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While so far in this course we have seen three levels of structure, crystal structure, (())(1:08)

and the microstructure. Then we saw the movements of atoms starting with diffusion and then

we saw what are the phase, transformation and mechanism and whether we are in a position

to control it and what are the possibilities when we can control this. Now we shall look at the

relationship  between  the  properties  and  the  structure  and  then  try  to  see  if  I  require  a

particular property  where I can get that kind of a structure in a material,  if it is not there can

I develop it that is something which we have already learned. We will have to comprehend all

this information. Once we understand that is the relationship of the property to the structure.  

(Refer Slide Time: 2:03)

We start with the first property “Mechanical behavior of materials.”



(Refer Slide Time: 2:07) 

Mechanical behavior I can say is the response of the material to a force, mechanical force. I

hope you understand the mechanical force like that (())(2:20) weight, we apply the weight

and that is the gravitational force. The property of the behavior of the material can be divided

on the basis of 2 things, whether behavior is temporary for the period you apply the force or it

is permanent even after the force is removed. Second thing whether the behavior is going to

be dependent on time or it is independent on time.     

 So on that basis I have made this small table. These columns I have made, time independent

and time dependent columns and similarly I made them the rows temporary and permanent

behavior. First of all by time independent what I mean is the moment the force is applied

whatever response of the material in this case has to be in the form of deformation or change

in shape of the material. That has been brought up instantly is time independent, right? And

then when the deformation goes on as a function of time and the force is applied is becomes

time dependent.

Similarly  a  temporary  deformation  is  the  one,  you  applied  the  force,  you  saw  the

deformation, you remove the force, and material comes back to its original shape and size.

Permanent  is  when  you  apply  the  force  deformation  takes  place,  shape  changes  of  the

material, when you remove the force it doesn’t recover back to its original shape and size that

is the permanent shape in change. We have given them some names to these. The deformation

which is temporary as well as independent of time that is instantaneous is called truly elastic



behavior. That  is  what  we shall  see today and we have also seen already an elastomeric

behavior, the rubber like elasticity that is also time independent and temporary.

But this one is linear and obeys the Hook’s law while this one is non-linear, it does not obey

the Hook’s law. Similarly, when the time independent deformation goes on it is permanent

and we call it plastic deformation. We have all seen this while doing a tensile test on steel and

aluminum. After the yield point, after the yielding there is a permanent change in shape of the

material. Similarly when there is a temporary deformation which is dependent on time that is,

you apply the first, you apply for one hour, deformation goes on for one hour it keeps on

increasing and keep it for more time and it will still go on and that is what an elastic behavior.

In such a situation when the force is removed there is a recovery, it come back to original

shape but again comes back as a function of time, we have spent one hour in deforming it, it

may not take less time to comes back. It has recovered as a function of time. Okay, that is an

N elastic behavior. And this permanent deformation which is dependent on time is called

Creep or it is called the viscous flow. You have seen this probably in Physics, viscous fluid

which obeys the Newton’s law. And Creep is what is in crystalline solid we shall look at takes

place is a function of time, is a permanent change in shape. 

But the phenomenon which is dependent on time, which temporary and permanent can go on

together, both of them can go on together, such a deformation is called viscoelastic behavior.

This viscoelastic behavior is mostly we see in polymeric materials, okay. While I will not

much time to talk about Anelastic and Viscoelastic behavior but I shall be able to devote time

to other, elastomeric behavior we did see when we talked about the rubber like structure in

polymers and then we saw the mechanical behavior and thermodynamics of rubber elasticity.

Today we shall talk about the Hook’s law or the truly elastic behavior of materials.



(Refer Slide Time: 7:12) 

Now, while  looking  at  the  elastic  behavior  of  materials,  I  consider  again  a  very  simple

structure, simple cubic structure, unit cell, there is one atom sitting in the middle which is

bonded on the 6 sides to other neighbors and I apply a small force in tension, this bonds will

extend in this direction and let us say this unit cell has dimension is 0. And this extends in this

direction by an amount let us say delta X, right? 

