have used for the Gauss Seidel method we call this as vk 
and this as rk, residual vector. So this is our rk, the residual vector and this is our error in the 
solution vk. Therefore I can write down the method as D plus omega L vk is equal to omega rk.  
So this is our residual vector and this is multiplied by this omega and this D plus omega, all we 
have pre multiplied and this is our xk. Now you can see that this is in no way computationally 
expensive than Gauss Seidel except that we have put a factor over here and one more 
multiplication we put here. Otherwise when omega is equal to one this is same as Gauss Seidel 
and hence we called this as generalization of Gauss Seidel method. 

  

Now you can see when omega is equal to one we immediately get our Gauss Seidel method here; 
therefore it is not computationally expensive compared to the Gauss Seidel method at all. Now 
the omega is called the relaxation factor. The analysis of the method requires that for 
convergence omega should lie between zero and two. So we should have it such that omega lies 
between zero and two for convergence. If we use the value greater than one that is above the 
Gauss Seidel, one less than omega, less than two it is called the over relaxation and it is also 
called a literature successive over relaxation. And this is one of the most famous and most 
popular methods. It is simply called SOR, Successive Over Relaxation method. If I use the value 
between zero and one, it is called under relaxation but it is very rarely used, so this is called the 
under relaxation. Now therefore this success of the over relaxation procedure would depend on 
the value relaxation factor that is correctly determined for the properties that I have mentioned 
earlier. Now symmetric and property A; it is possible for us to say what is the omega optimum 
value such that this has fastest convergence. It is not unusual to get at least ten times faster than 
Gauss Seidel in many cases. In fact if you can find the optimum relaxation factor very accurately 
even getting hundred times faster than Gauss Seidel is not surprising thing for this successive 
over relaxation.  

 

The successive over relaxation is therefore one of the most important methods for this solution of 
the linear algebraic equations. There are later on some modifications to make it work better. 
However the even though the method was derived for the methods having property of A, later on 
it has been drop p plus started using or irrespective of property A, just for symmetric matrices 
you can use it today even you can try it for the non symmetric matrices also a relaxation  

What we are really doing here is we are taking a type of the error between the Gauss Seidel and 
this one and then multiplying by suitable factor and adding to it in a sense by now improving 
upon the error in the solution and therefore it would work even for the other cases also. Now 
before I have a discussion on the error analysis of this, let us take a simple example for the 
successive over relaxation.        
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So let us take an example, so let’s call it as - find the solution of the system of equations. Let me 
take a simple example, 2, -1, 0; -1, 2, -1; 0, -1, 2 and x1, x2, x3; 7, 1, 1. Using SOR method 
assumes the initial approximation as x1 one is equal to 5.5, x2 is equal to 4.5, x3 is equal to 3.5. 
Using the value will give the value of omega here. Using the value, omega is 1.1716; perform 
two iterations. Now here we are given the initial approximation. We have also given the omega 
value and we need to iterations of this as SOR and we shall see later on how we are going to 
obtain this value of omega.  

(Refer Slide Time: 00:22:06 min) 

 
Now let us use this error format of writing the system; that is our D plus omega L  D plus omega 
L into vk is equal to omega 1.1716 rk. So D is the same, L is this part; so I am multiplying by 
omega, so I can write down 2, -1, 0 omega into this minus 1.1716. Therefore 0, - 1.1716, 2; this 
is our D plus omega times L. This is our diagonal part. This is the part omega into lower 
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triangular part, that is D plus omega L, vk is 1.1716. Now let’s write down rk in the right, let’s 
write down what is rk in the next step. 

(Refer Slide Time: 00:23:25 min) 

 
Now the value of rk (that is the residual vector) is b minus Axk, which is b minus Ax k. So I can 
write down b minus Axk from here; b is this, entire A is this, so as this goes to the right hand 
side, I will have this as seven minus two times x one plus x two at the previous iterate xk one. 
Then I am taking this to the right hand side. So plus x1 of k, two times x2 of k plus x3 of k. So I 
have taken these three values of the right hand side and third the component is one; this is plus x 
two of k two times x three of k. Now we are given the initial approximation as our vector x0 is 
given as 5.5, 4.5 and 3.5. So we are given this as our initial approximation.  So I can just 
substitute it in rk. This is the value, so I can substitute x1 is equal to 5.5, x2 is 4.5 and x3 is equal 
to 3.5. Then I would get r0. I will give you the value that I obtained here, this is a very simple 
thing, 0.5, -0.5. So I just multiplied this, and this gives you minus eleven and this gives four 
point five; this gives you four point five and that is eleven point five, minus eleven. So point 
five; similarly I get the other values of r. Once the value of r is obtained, i substitute it in this. In 
this particular step, so the next step I would have here is 2, 0, 0; -1.1716, 2, 0; 0, -1, 1.1716 and 
the last element is 2; v0 is equal to 1.1716, r0 is 1.1716, 0.5, 1, -0.5. 

