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Hello, and welcome to today's lecture. We will be discussing how to use Field II for conducting 

ultrasound imaging simulations. To start, we'll talk about how phantoms are created in Field II. 

These phantoms are numerical models, where each object to be imaged is represented as a 

collection of point scatterers. Essentially, Field II models each object as a set of point scatterers, 

and if the object contains small scatterers, it will exhibit diffuse Rayleigh scattering characteristics. 

Each target in the imaging field acts as a Rayleigh scatterer, and its position in space can be defined. 

Let's revisit the schematic of our transducer array to better understand this. In the z-direction, we 

have the axial direction, where the ultrasound beam moves away from the transducer. We also 

have the lateral direction, which scans from left to right, and the elevational direction, which lies 

outside the axial-lateral (z-x) plane. Each scatterer has a specific position within these coordinates, 

and we can also assign an amplitude or strength to it. If you're imaging a hyper-echoic region, the 

amplitude will be positive, and for a hypo-echoic region, the amplitude will be negative. 

The process of image simulation follows steps similar to what we discussed in a previous lecture 

on Field II. First, you need to define the transducer type and create a handle for it. We have 

previously covered how to create a handle for a circular piston single-element transducer and a 

focused ultrasound linear array. The next step is to define the transducer's electromechanical 

impulse response, followed by the definition of the excitation signal that will be transmitted to the 

transducer elements. Afterward, you'll specify the scan locations where each point target will be 

imaged, and use a function to calculate the echoes from those targets. 

To illustrate this, we'll go through an example where we compute an A-mode signal using a piston 

transducer. A-mode, or amplitude mode, generates a one-dimensional ultrasound echo signal. For 

this example, we define the transducer parameters: an unfocused circular piston transducer with a 

6mm radius, a center frequency of 1.25 MHz, and a -6 dB bandwidth of 60%. 

 
We are working with a bandwidth ratio and imaging targets located at axial depths of 3, 3.5, 4, and 

4.5 centimeters. First, we need to create the transducer handle using the XDC_piston function. 

Here, we input the parameters of the transducer, such as the 6 mm radius, with all units following 



   
 

   
 

the MKS system (meters). We'll also divide the transducer element into smaller mathematical 

subdivisions, approximately 0.5 mm in size. 

After creating the transducer handle, the next step is to define the impulse response. We'll set the 

sampling frequency to 100 MHz to satisfy the Nyquist criterion. The center frequency is 1.25 MHz, 

and the bandwidth ratio will be specified in terms of percentage. The bandwidth level (BW level) 

corresponds to the -6 dB full-width half maximum of the peak. To define the impulse response, 

we’ll use the Gauss_pulse function from MATLAB's signal processing toolbox. We’ll then send 

this impulse response to the transducer using the XDC_impulse command, with inputs being the 

transducer handle and the impulse response signal. These steps have been covered previously, so 

we’ll move on. 

Next, we use the XDC_excitation command to excite the transducer. After excitation, we define 

the positions of the point targets at depths of 3, 3.5, 4, and 4.5 cm. To set the scatterer positions, 

we create a vector where each row represents the x, y, and z coordinates of a scatterer. Each 

subsequent row will define the location of another scatterer. In this case, we’ll assign all point 

targets an amplitude of one using the ones function. If you want to scale the amplitudes, you can 

multiply the vector by a desired amplitude factor. 

Finally, we calculate the echoes from the point targets using the calc_scat command. The inputs 

for this function are the transducer (used for both transmitting and receiving), the positions of the 

point targets, and their assigned amplitudes. 

The calc_scat command outputs the echo signals at each location, as well as the start time. The 

start time is crucial for positioning the scatterer echo within the signal. After obtaining the echo 

signals, we typically compute the envelope of the signal to map the brightness of the echo. This is 

done using the absolute value of the Hilbert transform. 

Next, we create a time axis vector and use the range equation to calculate the depth corresponding 

to each time value. The range equation states that the depth equals the speed of sound multiplied 

by the echo arrival time, divided by two. The factor of two accounts for the pulse-echo system, 

where the sound travels twice the distance (to the scatterer and back). 

Here, we convert the speed of sound from 1540 meters per second to 1540 × 100 to obtain 

centimeters per second. After creating the time and depth vectors, we can plot the RF signal and 

its envelope as a function of depth. 

In the output, the top plot shows the RF echo signal, with amplitude plotted against time in 

microseconds. This plot reveals the times at which the echoes from the four point targets appear 

in the A-mode signal. The envelope of the signal, calculated using the Hilbert transform, is plotted 

according to the depth at which each point target is located. Peaks appear at 3, 3.5, 4, and 4.5 

centimeters, corresponding to the previously defined scatterer locations. 