(Refer Slide Time: 8:17)

When Hook’s law is obeyed we write as stress divided by strain, what is the stress we have

created. Force we have applied and divided by the area of cross section, and the strain we

have is  elongation  divided  by initial  length  and if  I  to  use this  I  can  write  the  Young’s



modulus as… Which can be written as, right? Is it correct? So I have written the definition of

the Young’s modulus from the Hook’s law stress divided by strain or stress is proportionate to

strain and proportionally constant is called the Young’s Modulus. And about that Young’s

Modulus is 1 upon A0 delta F A divided by delta X. 

We notice that when I apply a force to the material they develops a force which is a tensile

force, they develops a force which is compressive force in the material, the atom tries to pull

each other towards them. It means if applied force is negative of the force generated in the

material. 

(Refer Slide Time: 10:10) 

So I can write the Young’s Modulus in the limit delta X standing to 0 as dFa divided Dx, if I

use this I can write this as 1 upon a0 the minus sign dF by dx. F is the force between atoms

and this is the applied force. 



(Refer Slide Time: 10:52) 

Now let us look at the force between the atoms what we know about. When we bring two

atoms from infinity, a potential energy, this is the potential energy versus distance and this is

the one, and comes and stays at the minimum, this is what we called the bond energy. At this

point the force between atoms is 0 that is a advance. F is minus dW by dx and that is a

negative scope here going to infinity so it becomes a positive force 0 according to infinity and

the slope here is 0, the force becomes 0. This is positive the force becomes negative. So this

is the derivative production energy versus distance, the minus sign is the force, that is the

definition of the force. 

(Refer Slide Time: 12:11) 



So knowing this you can put it down in the Young’s Modulus which is minus 1 upon A0, dF

by dx which come d by dx of minus dW by dx, minus and minus would become plus, it will

be 1 upon A0, d square W by d x square. So basically the Young’s Modulus what we see now

depends upon two things, one is this number A0 what is nothing but the bond length. I am at

very elementary estimate of the Young’s Modulus and d square W by d x square can work it

out as the curvature of the potential  energy versus distance curved at  minimum potential

energy. 

(Refer Slide Time: 13:28) 

By curvature what I mean is that is if I draw a circle which is tangent here, this tangent is

common to both of them, the radius of this is called the radius of the curvature and curvature

is a reciprocal of the radius. So a curve which is quite flatter here shall have a very high

radius, a small curvature. The one which is deep shall have a small circle, small radius and

high curvature. 



(Refer Slide Time: 14:19) 

All these I will show you here. There are three kinds of shapes I have shown, very deep and a

bit symmetric curve, this is all potential energy on this axis and distance on that axis and all

the three curves. So this kind of one is very deep and a bit symmetric though by nature this

curve is asymmetric. It is more flatter to the right as compared to the left it is very steep. This

one  is  shallow  as  compared  to  the  first  one,  and  this  is  shallower.  This  curve  says  the

potential energy of the bond energy at the equilibrium spacing is large it is not so large here,

it is very small there relatively. Very strong bond, not so strong bond, a weak bond, so bond

energy is small as a weak bond.

And here what you can put in as a circle is a much bigger one what you can put in here is a

smaller one or you can put here is a very small one. Very small radius, larger radius at a very

large radius. So curvature here is the least, curvature here is the most. Such a bond material if

it has will give rise to high modulus, this one shall give  me low modulus because curvature

is small, d square w by d x square is small. Similarly when a bong is strong usually bond

length is smaller.

