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Well, in the last class we had begun to look at the polymers which are non-crystalline generally

and we saw of these long chain polymers because network polymers there is no chance for  us to

get any crystallinity in them. And continuing with that we ended up the elastomers. We shall now

look at the mechanical behavior of elastomers. Whereas you recall I said the elastomers are the

polymers  which  behave  like  elastomers.  They  have  the  chain  segments  having  translation

mobility at room temperature. There is a natural tendency for binding and coiling that we express

with the help of the monomer unit of polyisoprene.
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And there are few crosslinks. Here I show the crosslink is, in the lower picture the crosslinks are

just one molecule or maybe one atom or something which is between the two chains like that.

And here are smaller molecule or smaller chains which are the acting as crosslinks, the gray

colors like this. Okay. So crosslinks can be made with the help of small molecule polymers as

well, or smaller chains and it can also be made with the help of like I showed vulcanization of

the natural rubber, we use sulfur. Okay.

So besides being the long chains they have to satisfy these conditions. There are few crosslinks,

because in natural tendency we are binding and coiling and then the room temperature provides

enough mobility to the chain segments. That is the translation mobility I am referring to because

in solids oscillations are always present.
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Now when we look at  the  mechanical  behavior  in  elastomer,  it  is  quite  distinct  from other

materials which we will be talking about little later. If I have to test under stress or under force

material  like  metal,  steel  and  which  is  an  alloy  or  copper  or  aluminum,  I  will  get  elastic

elongation not exceeding 0.5 percent. It will be 0.2 percent, 0.15 percent, things like that. But

here I get a few hundred percent of temporary deformation which is recoverable deformation.

Other words, when I remove the force the elastomer comes back to its original shape and size.

After it was extended by the force to the tune of 400 percent, it comes back which is not the case

in other metals and alloys or other solids. Secondly the deformation process is non-linear. Elastic

behavior  whether  it  is  of  steel  or  aluminum or  any other  material  for  that  matter  would be

obeying the Hooke’s law. That is a linear elasticity, stress is proportional to the strain but here it

is non-linear, it is not linear.

And the third defense with other materials is if you take a piece of aluminum or steel which is

you apply the force and extend it and then you increase the temperature from room temperature

to  let  us  say  200 degree  centigrade,  then  you will  notice  further  elongation  because  of  the

thermal expansion. But in here if you increase the temperature by few degrees, you will find it

starts to contract. So you will find that on heating a stressed elastomer contracts. This property

has given rise to making rubber engines which converts the low heat, low grade heat at such slow

temperatures and can be converted to mechanical energy.
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Okay. So these  are  the  defenses  and we shall  try  to  see these  knowing the structure  of  the

elastomer and looking at the thermodynamics, some of which we have already seen. Combined

first and second law of thermodynamics can be written as dU is equal to TdS minus dW where

TdS is a term which has the heat input and dW is the work done by the system. Heat is input to

the system, work is done by the system and the difference of these is the increase in the internal

energy of the, it is basically conservation of energy.

And then we also define the Helmholtz free energy, E is equal to U minus TS. Elastomer is a

solid and once again PV term is going to be negligible and therefore I can talk about the Gibbs

free energy or the Helmholtz free energy. Here I am talking about the Helmholtz free energy

which can be written as U minus TS. At a constant temperature when I try to differentiate this, I

get delta E at constant temperature is equal to delta U at constant temperature minus T delta S at

constant temperature. Temperature is constant. I do not have to differentiate that.

So now this number with constant temperature,  I can write this from the combined first and

second law. When I do that, it can be written as T delta S at constant temperature minus dW at

constant  temperature  minus T delta  S at  constant  temperature.  First  term and the third term

cancel each other, I am left with this the middle term where W is the work done by the rubber or

the system. With the minus sign in front it is the work done on the system.



