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So, what I am going to do is I am going to use something called unit quaternions as a

better or perhaps the best representation of 3D rotation. So, I will use q for quaternion, it

will look like a 4 dimensional vector. I will give it 4 very simple coordinates a, b, c, d;

not going to use x, y, z just to avoid confusion with the ordinary Euclidean space that we

are in, but nevertheless you can consider this as an element of R 4.

So, there is nothing strange going on with each of the components. They are just 4 real

numbers 4 real parameters and I am going to impose a constraint, they are called unit

quaternions which is going to mean that a squared plus b squared plus c squared plus D

squared equals 1, hey that is not bad that gives us how many degrees of freedom?

Student: (Refer Time: 01:33).

3. So, that is good. So, I just want to make sure that is a sanity check, right, just make

sure, we are always keeping the degrees of freedom, right. what is this geometrically?

What kind of shape is this?



It is the equation of a.

Student: (Refer Time: 01:47).

Yeah, hyper sphere or let us just say a sphere; hyper sphere that is right. So, it is one

dimension higher than the 3D sphere. It is a 3 dimensional surface, right, the ordinary

sphere is a 2 dimensional surface that sits in R 3. This is a 3 dimensional surface that sits

in R 4, all right. So, you know; you do not have to completely visualize that. So, the set

of all q that were allowed to have here the ones that are unit, let me even say it, I will say

unit quaternions is a hypersphere in mathematics, it is called S 3 if you are curious.

(Refer Slide Time: 02:20)

So, yes, you can do it in higher dimensions, you can have S n in n dimensions, it is 3

because it is a 3 dimensional surface.

So, the standard sphere that you know is S 2 and a circle is S 1. I should point out that

you know, I  am going to use this  a,  b,  c,  D representation and in unity 3 D and in

dimensions, they tend to use a different representation which is x, y, z and w. So, even

without being sorted alphabetically correctly and in terms of my representation which I

am going to use the one that is consistent with mathematics and most of engineering as

well which is b c D a. So, if you want to go back and forth between what I am doing in

class and what you might see in unity and other game engines, then you have to take the

first element and put it at the end.



I do not want to tell how many bugs I had in my code because of this extra change. So, it

is very easy to make mistakes with this. So, so to be very careful; very commonly you

will  see quaternions especially  in math written like this  instead of writing it  as a 40

vector you will have a plus b i plus c j plus D k perhaps with little hats on these, but not

necessarily; so, maybe with or without the hats.

In fact, I am going to take the hats off, let me; I am sorry. So, very often you will see it

written like that, if I look at it with just this part a plus b I; that reminds you of what?

Complex  numbers,  right  maybe  you  put  a  j  there,  if  you  are  an  electrical  engineer

because somebody used i for currents, right. So, very often people say that there is a real

part of the quaternion which is the a and then 3 imaginary parts which are which are i, j

and k and then this leads to lots of fear and confusion among students right and so when

you deal with complex numbers and you have the real and imaginary parts, those were

invented because people wanted to find roots of polynomials, right.

The polynomials have real coefficients and if you want to find all their roots, you need to

invent complex numbers to have a kind of algebraic closure. This does not correspond to

the  algebraic  closure  of  some  kind  of  polynomials.  So,  there  are  some  reasons  for

referring  to  these  as  imaginary  parts  because  algebraically,  they  behave  similar  to

complex numbers and become a kind of generalization, but they do not correspond to

roots of polynomials and we are not going to do things like that.

So, in this class, I prefer not to make a big deal out of real and imaginary. I do not think

that is important here. It is important for you to just think of it as 4 parameters. It is a 4 D

vector and we are going to normalize them. So, that they are on a sphere. So, I would

say, avoid this kind of you know; let us say fear of something perhaps, nightmarish and

algebraic that is happening here, if you find these things interesting go and read about it

and learn about it, it is quite fine, I find it interesting, but we do not need to go down that

path and so, it is important here just to keep in mind that there are 4 parameters a, b, c, d

and if you treat it as a 4 D vector the length is 1.

The next thing I want to tell you is how to encode a 3 D rotation using our a, b, c, d

parameters.



(Refer Slide Time: 06:05)

So, here I gave you an example of how to encode rotation using exponential coordinates,

I  just  took  the  theta  and  multiplied  it  by  the  v.  I  am  going  to  do  some  other

transformation or operation to do the encoding as a quaternion. So, I am going to have V

and theta and convert it to a quaternion. 

(Refer Slide Time: 06:30)

So, here is the thing, again suppose, I get V equals V 1, V 2, V 3 and I have theta, right.