1 upon A0, means the bond length is smaller modulus will be higher and a bond length is

larger usually the weaker bond sets the situation. You can see that this distance is larger as

compared  to  this  distance,  so  stronger  bonds  are  smaller,  weak  bonds  are  (())(16:47),

secondary bonds you know that in the range of about 5 to 10 Angstrom, but primary bonds

are in the range of 1.5 to 2 Angstrom. So that is the thing that we have fine that stronger

bonds shall high modulus and weak bonds shall give me low modulus and the two things



involved are the shape of the potential energy well , that is the curvature and the bond length,

they are the two things.  

(Refer Slide Time: 19:17) 

In here I show this effect in terms of the elastic modulus or Young’s modulus of the different

materials. Some of them are taken from the periodic table. This is the same period, lithium,

beryllium,  boron  and  carbon.  And  the  modulus  values  we  always  keep  in  terms  of

gegaPascal. 1 Pascal is 1 Newton per square meter therefore it becomes 10 to the power 9

Newton per square meter. That is the unit in which we give the value of all elastic moduli

whether it is Young’s Modulus, Shear Modulus or Bulk Modulus. So you see the values, the

order or magnitude, for lithium it is 11.5, it is a typical metal, not so strong bond.

Go  to  beryllium  covalency  increases  286,  bond  become  little  stronger.  Boron  it  is  still

stronger 440 and as I go to diamond SP3 bond 1140 gegaPascal, it increases. I am not shown

to group 5, what happens then now I start to get along with the covalent bonds I start to get

the secondary bonds because in group 5 I have sheets, (())(18:55) sheets which are bonding

(())(18:57) bonds and in such situation the property is  dictated by the weaker bonds,  the

modulus  becomes very strong for such materials.  So that  increases  when all  the primary

bonds are present and metallic to typical covalent bonds it goes on.

Similarly I look at one particular period I shown the group 4, one particular group is the

group 4 here, as I go down in the group it is the metallic nature which increases and covalent

nature decreases and you see that modulus is falling, from 1140 it goes to down 103, for



silicon and germanium it remains more or less the same, around 100 gegaPascal and then

suddenly falls for Tin 52 and Lead goes down to 16 gegaPascal. 

So metallic nature is increasing, the bond length is increasing and we see that bond is not so,

the curvature is also decreasing,  falls  rapidly. On the other hand when I go from typical

metallic bond to a covalent nature it goes up from 11 to 1140, means this is a 2 orders of

magnitude increase in the value from here to there. So that is the effect of nature of the bond,

bond length at the curvature at the equilibrium spacing. 

(Refer Slide Time: 21:39) 

Elastic modulus has been experimentally studied as a function of temperature and we find

that if experiment is done very carefully so that the effect of temperature does not make it

time dependent  or the time fact  we do not  look into because elastic  deformation  is  time

independent deformation. What we find is that there is only about 5 – 10% decrease starting

from the 0 Kelvin, I plot here T upon Tm the melting point, up to the melting point there is

hardly any decrease of the modulus of the material. 

This  is  the different  materials,  this  is  how it  behaves,  up to the melting  point  it  doesn’t

decrease, there is hardly a decrease of 5 – 10% but if I do not do the experiment carefully and

I allow the time to play its role when the temperature exceeds 40% of the melting point time

dependent  deformation  begins  in  materials  and  you  will  find  more  deformation  is  less

modulus. Some of the books might be showing this, some decrease like that and that is an

incorrect  experiment.  Time independent  deformation what is  elastic  deformation does not



decrease with the increase in temperature, the modulus remains more or less the same, right.

That is the temperature dependence of the elastic modulus. 

Student: So even in and a higher melting then the T melting point.

Professor: Then it is a liquid; there is no question of modulus, then no question of elastic

modulus. Elastic modulus we are talking in solids only. 

(Refer Slide Time: 25:16) 

Now elastic and isotropy, and isotropy I mean the direction and the crystalline structure. If

the property remains  same in all  directions  I  called  is  isotropic,  if  the property does not

remain same in all directions it becomes Anisotropic. You would notice that if I talk about

even a simple cubic crystal along the A, B, C3 axis, bond lengths are same alright, at a certain

value of the bond length A0 let us say, but if I look at the 110 directions which are the phase

diagonals. Bond length becomes under root 2 of A0.