At a constant  temperature  when I  try  to  stretch the rubber, I  apply the force of,  the  rubber

elongates by a distance let us say delta L, not change the temperature, room temperature only. So

work done by the force is of delta L. All right. That is what this minus dW would be at constant

temperature. Since the condense system has already said this is negligible, this work is the work

done by an external agency.
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So that is what I said, the work done by the external force in extending the rubber by a distance

delta L is F delta L. And the work done by the elastomer is minus of that because the work is

done onto the elastomer in stretching it. So therefore work done by the elastomer, W we said is

the work done by the elastomer, can be written as minus FdL. So delta you add because we are

writing as  a  derivative.  Right.  We said delta  E at  constant  temperature  is  minus delta  W at

constant temperature, previous slide. All right.

And dW is minus FdL, so I can write this minus and minus go away, become plus, now it is F

delta L at constant temperature. Right, because we wrote that delta E at constant temperature is

equal to minus delta W at constant temperature. This is the last slide if you recall. If I substitute

that here, I get this F delta L at constant temperature. Well, this can be rewritten because I talked

about this is only the total derivatives at a constant temperature which you can also say at a

constant temperature, then it becomes a partial derivative.



F can be rewritten as at constant temperature, dE by dL. And E, I have already defined as U

minus TS. So if I differentiate that, delta U, delta L at constant temperature, the right hand side,

minus temperature is constant, T is constant, delta S by delta L at constant temperature. Well, if

you write E, it is total derivative like dE, dU minus TdS minus SdT, because it is U minus TS.

dU minus TdS minus SdT. dU can be written from the combined law, TdS minus dW and dW in

this case should be written as minus FdL, so I make it plus and write it FdL. And then other

terms, minus TdS minus SdT. So this TdS first term cancels with the third term here and I am left

with this, FdL minus SdT. Is this clear? All right.
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Now that is what we wrote, dE is equal to FdL minus SdT. This shows that E is considered, is

total derivative written like this, is a function of L and temperature. If I have a variable which is

a function of two other variables, this function can be differentiated and total derivative can be

written as delta E, delta L at constant temperature into dT, plus…..

Student: dL sir.

Professor: dL sorry, you are right. It should be possible for me to, and plus delta E, delta T at

constant length into dT. If I compare this expression with this expression, I get delta E, delta L at

constant temperature is nothing but……and if I compare the second term delta E, delta T at

constant length is equal to minus of S. Right. I try to work out the second derivatives like this,

delta square E, delta L, delta T. It can be brought from here by differentiating this number, delta



E, delta, delta T, delta E, delta L at constant temperature. Whole thing is differentiated at constant

length here.

That means I have to differentiate this this right hand side with respect to T at constant length

and that becomes equal to delta F, delta T at constant length. Similarly from here I can get this

derivative  as  delta,  delta  L of  delta  E,  delta  T at  constant  length  and  put  this  at  constant

temperature. That means I must differentiate the right hand side with respect to length at constant

temperature, minus S delta L at constant temperature.

So this becomes equal to from there, delta F, delta T at constant length and is also equal to minus

delta S, delta L. This is something equivalent to Maxwell’s relation which we have done in gases

in thermodynamics. But the important thing what we notice here is this second derivative, once I

write force, with change in force with change in temperature at constant length, I maintain the

constant length of the elastomer, change the temperature, see what is the change in force required

to achieve that.

Similarly  here  it  is  entropy  which  is  related  to  the  length  of  the  elastomer  at  a  constant

temperature. Now the importance of getting this information is the first derivative in the left I

can experimentally  measure.  I  can measure force,  I can measure temperature,  I  can measure

length. So therefore I can measure these and you will be performing these out of this first set of

minus, the second set of experiments. We will be doing one experiment on this.

But if you look at the right hand side, delta S, delta L, you cannot measure entropy with respect

to length,  you cannot measure entropy at a temperature.  There is no easy way of measuring

entropy of the rubber. But when it comes to seeing the arrangement of chain segments which are

coiled, which are crosslinked, how are they placed in the given volume, you can find out the

number of configurations and you can model out the configuration entropy.