So, I have 4 parameters that I am using. So, I want to go between V and theta and I am

going to have this representation cosine theta over 2 that is the a part I am just going to



be a 4 D vector here that is the a part, the b part is going to be V 1 times sin of theta over

2. So, that is the b V 2 sin theta over 2 that is 2 c V 3 sin theta over 2 that is the D, all

right.

So, all I did was write cosine theta over 2 here and then for the remaining 3 components I

just took the V vector and did a scalar multiplication times sin theta over 2 correct that is

all I did if I square all of these and add them up what do I get right. So, I get cosine

square theta over 2 and then these 3 well I get a bunch of sin squares to add up, but I

know the length is going to be one because the Vs when I square those and add them up

they all add up to one. So, the entire thing is going to when I square all of these is going

to add up to be sin squared theta over 2 by the simple trig identity I get one.

So, this is a parameterization that puts points on this unit sphere in 4 dimensional space,

right. So, what I want you to get comfortable with is just being able to move back and

forth between these 2. So, that when you see this a, b, c, d vector somewhere in the code

maybe you are looking at unity or you are reading the code except remember that it x, y,

z, w there, but whenever you whenever you see it you should be able to look at it directly

and understand how to extract the angle theta and the axis V.

So, it should be very natural for you do not have fear about imaginary parts and other

kinds  of  strange things  going on and visualization  of 4 dimensional  spheres  and the

spheres in R 4 and things like that. So, 3 dimensional sphere and R 4 do not worry about

that just worry about understanding that there is an axis at an angle that is encoded in

your and it is provided by this simple formula.



(Refer Slide Time: 09:23)

So, if you understand that let us try to go over some simple examples.

So, these are some useful examples. So, what does that quaternion do if I apply this

formula; what does it correspond to?

Student: (Refer Time: 09:46).

What is that; yes. So, this is this should do this should be the identity rotation right it

should not do anything if theta equals 0 then all of these components become 0 b c and D

and this component becomes one correct. So, this one means the identity rotation it is

very interesting that in that  case I cannot even tell  what the axis was anymore right

because they all became 0, does that matter? No, it is the perfect case, it did not rotate

anyway. So, there is no axis. So, it seems like the axis just vanishes exactly in the place

where there was no rotation occurring.

So, very nice, feels good, does not it; let us see, well; let us try some other very obvious

patterns here what does that correspond to. So, that is right, 180 degree rotation about the

x axis, right because the axis here for this case must be V equals 1 0 0, right, for this

case. So, this is pitch, am I still being consistent without my definitions pitch is rotation

about x correct. So, pitch by pi 180 degrees, well, if you know that case should be able to

fill in these, this one is yaw by pi, right because it is rotation about the y axis, see how



you can look at the last 3 components and if it is simple enough you know the axis of

rotation.

In fact, this is just the axis of rotation, but not correctly normalized, right, if you just take

the last 3 components and renormalize them, you will get the axis you can you normalize

it  in this  case, but that is because there is no rotation anyway. So, the axis does not

matter, but the other cases, if you test for being non-zero, then you can figure out the axis

very easily with your eyes not even writing code all right the last one is roll by pi right it

needs a very simple example.

So, there really should not be fear of quaternions, I see a lot of fear of quaternion is this it

is quite simple once you understand what to look for the first coordinate is the amount of

rotation which is inverted right to smaller the number the bigger of the rotation and then

the last 3 coordinates are giving information about the axis of rotation let us try another

1; 1 over square root 2, 1 over square root 2 0 0.

(Refer Slide Time: 12:43)

So, suppose I see that what is the axis of rotation?

So, again that that is a perfect case where now I have to renormalize it, but it looks like it

is about the x axis how far am I rotated yeah very good. So, that is good. So, you are

doing you are doing great here. So, 45 or 90.

Student: 90.



90 because in the formula here, we divide by 2 so that is how some of you got fooled,

right, I make the mistake a lot myself. So, it is no problem. So, pitch by pi over 2. So, I

should be able to very quickly go with the other cases one over square root 2 0 1 over

square root 2 0 1 over square root 2 0 0 1 over square root 2. So, this is very nice if you

are debugging your code, you just want to make some simple transformations and try

them  out  it  is  very  nice  to  be  able  to  just  immediately  specify  some  simple

transformations like this or if you are debugging and you are not sure you got the code

correct. So, it is just very nice to be able to read these quickly.