I don’t want to expect the modulus to be same in 100 directions on the 110 direction. So it is

crystalline structure whether it is simple cubic, body centered cubic, face centered cubic as

long as I am talking about a single crystal the properties are different in different direction.

How normally we use polycrystalline solids, and in polycrystalline solids I have millions and

billions  of  crystals,  each  one  differently  oriented  in  space  so  any  direction  in  the  3

dimensional solid will be the some average of all possible directions and therefore we will

find property to be same in any direction and that will be an isotropic material, it is not a

single crystal, it is a polycrystalline material.



But there are other materials which will definitely show me different properties in different

directions because of the nature of the bond. Like if I talk about graphite, graphite I talk of

crystalline graphite. If I look the directions which are along the sheet, along the sheet I have

only SP2 hybridization, all primary covalent bonds. Any direction you try to pull you are

pulling the primary bonds. Modulus is very high to the order of 940 gegaPascal. But when

you do across the sheets there are only secondary bonds between the sheets and you are

pulling the secondary bonds, the bond modulus is very small.

To the extent that if you take an average of all possible directions where many of them are

lying along the sheet the value of the modulus 4 falls down to 8 gegaPascal. Similarly when

we have polymeric materials, when you are stretching along the chains very strong, modulus

would be higher but if across the chain it would be very weak, they are only secondary bonds.

So we find elastic Anisotropy in materials and there could be single crystals crystalline solids

it could be polymers, it could be material like graphite where we have primary bonds in one

direction and the directions which are on the sheet are much less directions than the direction

across the sheet. The modulus could be every small value.

Student: For the isotropic material it would be same.

Professor: Yes, in all directions it will be same. Like you are measuring the modulus of steel

which could be anywhere between 200 – 210 gegaPascal, any direction you take it will be the

same value because we have the polycrystalline solid and all the grains, neighboring grains

are differently oriented. Orientation is not the same in different grains. 

(Refer Slide Time: 27:52) 



Here are the some different some relationships between shear modulus, bulk modulus with

the Young’s modulus. Before that we define the Poisson’s Ratio. That is when I stretch a

material, I should you a unit cell being stretched but I didn’t show you what is happening in

the lateral direction. In the transfer direction there is some strain there is contraction, slight

contraction that is why I put a minus sign there. New Poisson’s Ratio is positive, this is the

contraction and the transfer’s direction, this is the elongation in the direction of the applied

force, longitudinal direction and the minus sign that is called the Poisson’s Ratio.

And shear modulus is defined as Young’s Modulus divided by 2 into 1 plus the Poisson’s

Ratio mu. The bulk modulus K is defined as Young’s Modulus divided by 3 to 1 minus 2mu.

It  is merely the definitions  and I don’t want to get into the shear modulus bulk modulus

properties, basically I am interested in structure property relationship. Whatever happens to

the Young’s Modulus happens to these two other modulus also. 

(Refer Slide Time: 29:09) 

As related with this as engineers are concerned it is the property called the stiffness of the

material or the rigidity of the material. When I use a material I am using it in some form,

some structural form of the material and depending upon the design of the material or design

of the structure its rigidity or stiffness can be increased or decreased. That is external design

is the one responsible for defining the stiffness or rigidity. But if I take same design made of

two different materials, let us say one made up of aluminum, other one made up of copper

and third one made up of steel then if the same design, same structure is there it will be

depend upon the modulus of the material that is why two things I have written.



External design and elastic modulus. Here I show you a frame made of 4 bars. If I just apply

a force on this it will deform in the fraction. However I can put two tie rods in the structure

right here and it becomes stiff. Now apply if the force it doesn’t deform, right. So that is what

I mean by external design. We increase the stiffness of the rigidity of the structure by shear

design but if my design is constant or the same then it depends upon the property of the

material elastic modulus, right. Therefore when we want a stiff structure or rigid structure I

want the modulus of the material to be higher. 

