
Digital And The Everyday: From Codes To Cloud
Prof. Shrisha Rao

Department of Multidisciplinary
International Institute of Information Technology, Bangalore

Lecture - 03
Socio-algorithmic processes & the Everyday-Part 0I

Good morning once again and thanks to Bidisha, and my colleagues for inviting me to

give this talk. This is a slight variation on a talk that I have given a few times before

including on this campus, so especially some of the local yokels who probably heard me

say this and in fact I tend to spout off about this at all occasions so you probably have

heard me say that also. And one thing is this is not a polished subject. Now, I teach

certain classes here of course in my role as a member of the faculty and then there are

textbooks, there are lesson plans, there are syllabi, there are established conclusions fixed

theories, well solved and well posed problems with proper answers, this is not one of

those.

This is in fact in some senses a very incomplete or superficial talk, but at the same time, I

think I am trying to ask some questions, which I want all of us to think about. We may

not have the answers to those questions yet, but these are in my view very important

questions, and this is something that we should be thinking about as we go along. And it

is very good that I see a lot of people here who are not just IT professionals, but also

people who have other kinds of relevant background and that is something that I think

will help us all.

So, and one other point of note I do not know how the NPTEL folks will go with this, but

I am in general very interruptable. So, if you have a question, you can stop me right there

and ask and you do not need to wait till the end. So, anyway to start with this, this is the

talk. And hi once again, my name is Shrisha Rao. And this is once again a topic which I

think is quite important, but it is not a finished polished subject where there can be a

complete set of fixed lessons to be learned. It is something where there are very

important questions to be asked and for some of those questions we have answers for a

lot of them we do not and that is exactly the point that is why we need to think about

these things.

(Refer Slide Time: 02:17)

So, one of the general issues is why do we even bother with this, what are the social

aspects of algorithms, and why are they important to us, and then what are the

foundations of algorithms historical and so on. Now, this will probably be a repeat to

some of you who have studied computer science, but it may be somewhat new to some

of you. And then what is the pragmatic basis of algorithm use, there may be a certain

amount of theory, but we also have to think about how they actually work in practice.

And then are there any limitations, yes, it turns out they are there are. And then what

about algorithmic bias in culture something that my good friend and colleague Bidisha

just alluded to and then some concluding remark. So, this is the rough agenda to start

with.

(Refer Slide Time: 02:57)

So, the first thing is why do we have to think about this. And one point to this is that

computational systems are everywhere. Thanks to newer technology is the fact that we

are increasingly automating a lot of things that did not use to get automated before, there

are hardly any pure technical systems anymore that do not use some kind of IT in them

right because of iot and many other technologies we do not have pure engineering

systems anymore almost nowhere. And even where there are they are soon going out and

we will have some type of networking coming into them. So, computational systems are

everywhere; and algorithms are used to drive them. And one other important point to

note is that what is the big basis what is the need for AI to become so big all of a sudden.

Ai has been there as a theoretical discipline for a very long time since the 1950s, but why

is it so big all of a sudden. Have you ever thought of that? One of the big reasons for that

is that so many people require services, so many people require IT systems, so many

people require IT enabled services. Now that there are not enough people to support all

those services physically or you cannot really deploy people like telecom center, call

center kind of people and deploy enough support staff to deliver all the services you need

to all the people who want to use them that is the big need for there to be AI and so on.

And one other important issue is there is this term called scientism which really refers to

I am a scientist, I think many of us are scientists, we all have a very high regard for

science, and I am not at all suggesting otherwise. But scientism we must admit has its

limitations. And that refers to the way of thinking where you believe that science or

scientific systems are infallible where you are willing to take a blind risk, where you are

willing to believe good about something, simply because it is supposed to be scientific in

its basis. And that I think is problematic. And I think we all have to agree it is

problematic and that is also because of government policies and corporate policies,

where science or technologies are advertises being the cure for all ills and that is a big

problem. Unfortunately that is happening in our country it is also happening worldwide

and that is actually a case where algorithmic processes do not necessarily help society in

the way that they should.

And that in all means that you have this French expression called plus royaliste que le roi

which means more royal than the king. And the English equivalent of this would be more

catholic than the pope. In all senses what it means is that in some way computing

systems, algorithms have supplanted human thinking. We are in the process of losing our

human dignity and our human nature even. My human judgment is now eclipsed if not

supplanted by algorithms. And in some sense that should bother all of us, it affects

human rights, it affects our individual sense of who we are as people, it can affect the

quality of life and the quality of our society.

In general, whenever we have had loss of freedoms we have been worried about it. As a

society throughout history when people lost their freedoms when they were told that they

no longer had the freedom to do something that they otherwise should have done, they

minded it and so should we that is the point here. So, we should think about that.

(Refer Slide Time: 06:25).

And couple of actual examples of this. So, this is an actual news article that came out a

couple of months ago, a few months ago, where this actually happened in our country.