So, this one is yaw by pi over 2 and roll by pi over 2 questions about that I am going to

give a little more information as we as we go along here, but I want to make sure that is

clear right. So, now, questions see their means it is very clear or very confusing.

(Refer Slide Time: 14:34)

So, here is something else to think about inverses and multiple representations in other

words non uniqueness multiple representations.

So, if I have a quaternion a, b, c, d. Now unit quaternion that is being used to represent a

rotation I should probably write back the conversion formula.



(Refer Slide Time: 15:28)

Let me remind you of this cosine theta over 2 V 1 sin theta over 2 V 2 sin theta over 2 V

3  sin  theta  over  2,  all  right.  So,  remember  that  that  is  how we  got  the  a,  b,  c,  d

components. So, what if I have minus a minus b minus c minus d can anyone tell me

how the 2 of these are related.

So, if a, b, c, d corresponds to some 3 D rotation; what is minus a minus b minus c minus

d going to correspond to is that the inverse rotation, it is the same rotation is it not that

amazing, it is the same rotation because if I take the V and I twist it  in the opposite

direction, right, I just flip it around I will negate the b, c, d components and then if I

negate the D theta as well that will negate the a, but it will not force another negation

here.

So, that will negate all 4 components so; that means that these 2 are equivalent. So, that

is something very interesting to pay attention to so; that means, that when we travel on

this sphere right it is a 3 dimensional sphere in 4 dimensions if we go to the opposite side

of it, right, it is called the antipodal point right the opposite point what anybody know

where the opposite point on the earth is from here.

Student: Yes.

Maybe it is a good guess I do not know no it has to be in the southern hemisphere. So,

you have to change hemispheres in all cases right. So, you know you go to the opposite



point on the earth and that corresponds to the antipodal point. So, on this quaternion

sphere this unit sphere of quaternions unit hyper sphere of quaternions the opposite point

is always equivalent is not that interesting well just to add an extra layer of confusion, all

right.

(Refer Slide Time: 17:43)

Let us think about what this one does; what if I have a, but I decide to negate the b, c and

d parts.

So, I keep a the same binding gate these 3, what does that correspond to?

Student: I just (Refer Time: 17:55).

Yeah, I decided not to know;

Student: (Refer Time: 17:58).

Yeah;

Student: (Refer Time: 17:59).

If I take, what do I get if I do cosine minus theta. It negates, right or it stays the same

well he should say the same ok I see. So, if I move the axis backwards; let us see. So,

these should stay the same, right.



(Refer Slide Time: 18:31)

So, let me think about this, if let us go back here, say I have V, I do rotation by theta, I

want to now do minus V and the question is let us see; I want to make this correspond to

the exact same rotation see from going in the opposite direction yeah that.

Student: I think (Refer Time: 18:59).

Yeah, it is a difficult problem of orientation. You have to visualize it. We have to remain

going counterclockwise,  right.  So,  if  I  want  to  continue  going counterclockwise  and

apply the exact same rotation; is it going to be theta I minus theta?

Student: (Refer Time: 19:17).

What is that?

Student: (Refer Time: 19:19).

2 pi minus theta, thank you. So, it is 2 pi minus theta. So, we go in the opposite direction

it is 2 pi minus theta, all right. So, if I go 2 pi minus theta, what sign do I get over here?

Negative a, all right, good. So, let us keep that we keep the trig going, all right. So, we

are fine. Now what if I decided to do it this way instead and I did not negate the a how

are these 2 related. So, if I say by Euler’s 3 D representation theorem that every rotation

corresponds to a single rotation about some axis, then if I want to undo that rotation I just



twist  it  back the other way right.  So, that corresponds to the inverse does that make

sense.

So, if I have some axis V and I rotate it by somehow fate if I now rotate by minus theta it

will just undo that rotation. So, in this case this should change the sign and I leave oh

yeah this should change this sign. So, I end up getting the opposite right. So, if I keep the

axis the same, but I just negate the theta then I will negate these 3 components, but the a

will end up being the same. 

So, here if I relate these to its inverses is that fine. So, if you are looking at a quaternion

a, b, c, d and you want to figure out what its inverse is what do you do just negate the last

3 components is that interesting it is that easy to compute the inverse rotation if you want

to do it with a matrix, what do you do? Do you have to compute a full matrix inverse

maybe except if it is a rotation matrix? It is just a transpose turns out. So, it is easier it is

also reasonably easy in that case.

If this is the case here, then we also can have another case where I just negate the first

coordinate I negate a and I leave b, c and d alone and these 2 should be equivalent, right,

does that make sense? The same rule is up here if I negate all 4 components, I should end

up with these being equivalent and these 2 being inverses that seem, all right.