(Refer Slide Time: 32:17) 

High modulus we find amongst covalently bonded solids, we can also find this in ionically

bonded solids we will come to that.  And highest we find in a material what is called diamond

as I just showed you. But I cannot use the diamond though it is a very expensive material, not

available in great abundance. I cannot build a structure even if it is available because it is a

very brittle material. It fails within its elastic limits only, it is a brittle material, I will show

you the difference between brittle  material  and ductile  material.  Today it  should be good

enough for you to feel a material is brittle if it doesn’t show the plastic deformation. 

A material is ductile if it shows the plastic deformation before it fails. So brittle material fails

within  the  elastic  limits,  they  don’t  even  reach  their  yielding  and  diamond  is  one  such

material,  it  is  a  brittle  material.  We cannot  exploit  covalently  bonded  solids  like  this  or

glasses for that matter where the covalent bonds are found the materials are brittle, we cannot

use for structural applications.  Then there are covalently bonded solids polymers. Usually

between the bonds are formed in polymers along the chain are primary bonds, SP3 bonds but



across the change they are (())(32:46) forces.  The result  these polymers have a very low

modulus value, its range is usually between 1 – 3 GegaPascal. It is a very small range. 

Student: (())(33:06) 

Professor: Yes, it will be if the chains are (())(33:11), along the chain it will be little higher

and across the chain it will be, and we cannot have 100% crystalline solids and long chain

polymers, so there will be some non-crystalline regions along the direction and therefore it

would not be a very high modulus in that sense. 

However  if  I  have  a  network  polymer  it  will  be  little  more  because  I  have  all  three

dimensions, in three dimensions I have primary bonds, it will be more but even there it is also

not very high, it may go up to maybe 5 GegaPascal, that is the kind of values or the order of

magnitude for the modulus values we have in these materials and it is not possible for me to

use them for any structural application unless if it is possible for me to increase the modulus. 

(Refer Slide Time: 34:08) 

Then there are ionically bonded solids. In here this 10th of the bond or how well it is going to

be deeper depends upon the charges on the ion. The charges on the ions are small (())(34:23)

1it may not be very deep well but if its charge is more it can be a deeper well. That is what I

have tried to show here. In sodium chloride charges are 1 and 1, it is only 37 gegaPascal. In

all these modulus values and gegaPascal as I said magnesium Oxide 2 into to 310. Al2O3

charges are 3 and 2, 402, Titanium Carbide it is 4, this 308, Silica Glass, silica is 4 oxygen is

4, 70. 



So charges on the ions are ones which are responsible for affecting the nature of the bond

however it is stronger, the well is going to be deeper and the modulus, the curvature is going

to be smaller or larger, it shall depend upon this therefore this can be there. But even these

materials tend to become brittle materials whether it is sodium chloride, magnesium oxide,

Al2O3, Titanium carbide, or silica glass these are all very-very brittle materials that is they do

not  show the  plastic  deformation  before  they  fail.  So ionically  bonded solids  as  well  as

covalently  bonded solids  do  not  have  ductility, they  lack  ductility, I  cannot  use  them or

exploit them for structural applications.

Student: (())(35:49)

Professor: Titanium is 4 plus.

Student: (())(35:55)

Professor: Well this depends upon not merely the charges, shape of the potential energy well

that may not have relationship to the charger that depends upon the constant which are there. 

(Refer Slide Time: 36:23) 

Now among the metallically bonded solids we get good ductility and the modulus values are

not very high usually. In the first long period where I have lot os metals, common metals

which we use, it could be in the range of 100 to 200 gegaPascal, but only when I go the

second and third long period I can go up to 400 gegaPascal but not more. So the range is in

the first long period it could be 100 to 200 gigaPascal but when you go to second and third

long period there is a transition element that you can go up to 400 gigaPascal. 