   
 

   
 

To create a B-mode image of point targets, we need to define the positions in two dimensions. For 

this example, we simulate three point targets located on-axis at axial depths of 4, 5, and 6 

centimeters. 

Here’s a schematic of the simulation: our field of view spans from 3 to 7 centimeters, with 

scatterers placed at 4, 5, and 6 centimeters in the axial direction. The lateral positions are set along 

the center of the beam. The amplitudes for all point targets are set to 100. 

 
Let's now proceed to create a transducer. We'll be using a similar setup: an unfocused circular 

single-element piston transducer. In this case, we simulate a transducer with a 6 mm radius, a 

center frequency of 2 MHz, and a negative 6 dB bandwidth ratio of 70%. As before, we create the 

transducer handle, inputting the transducer's specifications into the code. 

Next, we set the impulse response, updating the bandwidth ratio to 0.7, and the center frequency 

to 2 MHz. The rest of the code remains the same. In this example, we want to excite the transducer 

using a two-cycle sine wave, also known as a sine burst. We define the sine wave by specifying 

two cycles, and then create a time vector to plot the excitation pulse. The sine function's parameters 

are set accordingly, and we use the XDC_excitation command to excite the transducer with this 

pulse. 

When it comes to B-mode imaging using a single-element transducer, typically, you acquire one 

echo signal or RF line at a time. To create a B-mode image, you mechanically scan the transducer 

across the 2D region of interest. To simulate this mechanical scanning, let's assume we want to 

scan in the lateral direction from -2 cm to +2 cm, stepping through these positions and calculating 

the echo at each point. The calc_scat command is used to compute the echo for each point. 

In MATLAB, this mechanical scanning is coded by holding the beam stable at one location while 

shifting the positions of the scatterers. We define a parameter called shifted_points, which 

simulates this behavior. Unlike for a linear array transducer, in this case, the beam remains fixed 

while the scatterer positions shift. We define the lateral scan range from -2 cm to +2 cm and loop 

through each of these lateral positions. At each step, we compute the echo signal using calc_scat, 

just as we did previously. 

Since each echo line may have a different start time, there’s a method to align the echo lines in 

your image to a common start time. You can achieve this by using code that accounts for the 

computed start position, the minimum start time, the sampling frequency, and the RF data. The 

patch of code provided allows you to adjust these variables and align the echo lines appropriately. 

Once you have the echoes from each scatterer, the next step is to compute the signal envelope 

using the Hilbert transform. The image is typically displayed as a grayscale image on a decibel 



   
 

   
 

(dB) scale. To achieve this, you normalize the echo amplitude by dividing by the maximum value 

of the envelope, then apply the formula 20 * log10 to convert the image into a log scale. 

Finally, the B-mode image is a function of location. The z-axis values are computed using the 

range equation, allowing you to map each point in space to the z-axial direction. The image is 

plotted using the imagesc function, with a dynamic range of 40 dB applied to the plot for proper 

visualization. 

 
Here’s how the output appears: you can clearly see the three targets. One is positioned near 4 cm, 

another near 5 cm, and the third near 6 cm. The image is plotted with a 40 dB dynamic range, 

which is a common display setting for ultrasound scanners, typically ranging between 40 and 60 

dB. The z-axis represents the axial direction, and the x-axis represents the lateral direction. 

Now, if you want to simulate a B-mode image of a phantom containing numerous scatterers, like 

what you would encounter when imaging actual tissue, you’ll be dealing with what are known as 

diffuse scatterers. Tissue consists of many scatterers, which are often modeled as Rayleigh 

scatterers. We refer to this as a "diffuse phantom," representing a scattering object with a random 

distribution of point targets across the region of interest. 

Here, we will simulate something like a cyst, which appears as a circular anechoic region in the 

image. In ultrasound imaging, a cyst is hypoechoic compared to the surrounding tissue, meaning 

it reflects fewer echoes. So, we give the surrounding tissue a higher amplitude while creating a 

cyst region with a lower amplitude. 

To create a diffuse phantom, let’s assume we have 1,000 scatterers randomly distributed in the 

phantom. We define the x, z, and y coordinates for these scatterers. The x and z coordinates 

correspond to the plane we are imaging, while the y coordinate is set to zero because we assume 

the phantom exists only in the x-z plane (the elevational direction, or y-axis, is ignored for 

simplicity). 

We input these coordinates into a matrix that contains the positions of the diffuse scatterers. Next, 

we assign an amplitude for each scatterer, setting an initial amplitude of 1. However, for the 

scatterers located within a defined cyst region, we set their amplitudes to zero, simulating the 

anechoic region. We determine which scatterers fall within this one-centimeter diameter cyst and 

adjust their amplitudes accordingly. 