(Refer Slide Time: 21:42)



So, again just a simplest to summarize if I negate all 4 components it is the same rotation

if I decide to negate only the first component or I decide to negate the second third and

fourth components together, but not the first one either one of those corresponds to an

inverse.

Then nice, so that is one very quick way many times in programming in these kinds of

systems. It is easy to make a mistake where you should have the inverse rotation and you

instead calculated the forward rotation; in that case you just perform some simple sign

changes you should of course, go back and check all of your math carefully and make

sure you understand what you are trying to do, but for debugging purposes, it is very

helpful to know, you can very quickly spot that you are off by inverse if the signs are

wrong. So, that is why I am telling you this trying to give you this extra information all

right any questions about that.

There  is  a  direct  formula for multiplication  of  quaternions  that  do not  that  does  not

require you to convert back to rotation matrices I am not going to make a big deal out of

it.

(Refer Slide Time: 23:07)

But  I  at  least  want  to  quickly  give  it  to  you.  So,  you  know  multiplication;  right

multiplication.



So, let us suppose that again, we have a, b, c, d for quaternions and I will say let p equal

just a, b, c, d part. So, I can treat it as a 3 D vector. Let us just suppose that is a 3 D

vector it called p and now if I want to calculate some quaternion q 1 multiplied by some

quaternion q 2 to get some third quaternion q 3, there is a very simple formula just using

3 D standard vector calculus I say q 1 multiplied by q 2 is equal to a 1, a 2 that is the

scalar part.

The first components of each 1 minus p 1 dot product p 2 so that gives me the first

component, now this is actually a 3 that we are calculating.

(Refer Slide Time: 24:33)

And then the remaining 3 components are given by p 1 standard cross product p 2 plus

scalar a 1 multiplied by p 2 plus scalar a 2 multiplied by vector p one. So, this gives me

the b 3 c 3 and D 3 components.

I am not deriving this at all there is a whole algebra of quaternions, there is a reason for it

coming out this way, but what I want to say that is very interesting about a couple of

things  one  of  them  is  that  if  you  go  through  this  you  will  find  out  that  it  is  not

commutative this product is that a good thing it is a good thing to guess if you are using

this to represent 3 D rotations and 3 D rotations are not commutative it would make

sense that this algebra of multiplying quaternions also ends up being non commutative as

does matrix multiplication of rotations encoded that way the reason why I will put this

and you usually, you will find this inside of a quaternion library you know that you do



not have to really worry about the details of it, but one of the reasons why I put this is.

So, that you know that you can do the following.

(Refer Slide Time: 25:43)

You could have rotation matrices R 1 and R 2 and you might want to multiply them to

get some third matrix R 3.

The thing you could do is you could represent the first rotation as a quaternion q 1 you

can represent the second rotation as a quaternion q 2 and if you do this and you apply

this product that I have given here and you get a result q 3 the interesting thing is that

these 2 results here end up being the same if I go and convert back. So, the arrows here

correspond to the standard conversion formula to convert rotations.  So, if I go and I

convert from rotation matrix to quaternion another rotation matrix to quaternion I do the

quaternion multiplication and then I convert that back to a rotation matrix, I will get the

same result and you will actually get it with fewer algebraic operations.

So, people tend to prefer to just stay in quaternion land the whole time let us say right.

So, you do not ever have to convert back to matrices if you do not want to if you are

using a library that forces you to in your code then. So, be it, but I just wanted to point

out  that  because  of  this  nice  algebra  you  can  stay  entirely  inside  of  quaternion

representation. So, it is another reason why people like using them in computer graphics

and in virtual reality.



In addition to this property that I mentioned, but I did not prove formally in any way

which is that small  changes in your in your quaternion parameters correspond to the

same small  changes  in  rotation  of  the  rigid  body regardless  of  where  that  rotations

occurring at in the space of rotations and that that is very important another way to say it

is that if I were to pick a an orientation uniformly at random what would that mean if it is

a 2 D orientation you just pick a number between 0 and 2 pi had random and you would

be fine what would I pick at random for 3 D rotation.

If you pick Euler’s angles the all pitch and roll at random you will not end up with a

uniform covering of orientations if you pick a unit quaternion at random a random point

on  the  sphere  you  will.  In  fact,  have  perfect  uniform  coverage.  So,  so  if  you  do

probabilities over transformations as well,  it  is very important to have this if you are

interested in a lot further detail on this subject it is called Haar measure, if you want to

study the mathematics of these things.