And they have a partial covalent nature of the bond because the overlap of the D-shell, first

long period and this partial covalent nature of the bond is responsible for them to have little

higher typical aluminum as about 70 gigaPascal. A typical metal like copper has about 130

gigaPascal, right. Steel, the iron is about 210 gigaPascal so that is the range in which we have

the values of the Young’s Modulus and we do not have like the 1100 gigaPascal in diamond,

that kind of value we do not have but these are the materials which we can exploit structural

applications.
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Now this is a material property which is no dependent on the structure, depends upon the

bond line, depends upon the curvature of the Condon-Morse curve at the equilibrium spacing,

thereby what manipulation I do the microstructure it is not going to get affected. The bond

between iron-iron will remain the same. What kind of modification I try to do or alloying I

try to do that is why elastic modulus is called a structure insensitive property. Iron and steel is

not very different, it is varying between 205 – 210 gigaPascal, right.

However we try to modify this value of this modulus by making composites and composites

are manmade materials, you can simply define it as a combination of 2 or more different

materials, 2 or more dissimilar materials rather I should say, okay. So 2 or more different or

dissimilar  material  are  used  to  make  the  composites.  Combination  it  is,  whether  at  the

combination at the interface between the 2 materials, there is a chemical bond present like the

grain boundaries is not guaranteed. There is only adheration between them.



And the goodness of the material, is how good is the adheration is at the interface, the words

‘How good the interface is, how strong the interface is?’ and that will tell you how good the

material is but this is what we can probably do today to improve upon the modulus. Here I

am showing the different kinds of composites which are possible, there are 2 materials here I

have shown. One in the form of long fibers going from one end of the material to the other

end and second is the matrix. So you can call it long fiber composite, long fiber aligned. 

I can have long fiber non-aligned. It could be randomly placed in the 3D volume. Here I

show this small short fibers which are also aligned but if I (())(41:07) do not go for one end to

the other end, the short species and here I show the short fiber randomly aligned and here I

have this second material is in the form of particles so it is called particulate composite.  

Normally you people are using helmets which are having the fiber reinforced plastic as a

material. There the fibers are placed in randomly in all orientation but they are long fibers.

Long fibers plays randomly all over the volume, zig-zag, they are just lying there going from

one end of the material to the other end. Then short fiber aligned you have to make effort to

make this material but this is not so difficult to make, it can again randomly placed in and can

just simply make the matrix, pour the matrix on top of it.

This  is  probably  one  of  the  earliest  kind  of  exploitation  made  by the  human  beings.  In

villages they make huts of mud and mud is not purely mud, this is mixed with husk and the

husk  is  a  short  fiber  which  is  randomly  oriented  and  that  is  the  kind  of  used  and  the

reinforced concrete  cement if you have seen, usually rods are aligned, vertically they are

placed parallel and they are also placed horizontally, so you are putting them in 2 directions,

aligned fibers.

And we have also seen in the concrete, (())(43:30) which is stone particles and you have the

matrix of sand-cement mixture, so the matrix of sand-cement mixture this is (())(43:41), the

particulate  composite,  this  is  concrete  but  when  I  reinforced  with  steel  rods  it  becomes

reinforced concrete cement. These are the different kinds of varieties of composites I can

have. We shall analyze the modulus behavior with reference to this first one, we have long

fiber which is aligned.
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This is the long fiber matrix  aligned,  I have just  shown little  diameter  of the fiber, fiber

diameter may not be as big, let us say this is the original length, let us call it L and this is the

elongation, delt L, when you apply a force F and let us say the area of cross-section of the

composite perpendicular to the force is A. So on the composites you have applied this stress

and you have developed this strain. As I showed here the fiber elongates by the same amount

as the matrix and when that is happening I say my interface is intact. 