Once the diffuse phantom is generated, we perform mechanical scanning with the transducer. In 

this case, we scan laterally from -2 cm to +2 cm in 0.1 cm steps. As before, we define the positions 

of the beam for each scan line, shifting the scatterer positions while keeping the beam location 

fixed. This simulates the mechanical scanning environment. 



   
 

   
 

Using the calc_scat function, we calculate the echo lines for each lateral position, obtaining the 

RF data. Afterward, we compute the signal envelope, display the image on a grayscale decibel 

scale, and use the range equation to compute the axial distance vector, or z-axis, which represents 

the depth. 

This process is similar to the earlier example with the three-point targets. The output shows a 

diffuse phantom, with the center of the cyst located around the 6 cm axial depth. The image is 

displayed in a 40 dB dynamic range. Notice that individual scatterers are not visible because the 

scattered waves from each point target interfere with one another, either constructively or 

destructively, producing the characteristic speckle pattern observed in typical B-mode images. 

The final result looks like this: a diffuse phantom with a clear cyst in the middle. The speckle 

pattern simulates what you would see in real ultrasound imaging. This example demonstrates how 

single-element transducers can mechanically scan and create B-mode images of different types of 

phantoms. 

Next, we’ll move on to a more commonly used approach in ultrasound imaging—linear or phased 

arrays. We’ll set up the process for simulating a typical linear or phased array imaging scenario. 

When setting up a transducer handle for array transducers, it's important to account for the distinct 

behaviors of arrays during transmission and reception. For example, a transducer may have a fixed 

transmit focus while using dynamic receive focusing, or it might feature a fixed transmit 

apodization with dynamic receive apodization. These configurations are commonly found in B-

mode imaging with linear arrays. Field II allows for the simulation of arrays as separate entities 

for transmission and reception, enabling the creation of configurations such as a fixed transmit 

focus combined with dynamic receive focusing. 

In the following example, a focused linear array transducer with a center frequency of 7 MHz and 

a -6 dB bandwidth of 70% is simulated. The transducer consists of 128 elements, an f-number of 

6.5, and a natural focus at a 4 cm axial depth. Both transmission and reception use fixed electronic 

focusing at this depth. To begin, the transducer parameters are defined, including the center 

frequency of 7 MHz and the 70% bandwidth. The 128-element array is specified, and the elevation 

focus is set, which is a fixed characteristic of the transducer’s design and does not change during 

imaging. 

Key dimensions, such as element width, height, and kerf (the space between elements), are 

established. The kerf fraction, representing the ratio of the kerf to the element width, can be 

adjusted based on the transducer design. The pitch, which is the sum of the element width and kerf, 

is essential for defining the spacing between elements in the array. The speed of sound and 

sampling frequency, typically predefined in Field II, are explicitly defined to ensure their 

availability in the workspace for later computations. These parameters are critical for determining 

time delays and focal points. 



   
 

   
 

To improve simulation accuracy, each element in the transducer is divided into smaller 

mathematical subdivisions. This finer division enhances the modeling of the acoustic field by 

allowing more precise control over the distribution of sound waves from each element. Once these 

parameters are set, further properties for transmission and reception can be defined, enabling 

advanced transducer configurations such as dynamic receive focusing and fixed transmit 

apodization for more accurate ultrasound imaging simulations. 

 
In this part of the process, we are ensuring proper element subdivision in the code. The rule of 

thumb for accurate simulation is to subdivide the transducer elements into smaller mathematical 

elements, each approximately half the size of the wavelength. This ensures that all scatterers in the 

simulation lie in the far field of these smaller elements. By dividing the transducer elements into 

smaller subdivisions, the wavefronts from each element combine according to Huygens' principle. 

Ensuring the subdivisions are half a wavelength in size guarantees that the waves are accurately 

simulated within the far-field approximation, which Field II relies on for optimal performance. If 

the size criterion is not met, the simulation may introduce errors. This recommendation can be 

coded automatically in the simulation, as shown in the two lines provided. 

Next, we proceed to create the transmit and receive arrays using the XDC_focused_array function. 

The inputs for this function include the number of elements, element width, height, kerf (space 

between elements), elevation focus, and the number of subdivisions that we previously defined. In 

this example, the transmit and receive codes are quite similar because we are assuming fixed 

transmit and receive focuses. 

After setting up the transducer, we define the impulse response, which follows the same approach 

discussed earlier. We then set the positions of the point targets, with six targets spaced one 

centimeter apart, each having an amplitude of 100. You can adjust the amplitude as needed based 

on your simulation requirements. 