Since it is a constant temperature, there will be no change of thermal entropy. So you can model

out the configuration entropy, from there you can write down this derivative delta S by delta L at

constant temperature. So modeling can be done, that is the right hand side. Verification of the

model can be done by measuring the left hand side through the experiment. That is the great

advantage of getting this relationship. And that is what I need to show you now next.
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While in an experiment it is also possible for to measure the change in internal energy at a

constant temperature elastomer. And if you write this, it turns out to be U is TdS, so it turns out

to be constant temperature, it is T delta S delta L at constant temperature minus dW which is the

work done on the rubber, delta L by delta at constant temperature will come this. That is the

combined first and second, I have differentiated already.

Experimentally when we measure, I cannot measure this as I already told you. What I will be

measuring experimentally is minus of T times delta F, delta T at constant length plus F. Because

delta S, delta L at constant temperature is equal to minus delta F, delta T at constant length. And

this also you will measure in an experiment because this is measurable in experiment. This is

measurable, that is measurable and that turns out to be approximately 0. Of course you will get

that within your experimental errors.

“Professor-student conversation starts.”

Student: Sir, what is force on the…..?

Professor: Force, is the force applied on the elastomer. See you have, take a rubber band, you

stretch, you are applying some force to stretch it. If you do not apply that force, it comes back to

its  original shape. And we are talking about the thermodynamics  when the rubber is already



stretched after applying some force. And it is the thermodynamics of stretched elastomer we are

working out.

“Professor-student conversation ends.”

Okay. So once this is 0, it can be rewritten this from here as F is equal to minus T  delta S, delta

at constant temperature or it can be written as F is equal to T delta F delta T at constant length.

Here it  is  the minus sign,  there it  is plus sign. And in here S is  the configurational  entropy

because I am maintaining the temperature constant. There is no change in the thermal entropy.

And the stretching we are doing isothermally and if the configurational entropy we had written

earlier, S is equal to k log W. This W is not the work here. W is the number of configurations.

Right? And this number of configurations have been modeled, it has been worked out for us. I

shall not go into the details of that.
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Net,  S minus  S0 can  be written  as  k natural  logarithm of  W by W0. Right?  So this  is  the

reference state. W0 is for the reference state. S is the stretched rubber state and W is the state of

the stretched rubber. All  right.  So that  is  the configurational,  difference  in  the configuration

entropy, which I will get delta S. When I differentiate them, S0 is the reference state, is going to

be constant. So I can always talk about, when I differentiate this, I have been differentiating

basically the S.



So this model has been worked out for us. I am not going to work it details, and somebody

searched, it was done. Of course, some assumptions are involved in here. And from the formula

which  you got,  F  is  equal  to  minus T times  delta  S,  delta  L at  constant  temperature.  I  can

differentiate this with respect to length at constant temperature and see what do we get. So this

derivative,  delta  S,  delta  L  at  constant  temperature  from  expression,  minus  1  by  2  N0k,

Boltzmann constant, it is L square when they differentiate it becomes 2L divided by L0 square.

When I differentiate this, it  becomes minus 2L0 by L square and constant does not give me

anything, that gives me 0. All right. So this you can further simplify. I do not have a place to that.

I can take L0 out, then what it gives me is minus of 1 by 2, N0k by L0. And 2 also is taken out,

so this 2 will cancel out there. I have been left with 1, will be L by L0 minus L0 by L whole

square it would be. As it is different way of writing also. And when we go back to this F, I have

to multiply it by minus T. This minus sign will also go and T will come in the numerator. So F

will be equal to N0kT by L0 , in bracket L by L0 minus L0 by L whole square.

So this is where I get from here. That is my F. Now I have related the force to the original length

of the elastomer, stretched length of the elastomer and the T, the temperature. Applied force,

stretching of the elastomer and temperature, these have been related. This is called the equation

of state of the elastomer.
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That is what you have got, F is equal to N0kT by L0, L by L0 minus L0 by L whole square. If

this is the equation of state of the elastomer, any equation of state must be single value and

continuous.  For the simple reason my rubber is  not an imaginary  item,  my rubber does not

evaporate, my rubber is there where it is. When I apply a force a little more, little less, it is there.

So therefore it  must  be a continuous and single valued function.  This can be rewritten as a

function of force, length and temperature. N0 in here is the number of crosslinks in the given

piece of the elastomer.