If suppose matrix elongates more and fiber does not elongate so much there is a slip at the

interface, matrix is slipping with respect to the fiber. Interface has giving way, interface is not

intact, (())(45:35) fail actually. So when I am talking about applying force I am not crossing

that  limit,  I  am within that,  alright,  that  is  important  to understand or else if  the fiber is

getting elongated more than the matrix then the fibers will get pulled out of the matrix and

once the interface gives way, right?

So therefore I am assuming that strain in the fiber as well as the matrix is the same. So this is

equal to let us say epsilon and this epsilon in the composite is equal to epsilon in the fiber is

equal to epsilon in the matrix. Such a situation also called isostrain situation. The strain in the

matrix as well as the fiber is the same, right?
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So let us write down the Young’s modulus of the composite. Now we know the modulus of

the matrix and the fiber are not the same, they are different materials. And strain is the same,

the force taken by the matrix and the fiber is also not the same then and force I can then write

as, force taken by the matrix plus the force taken by the fiber, this I can split. 

This strain C I have taken as matrix here and strain of the fiber, because I know strain in the

fiber is same as the strain in the matrix as the strain in the composite. So I replace that in

these places, though actually I have only make it A plus B, right. Looking at this if I can have

this in this area of the matrix it shall  become the Young’s modulus of the matrix.  Let us

rewrite that way and then multiply by area of the matrix divided by A.

I don’t change the term, term remains the same aArea cross section of the fiber. Now in the

composites I have shown the length of the fiber and the matrix is the same whether it is

strained or not strained because strain is also the same. So the area fraction is as the same as

the volume fraction. This is area fraction of the matrix. This is the area fraction of the fiber,

so they become the volume fraction of the fiber and the volume fraction of the matrix. 

While this is the Young’s modulus of the matrix, this is Young’s modulus of the fiber. So I can

write volume fraction of the matrix times the Young’s modulus of the matrix plus volume

fraction of the fiber times the Young’s modulus of the fiber, this is also called the law of

mixtures. And in a composite like this where fibers are aligned, long fibers are aligned it

gives me the upper bound of the modulus when fibers are not necessarily aligned, they are all

randomly placed.
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I cannot get more than this, is the maximum, modulus which I can attain,  right? Say for

example what do I get. If I talk about fiber reinforce glass, glass fibers reinforced plastic

rather which is called FRP or sometimes which is called glass reinforced plastic. Let us say

the plastic volume is 60% and glass fiber is 40% and the modulus of the plastic we know is,

let us say I take very high value, something like 2.5 gigaPascal and glass is 70 gigaPascal, let

us see what happens to the composite, is 0.6 into 2.5 plus 0.4 into 70 that makes it 1.5 plus

28, 29.5 gigaPascal.

You have not made it 70 but you have gone from 2.5 to 29.5 by adding 40% of glass fiber by

volume,  right?  So  that  is  the  kind  of  improvement  you  can  make  to  the  upper  bound.

However if you take the same kind of composite but apply the force in this direction now, this

is  called  isostress  situation  and isostress  situation  gives rise  to  lower bound. So Young’s

modulus of a composite with long fibers when they are randomly placed will be between the

upper bound and the lower bound, right?

In the lower bound Young’s modulus is volume fraction of fiber, Young’s modulus of the

fiber, you can work that out in the same as I did for the other one is very simple. So that is the

lower bound and okay, alright let us use this part of the, let us say this is the matrix here, fiber

here, Young’s modulus composite, that is the 100% matrix, 100% fiber, alright. This is the

upper bound and if you look at the lower bound it grow something like this. 

So modulus of the composite of the man made material can be improved and that is of course

the upper bound to the law of mixture,  right? This is what maximum you can do to the



modulus and not more, (())(54:05) structure insensitive property. Well we will stop here and

will talk about the permanent deformation in the next class. 