 

(Refer Slide Time: 00:26:23 min) 
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Now this is a forward substitution method. So I can just find out the first component of this v1 as 
this is divided by two and then use this value to get the value of v2. Then I can get the value of 
e3, so by forward substitution I can get the solution for this problem.  

(Refer Slide Time: 00:26:47 min) 

  
So if I do that I would get v10 as 0.2929. I have v2 of zero as 0.7574; v3 of zero is – 0.435. This 
is the solution of this system by just forward substitution. Now I generate my new value, the 
computed value which will be equal to; x1 of one is equal to v1 of zero plus x1 of zero. So this is 
the increment, therefore I will write this as the x1 of zero plus v1 of zero and x1 of zero was 
given as 5.5 and I have this as 0.2929, so I will have 5.7929. Similarly the second component x2 
of one is v2 of zero plus x2  of  zero. Now the initial approximation is 4.5 plus 0.7574 and that 
gives you 5.2574. I have added these two to give 5.2574 and the third component is x3 of one is 
v3 of zero plus x3 of zero and this value was given as 3.5 minus 0.435 that is 3.060 and this is -
4.5.  
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Once I have obtained this value to go to the next iterate I need again this residual vector. So I go 
back and substitute this in the residual vector and get the next solution for this one. So if I 
substitute that I would get this particular value, so I get r1, which is as same. By substituting this 
value of the residual vector I get this as 0.6716, -0.6569, and 0.1274. Now I need to solve this 
system again. So I will again have to solve this system 2, 0, 0; -1.1716, 2, 0; 0, -1.1716, 2 and v1 
is 1.1716 into r1. So I could now write this as 0.6716, -0.6590 and 0.1274. 

(Refer Slide Time: 00:30:25 min) 

 
Now we have to solve this equation again by forward substitution and I get the solution of this as 
v1 of one, that’s at this stage it is v1 of one is 0.3934. I get v2 is   -0.1543, v3 three is -0.0158, 
that is from just computation of this value again by forward substitution. Now I will update my 
value of x, that is x1 of two is equal to v1 of one plus x1 of one. Now let’s go back to this slide. 
So the value of x1 was 5.7929 plus 0.3934 that is 6.1863. Then x2 of two is v2 of one plus x2 of 
one, the value of previous iterate was 5.2574. So I will have 5.2574, -0.1543 that is 5.1030, here 
it is 31 and lastly x3 of two is v3 of one plus x3 of one the value of x3 is 3.0653, 0.065 and the 
value of v3 is -0.0158 that is 3.0492. Now we have completed two iterations and the exact 
solution for this problem is x1 is 6, x2 is 5, x3 is equal to 3. Now the interesting observation that 
we would like to do here is that the convergence is so fast here. Look at this particular value r0, 
this is the error in satisfying our given equations, that is 0.51, - 0.51. When we have gone to the 
first step the error in satisfying the equations was 0.6716, -0.569.  Now the solution has now 
moved faster and now the solution has come almost close to the exact solution the second 
iteration. Now if you find the error r2, you will find that this value is very small. Therefore the 
convergence compared to the Gauss Seidel is much faster. In fact for this particular problem let 
us take about three or four decimal places accuracy; Gauss Seidel will require almost a hundred 
iterations to get that accuracy, whereas you will find in SOR that the required is much less 
almost a factor or so less than the required number of iterations. So that’s why the successive 
over relaxation method is very fast compared to the other methods but the only hitch here is that 
we have to find suitable value of omega, which gives the fastest convergence.  
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One observation that we should also make here is that when I gave this particular example, 
which matches exactly over requirements, if I look at this and see its partition, we can apply the 
permutation matrix such that these are thrown to other way and then we will be able to get the 
diagonal matrix here and the diagonal matrix here; or you could have another partitions also and 
then try to attempt that particular way. However as I said it’s not necessary nowadays, we can 
use even if it is a symmetric matrix. Now in order to do the analysis of this even though I will not 
go deep into how to obtain the omega, or how to obtain for successive over relaxation but we 
would like to discuss how the Gauss Seidel or the Jacobi or SOR convergence and how do you 
define by a value that this is the rate of convergence of this particular method; and thereby we 
can compare the various methods that this is the convergence of the method, therefore it is faster 
than the other methods. Now to do that I need the background of your matrixes. Let us just revise 
what we have done earlier and little bit more of the some of the concept about the property of the 
matrixes. One important property we will need is the norm of a matrix, so let us define the norm 
of matrix which you might have already done in the course but let’s revise it.  
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So I would like to define what’s known as norm of a matrix.  If given a matrix A, I will denote 
the norm of the matrix by this, this is a positive real number. This is a positive real number in a 
sense that it is a measure of a matrix. So it is in a sense actually that we can call this as a measure 
of a matrix; so we can say given a matrix, this is the norm of this matrix; given another matrix 
you can say norm of a matrix is this. So you can compare them in terms of norms of the 
matrixes; so in a sense we can call it as a measure of a matrix. Now if I have two matrixes A and 
B, then norm of this is your triangular in equality holds here; that is norm of A plus norm of B 
and if I take the product of two matrixes norm of A into B, this is also norm of A into norm of B. 
And if I have a complex, any number multiplying, say complex number C into A norm will be 
where we are talking of C is a real or a complex number. C is a real or a complex number, then 
this will be equal to magnitude of C into norm of A. This means that if C is a positive or a 
negative real number or C is complex, then this equality holds. Now let us see what the measures 
that we can give for this are. The first one norm is called the Euclidean norm. We are talking of a 
general matrix means real or complex matrix. Therefore what I will do is I will take the 
magnitude of all the elements, square them, add up and then whatever number that you would 
get, take the square root of that; that will be called the Euclidean norm. In this you know it is the 
sort of an Euclidean norm. If you take the distances of points, there is nothing but the distance 
between the two points is the length. It is the measure, it is Euclidean norm. So that is actually a 
representation of this in the matrixes. So this is the nothing but I take magnitude of aij square, 
then summation over i is equal to j one to n, all of them. Then I take the square root of this and 
this is called the Euclidean norm.  It is usually represented by F of A. So it’s a very simple thing 
that we just take the magnitude of all the elements of the matrix, square them, sum them up and 
then take the square root of that, a different norm is used in different circumstances. 