N0, I think should have defined, is the number of crosslinks. It is not the number of place. And if

you say N0 by L0, is the number of crosslinks per unit length of the elastomer given to you in the

original state. Okay. So this is, has to be continuous and single valued function, it must satisfy

from the calculus a relationship that is delta F, delta L at constant temperature multiplied by delta

L, delta T at constant force into delta T, delta F at constant length. And the product should be

minus 1. All right.

This if you want to work out as an experimental test state, you will not be able to get derivatives

like this. But what you will be able to get is delta F, delta L, maintain a constant temperature,

apply some incremental force. You have already stretched the rubber and apply some incremental

force, find out what is the increase in length. We got this derivative approximately. Then what

you do is increase the temperature.  Right.  Do not change the force,  whatever force you had

applied. Find out what is the change in the length. And as I said rubber would contract. This

should be a negative number. Force is not changed. Right, you got that.

Once you have done this, now bring it back to the original length which was there after applying

the force delta F. Means whatever it has shrunk or contracted by, you extend it by the same

amount at the increased temperature. So that shall give you delta T, delta F. You have to know

how much force you have to apply to come back to the length which was there after applying the

stretching, come back to there. So multiply these products, it should come approximately minus

1, because it is not the limit tending 0, you have not worked it. That will say the yes, this is a

continuous and a single valued function. Okay.
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This equation of state which is here available, if it is plotted, the stress and force divided by the

area of cross-section and the strain onto the elastomer here, it is non-linear, that is what you work

out. And what the equation of state gives us is this path which goes beyond here, dot dot dot dot,

goes on. But what happens? After about a few hundred percent of elongation, it starts to deviate

from this equation of state and it goes in this direction where it becomes more and more steep.

All right. That is all what we have to see what it is. We have to explain that.
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Go back to earlier picture here. Initially what is given to us is in coiled state the rubber is lined.

Whatever  maximum  possible  coiling  can  take  place  is  taking  place  already.  Configuration

entropy is the maximum at this stage. Now when I stretch it, coiled states of the chain start to get

uncoiling. On increasing the tensile stress or the force, they try to straighten out. But complete

straightening is not possible,  why? Crosslinks are there between various chains. They do not

allow them to move very far off from each other and chain segments are able to translate here.

Yes, it is possible for them to translate along with slightly and therefore re-exist to get some

straightening. The ultimate state, if it is possible for you to get to the straightened state, is this

where all chains are lined parallel like this. What shall be the configuration entropy then? 0. In

that state the configuration entropy would be 0. So you are decreasing the configuration entropy

when you apply the stress like this. Right.

Now what happens? When you are in this state, your stretched state when it is uncoiled to some

extent,  there are secondary forces which come into play to maintain them in that state. With

besides the primary crosslinks and secondary forces are van der Waals forces. It is important for

you to understand because we know that configuration entropy is not a function of temperature.

But  when  I  talk  of  the  configuration  entropy, I  must,  I  have  to  talk  about  the  number  of

configurations belonging to the same energy.

What  I  am  demonstrating  here  is  now  this  stretched  piece  of  rubber  when  I  increase  the

temperature, what happens? These secondary forces which are there between the chains, van der

Waals forces these weaken or you can say they break. Right? So since one of the forces which is

holding them in this configuration is gone or reducing in strength they try to coil back because

the primary crosslinks are trying to take them back.

The applied force is tried to straighten it out. And then to maintain them in that state are being

helped by the van der Waals forces. Out of the two forces, van der Waals forces and applied

stress, applied force, van der Waals forces have become weak and therefore the crosslinks try to

turn it back to coil, so the length decreases. This way when we increase the temperature, we go to

the configuration, coiled state configuration, more coiling, higher entropy state.

All right. So the point which I am trying to make here is configuration entropy is not a function

of temperature but by changing the temperature, by increasing the temperature in here what you



have done is you have changed the energy which belongs to the secondary bonds, the van der

Waals forces. That energy is being increased, so you go back to, because that is the force which

is holding the this configuration. It is now no more available and therefore it goes to the state and

it contracts back.