For obtaining echoes from the point targets, we simulate the beam scanning. Unlike the single-

element transducer case, where we moved the scatterer positions, here, we move the beam across 

the transducer's aperture in the lateral direction. This simulates what happens in real linear array 

imaging, where a small group of elements focuses on a specific region before moving to another 

lateral position. Thus, the scatterers remain stationary, but the beam is moved. 

A key command for this simulation is XDC_center_focus, which defines the starting point of the 

beam on the transducer aperture. This function helps to simulate the lateral beam movement across 

the region of interest during imaging. 

In this process, the XDC_focus command is used to define the location of the beam focus. Here, 

we set the electronic focus to be at 3 centimeters, while scanning from -2 to 2 centimeters laterally. 



   
 

   
 

For each lateral position, both transmit and receive focusing are implemented. First, the center of 

the focus is defined using the XDC_center_focus command for both the transmit and receive arrays. 

After that, XDC_focus is executed. It's crucial to follow this sequence, as placing the 

XDC_center_focus command after XDC_focus will result in an error. 

Next, the Calc_Scat command is employed to gather the echoes from all locations within the 

imaging field. Once the echoes are collected, they are aligned to have a common start time. The 

envelope of the signal is then computed, and the B-mode image is displayed on a decibel scale. 

The resulting image shows a well-defined point target at the 3-centimeter focal depth, where the 

beam is concentrated. At other depths, the lateral spread of the signal is broader, which is due to 

the beam focusing primarily at the 3-centimeter depth. Consequently, the point spread function 

becomes wider at locations outside this focus. 

In cases where multiple focal depths are used or dynamic receive focusing is applied, the procedure 

is adjusted. Using the same transducer and phantom (with six point targets spaced 1 centimeter 

apart along the axis), we now introduce two transmit focal points at 2 and 4 centimeters. These 

focal zones are defined in the code, and start times for the focal zones are computed. Dynamic 

receive focusing is achieved by adjusting the focus over time, so that all on-axis points remain in 

focus. The XDC_dynamic_focus command is used for this, taking inputs such as the transducer 

handle, the time at which dynamic focusing becomes valid, and the angles for focusing in both the 

z-x and z-y planes. 

The code for dynamic focusing involves scanning through the lateral locations in the region of 

interest. The center focus and focal depths for the transmit side (at 2 and 4 centimeters) are defined 

first, as dynamic focusing is not applied to the transmit phase in this example. Then, for the receive 

side, dynamic focusing is applied. For each lateral location, the XDC_center_focus command is 

first used, followed by the dynamic focusing procedure to adjust the receive focus as time 

progresses, ensuring all points are in focus. 
 
In this example, we use the XDC_dynamic_focus command to input the receive transducer handle. 

We then set the start time for dynamic focusing to begin near the transducer. Since we're working 

with a linear array, which cannot steer the beam, the steering angle is set to zero. However, if we 

were using a phased array, the steering angle would be adjustable based on the phased array's 

capabilities. After setting these parameters, we calculate the scatterer echoes at each position in 

the imaging field, as in the previous examples. 

The remaining code follows the same structure as before. The resulting image reveals the point 

targets, particularly at 2 and 4 centimeters, where we set the transmit focus. These point targets 

appear much finer compared to those at other locations, showing the enhanced resolution at the 

transmit focal depths. Compared to the previous example, where we had a fixed receive focus at 3 

centimeters, you can observe that dynamic receive focusing results in skinnier, more refined point 



   
 

   
 

echoes in the lateral direction. This improved lateral resolution is due to focusing at each point 

along the axis, enhancing the point spread function. As discussed in earlier lectures, dynamic 

receive focusing significantly enhances image resolution. 

This demonstration highlights how to simulate dynamic receive focusing using Field II. 

Throughout the lecture, we covered how to define numerical phantoms in Field II, including the 

simulation of point targets and diffuse scattering phantoms. The Field II website offers many 

examples and resources, including setting scatterer positions to mimic anatomical structures in the 

tissue being simulated. 

Additionally, we explored how to simulate an A-mode scan using a single-element piston 

transducer and performed mechanical scanning using the same transducer. We also covered linear 

array imaging, including multiple transmit foci and dynamic receive focusing. Beyond this, you 

can use Field II to simulate phased arrays, concave transducers, and more. 

I highly recommend referring to the Field II website, as it provides a comprehensive user guide 

with examples and scripts to help you simulate different types of anatomy. This concludes our 

lecture, and I look forward to seeing you in the next class. Thank you. 

 

 