(Refer Slide Time: 00:39:26 min) 
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So let us have another norm called the maximum norm. It is denoted by norm of A with a suffix 
as infinity. I take any row, take the absolute values of all the elements, sum them up, there will 
be n such row sums. So I will take the largest of them, that is the maximum absolute row; sum is 
a measure and that is called the maximum norm. So that is denoted by this; that means this is 
maximum with respect to row I, summation with respect to k; of all aik, that is these are all the 
magnitudes of the elements and this is maximum with respect to I; that is row and I am summing 
up with respect to k. So that is all the values in the row are added in magnitude and then I 
maximize it with respect to all the rows and then this will be the maximum norm. So I can call 
this is as maximum absolute row sum.  

(Refer Slide Time: 00:40:58 min) 

 
If I can take maximum absolute row sum, I should be able to take the maximum absolute column 
sum also. Therefore that would also give me another measure which I would call under the 
maximum norm only; but with a different notation the notation that is used is this; that is 
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maximum with respect to k, summation with respect to I, aik. So now I am taking the maximum 
with respect to column and now I am adding the rows. Therefore this is the maximum absolute 
column sum and the third norm that we need is the one that is we use very often called the 
Hilbert norm or it is also called spectral norm or spectral norm.  More often we use it as a 
spectral norm. What we do here is, given a matrix A, I would find its conjugate transpose and we 
defined it as Astar; that is your conjugate transpose. Then I form the matrix A star A, then I will 
find the Eigen values of A star A. We have defined the largest Eigen value of a matrix as its 
spectral radius, so I will find the largest Eigen values of this. Therefore I will take this as this, 
let’s call it as lambda. I find Eigen values of this, that is lambda I; the maximum Eigen value is 
the spectral radius of this.  

(Refer Slide Time: 00:43:27 min) 

 
The Hilbert norm says that I can define the norm as square root of spectral radius of A star A. 
That means I find the matrix A star A, find its Eigen value, find its spectral radius, square root of 
that will be the Hilbert norm. Suppose A is symmetric and real; then look at this definition, A 
star is conjugate transpose, it’s real, therefore it is same as this called symmetric. Therefore A is 
equal to A transpose, that means A is equal to A star. Therefore that means this is equal to A, is 
equal to A star by definition and whereas this spectral radius of A star A will become spectral 
radius of A square A which is equal to A star; therefore it will simply be spectral radius of A 
square. Now we know that if lambda i is an Eigen value of A, then lambda i square is the Eigen 
values of A square. Therefore spectral radiuses of A square of that Eigen values of A to the 
power of m is lambda i to the power of m; lambda is the Eigen values of A. Therefore in this 
case this spectral norm will be simply spectral radius of A. Therefore if you have a symmetric 
matrix and real we are very happy because we can just find the Eigen values of that matrix. The 
largest Eigen values in magnitude will be simply the spectral norm. Now all these norms that we 
have defined are all independent norms; the Euclidian norms or the maximum norm or the 
maximum absolute column sum norm or the Hilbert norm, they are all independent definitions.  
Therefore if you are given a matrix and if you want to find the norm and if you find all of them, 
since all are independent you can take the smallest of them as a required norm. Suppose say 
given a matrix A, what is the largest value of norm this matrix has got. If you are finding the 
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norm of all the four, the smallest of that will be the required bound; that will give the norm of 
that particular matrix. 
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