It is not a very large contraction. You will be doing the experiment, you will see that, it contracts.

It is good enough to say it contracts and we can make use of it. In rubber engines we do use this

property of the rubbers. All right. Now when I talk about this, I have uncoiled this and during the

process of uncoiling coiled chain is uncoiled,  I  have not stretched any of the carbon-carbon

bonds. It is only bent and therefore coil is formed, so I just uncoiled. There is not stretching of

primary bonds.

“Professor-student conversation starts.”

Professor:  Would  there  be  a  change  in  internal  energy?  I  am  talking  about  it  constant

temperature, no increase in temperature here, not this.

Student: No change.

Professor: There would be no change in the internal energy. And that is assumption which we

have made in working out this equation of state which I showed you. I said delta U, delta L at

constant temperature is 0. That you also try work out in your experiment,  it  comes out to 0

approximately. Right.

“Professor-student conversation ends.”

So that is the basic underlying assumption that there is stretching, there is only uncoiling of the

coiled chains, there is no change in the internal energy of the elastomer. Now what happens? You

are, as I said you are not able to reach that state. What primary crosslinks are going to stop you?

You cannot translate them permanently and make them completely straight. Once you reached

that stage, now if you want to stretch it, what would happen?

You would  start  stretching  the  primary  bonds,  primary  crosslinks  are  also  primary  covalent

bonds. You start stretching them and that means you are tending towards Hook's law where the

modulus of elasticity is very high and that is what I was trying to say what happens.
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Go back. When you reached here, the primary bonds gets start, starts getting stretched and this

becomes steeper and steeper and steeper where the Hook's law will be obeyed. And if you do

further anything, it may break. That can happen. So this is the part of the equation of state which

you worked out under the assumption that there is no change in internal energy when a piece of

elastomer is stretched. It is merely uncoiling of the coiled chains. Is the point understood?

“Professor-student conversation starts.”

Professor: All right. That is, now if that is so, if I give you a piece of rubber, what you have an

eraser and ask you put a weight of 10 kgs on it, measure the contractions or the change in size

and then heat it, will all the thermodynamics you have done will work there? Will it work if I

give you a piece of (eras), you have seen the piece of eraser, put a 10 kg weight on it?

Student: (())(37:33)



Professor: Why will it not work?

Student: Internal Energy (())(37:36)

Professor:  Yes.  The configurations  are  already there,  the maximum possible  coiling  is  there.

When I put the force, (compre) compressive force, I am not stretching the elastomer but I am

trying to bring atoms closer. So I am affecting the primary bonds. So internally change will not

be 0 in such a situation. It is not uncoiling of the coiled chains and there is no question of further

coiling of the coiled chains. They are already coiled, right. So therefore on compression this

analysis which we have done will not be valid because of the assumption that there is no change

in the internal energy of the elastomer. Is that clear? Good.

“Professor-student conversation ends.”
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Now we shall  look at  the long chain polymers,  can they be crystalline? I  started with these

structures, non-crystalline. Most of the time they are non-crystalline. But particularly a network

polymer I said I can never crystallize it. It is always non-crystalline structure. And same is true

about the long chain polymers, they are most of the non-crystalline. But it is possible for us to

have partially crystalline long chain polymers. Right.

Partial  crystallinity, let  us  see  what  I  mean by partial  crystallinity. Let  us  say  in  this  small

volume, I have a few chains which are stuck parallel to each other. But since they are not of the



same length, at the ends they do not remain parallel to each other because they are not of the

same length. Then maybe another place, another set of chains are parallel arranged but their ends

again will cause problems because they are not of the same length and so on and so forth.

So there are some volume of the metal where the chains are aligned parallel, they are crystalline

ordered arrangement. Rest of this is non-crystalline volume. That is why the partial crystallinity.

If there is possible to have all chains of the same length and all parallel, yes, we will get 100

percent crystalline material which is not the case, which is never the case. The other way they

can arrange themselves if have very long chain, in a let us say a rectangular block like this,

which is of course the thin block, these chains and then it can go back into the solid region.

So this region you see they are all parallel. In this region they have accepted the folds, the chain

segments are all parallel, that becomes a crystalline region. Only non-crystalline region at the

folds. These folds become non-crystalline. And we have seen such kind of, this kind of structure,

that kind of structure we have seen in polyethylene itself. Layers, for layers, layers of layers, that

means these chains arrange like this. They can be pilled now because between the one layer like

this and the second like that, there will be only van der Waals forces. One can be pilled over the

other easily. Pilling can take place.

And here some like, something like this is also seen in the flower patterns, that they are partial

regions  which  are  crystalline  and  other  regions  are  non-crystalline.  So  this  is  how  this

crystallinity if at all is seen, is like this, it is partially crystalline. 100 percent crystallinity is not

possible for a simple fact that no two chains are of the same length. Okay.
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And we can also try to align these chains by doing some mechanical working. I just talked about

it yesterday briefly. Cut a small strip from a container or this carrier bag of polyethylene, try to

stretch it. If start with a transparent material, after stretching you will see that it becomes opaque.

It is now, it does not remain transparent any more. We are trying to straighten out the chains by

doing  this.  And  also  this  is  becoming  little  more  rigid.  When  the  chains  straighten  out,

straightened out chain will be kind of a fiber where the chains are parallel. You try to stretch

further. So initial stretching you will find is easy for you but later on you will find it becomes

difficult for you to stretch it and that becomes opaque.

That is kind of working you can do and if you the working, chains can get aligned. That is one

way of doing this. And we have seen that when we want to see how much crystallinity is present

in a polymer, we can measure it density, which is going to be more dense and which is going to

be less dense. In non-crystalline region all chains are exact, 100 percent non-crystalline. They are

not going to fill the space efficiently, density would be lower. And when the all the chains are

parallel, they feel the space more efficiently, density would be higher.

So what  you find  is  in  polyethylene,  when I  take  a  50  percent  crystalline  polyethylene,  its

specific gravity is 0.93 and when it is 80 percent, it is 0.98. So by measuring and there is a linear

variation of density and the percent crystallinity. So once measure, make these measurements, it

is possible for us to say after measuring the density of polyethylene, how much crystalline it is.



So with this small kind of differences in density, one is called the high density polyethylene,

other is called the low density polyethylene. You have high density polyethylene bags, you have

the low density polyethylene bags. All these things are available. Right.
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Now I just talked about the chain lengths not being equal, I shall look at the factors that promote

non-crystallinity in these long chain polymers. First of all, is the length of the chain. Longer the

chain, means on an average, some would be longer than that, some would be shorter than that,

there will be large variation of chain lengths. And there will be more entanglement of chains and

there  will  be  more  crystallinity, non-crystallinity. It  will  not  become crystalline  if  the  chain

lengths are long. Similarly chains can get branched. I will show you structures of branched chain.

What I mean is suppose I have a chain like this, when I say it is branched, there may be a branch

going out from here, a branch going out from here and further from here the branch could go out

like this. Like in a tree you have branches. Such a chain can you align parallel to each other?

Certainly not. Branching can also be achieved sometimes by eradiating the polymers to gamma

rays or x-rays, it can be achieved.

So that is when sometimes we want to make the material non-crystalline purposely, so is more

appliable, more soft, we do that. Then stereoisomerism is the arrangement of side groups, R1,

R2, R3, R4, I talked about in the space. Let us first have a look at that, then we shall come to the

copolymers and plasticizers.
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Arrangement in space, here I have, I am showing let us say, this is a, okay, PVC. One atom is

chlorine, other three are hydrogen. Red one is the chlorine let us say. This is coming on this side,

that side, that side, is coming randomly. There is no regular arrangement. Such an arrangement is

called, and generally we have this atactic arrangement of the side groups. They are randomly

arranged and this can never give me a periodically repeating pattern. Crystallinity is not possible,

improve the non-crystallinity. By its presence there will be non-crystallinity in polymers. All

right. Let me show the next one. Okay. I suddenly crossed I think two of them.
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All right. Let us go this. This is one where chlorine ones are always on the same side, it can

provide me a periodically repeating pattern and can improve the crystallinity, is called isotactic

arrangement. This can improve the crystallinity.
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Now the third possibility, chlorine comes alternately above, below, above, below, like that. This

can  also  improve  the  crystallinity.  This  is  called  syndiotactic  arrangement.  And  this

stereoisomerism  is  also  called  tacticity.  Okay.  So  the  syndiotactic  can  also  give  rise  to

crystallinity, improved crystallinity. All right.



(Refer Slide Time: 49:40)

Next in the list was copolymers. Copolymer means I have another polymer present in the long

chain. Long chain by itself is a polyethylene I having between polyvinyl chloride. Here I am

showing a, well these are the arrangements which I just showed, atactic arrangement, isotactic

arrangement and syndiotactic arrangement. That is I just showed, is the same thing. It is not so

colored but let us go to the copolymers.

(Refer Slide Time: 50:16)

Yeah. These as a monomer of let us say of polyethylene and the white one is a monomer of

polyvinyl chloride let us say. Black is polyethylene monomer and white is the, or the uncolored



one is the polyethylene. So polyvinyl chloride and polyethylene, they are growing monomers

randomly distributed, it is called the random copolymer. I cannot find any periodicity in this. It

cannot give me crystallinity, that will rather improve the non-crystallinity of the polymer.

When  it  is  present,  alternately  polyvinyl  chloride,  polyethylene,  polyvinyl  chloride,

polyethylene, so on and so forth, this is an ordered one, difficult to obtain this. But if it is there,

chances of improved crystallinity would be there. In here I have a block of polyvinyl chloride,

another block of polyethylene.  Other words, these are long chains, not one monomer or two

monomers, large number of monomers there. So this is called the block copolymer.

This is also not likely to give me because segments having the length of the polyvinyl chloride,

the polyethylene length and polybag they are not of the same length, they are the segments of

different lengths. And just now I talked about the branched chains, here I show you the branched

copolymer. This is  a  polyvinyl  chloride,  on the sides are  branched through the polyethylene

chains like this. Only thing is one hydrogen is removed and suddenly you put a chain there.

Okay.

And that is becomes the branched copolymer. Copolymer, two of them are existing together. If

you look  at  what  I  talked  about  the  alloys,  this  is  something  similar  to  substitutional  solid

solution. This is something similar to substitutional solid solution. Okay. All right. The last one

we talked about is the presence of plasticizers.

Plasticizers are low molecular weight additives put in the polymer. So by their presence what

they  do  is  they  increase  the  distance  between  chains.  Once  the  distance  between  chains  is

increased,  their  translation  mobility  improves.  And  therefore  my  polymer  becomes  more

appliable, more soft. As I told you yesterday, PVC is a rigid material but the PVC pipings are

tubes we use for watering the gardens. It is very soft. We add some plasticizer to it to make it

appliable, more soft.

Similarly  you have heard of the  cellulite  films,  the photography you do,  the films you use.

Basically cellulose is very rigid material, wood consists of cellulose chains which are bound by

some glue which is called lignin. This is a rigid material. Only when add camphor to it, we can

make it soft and appliable, so it is like a negative film. If this negative film, you keep it in the

open air for about a month, you will find that it becomes very rigid and crisp.



If you try to fold it, it  will crack. The camphor has evaporated and that appliability is gone.

Camphor when it present, it was present, it has increased the chain length or distance between

the chains, that is a cellulose chains and it has become soft and appliable. Right. So that is what

happens to the garden hose also, it keeps lying in the summer in the lounge itself. You will find

that in the sun, the plasticizer evaporates very fast. It comes to the surface and just goes because

it is a low molecular weight material and just simply evaporates.

And what is left material is a rigid material, so it cracks with use. That seasoning takes place, that

is a role of plasticizers. It is similar to what is the role of modifiers, the impurities in silicon like

soda and lime. They lower the viscosity, means soft, make soften the glass. Similarly here they

make the more appliable and more soft plastics by addition of these plasticizers. Thank you.