So, this is an example of a child who was actually who actually died of starvation, and of

course, that is a great tragedy. What was worse was that this tragedy did not have to

happen. Most tragedies do not have to happen, but this one especially did not have to

happen because it was because of IT. So, there was a mismatch in some government

databases and because of all this aadhar mandate, and Digital India and so on, some

ration that the family had was supposed to get, could not be delivered, she did not get

and that poor child died.

Now, one of the lessons, I learned maybe not that well back in the day when I was a

student was IT is not pure algorithm is not algorithms are not pure they are not simply a

theoretical abstraction that just sit in some theoreticians mind. And do not really it is not

really abstract philosophy in that sense they have real consequences. There are people

who can be helped or badly hurt by them, and this is one concrete example of that. And

of course, there are other examples which are possibly suitable in a different context, but

this one is especially startling for us because it happened in our country in a way that we

probably do not want to see ever happen again. So, this is one.

(Refer Slide Time: 07:47)

And a second example of this. This is actually from the US also from this year, where in

the Houston school district, the public school teachers were being judged or they are still

being judged by some computing system. Their quality of performance, how well they

do as teachers is now being evaluated by that school district using some proprietary

algorithm and some proprietary computing system that no one understands. There is

some software, there is some vendor who has supplied that software, that software is

actually used to make evaluations, and that those evaluations actually determine which

teachers get promoted which teachers get fired etcetera, etcetera. There are actual career

consequences to these people based on this.

So, what happened was the school district was sued and this is an actual judgment copy

from that judgment. There was a summary judgment this is not quite settled, but this was

this actually the one level of judgment did happen in May. This actually was I think filed

in 2015 or 16, and it was litigated late 2016 and the judgment was delivered this May.

So, the school district was sued by the teachers in that school district saying look you

cannot do this. If you are actually going to judge us, if you are going to say that we are

not good enough for we do not need to be employed here anymore, then you need to tell

us how you are judging us. We need to know what those algorithms are, what the metrics

are, how they are arrived at, we need to understand if they are fair. So, this is what this is.

And it is actually something that is probably going to happen more and more often and

there is some interesting language in this that you can look up also. And I have given a

reference to this and some other things at the end, I will mention that so anyway. So, just

for your curiosity this was essentially set aside by the judge and said no this and he gave

the summary judgment where he denied the plaintiffs claims. And he essentially set it

aside, but it is not quite done yet those teachers will probably go on and file an appeal

and it will go all the way to the supreme court at which point we can say there will be

some case law on this topic, we are not quite there yet. So, this is still going on, this is

not, the story is not yet over, anyway.

So, these are two examples, an example from our country where even very poor people

can be badly hurt; this is an example from a more mature society where peoples careers

and their performance can be judged by algorithms which we do not fully understand

which are not revealed to us right. So, there are many such examples I just chose two

because I did not want to go on and on just on this topic.

(Refer Slide Time: 10:19)

And then there are some general aspects to this that we have to keep in mind. Those of us

who have been trained in computer science such as myself, we are trained primarily on

technical aspects. We do not really understand the social aspects of what we do. We do

not really understand the social aspects of or the consequences of our work. So, there is a

very well known title from the 1980s saying if writers can program and programmers

cannot write, who is writing user documentation.

And in fact, if you notice IT systems these days do not have any user documentation,

your iphone or whatever phone you use did not come at the manual did it, and that is

because essentially the IT industry has given up on user documentation. This turns out to

be a problem they really cannot solve. And unfortunately it is not just with user

documentation that the problem arises. You have all these once again like Bidisha was

saying this socio technical confluences where people who are trained in one or the other

do not really know how to establish the whole thing, and do not really know how to

explain the whole thing and that is one point of it.

The second part is also that you often see algorithms and technologies which are well

outside the realm where were only originally intended for use. And one example of this

would be with I think smart cars or self-driving cars. There are many examples like that

that is just one of them. Now a self driving car or in fact, it does not even have to be self-

driving take any modern high end automobile made by Mercedes Benz or BMW or your

favorite maker whoever that might be that often has a car area network CAN, which is

nothing but a LAN. Which is of course, something that we all know in a different context

very well, but the assumptions that went into designing the LAN in an office setting or in

a corporate setting or in an academic setting are very different from what applies inside

an automobile. But because it is essentially the same technology there are certain

concerns with privacy, you are not typically concerned about someone inside the LAN

hacking the LAN, but you are worried in the case of a car. So, someone who has access

to the key one time may or may not have access to the whole system or may not be

somebody you trust with the whole system all the time things like that.

So, there are a lot of such things where algorithms and technologies are conveniently

ported to a different domain without fully understanding the context of the domain, and

how that actually works. And then how algorithms should use that is not a question that

people answer based on social norms. They do not really think about what the effect on

society will be, they are driven by corporate greed. The chip companies want to advertise

how quick the chips are, some phone company wants to show you how good their phone

is. And in all these cases they are not really thinking about the quality of your life, they

are thinking about their bottom line and their profits which is ok, I mean we are all high

sense I suppose in some sense profit driven and we are all self motivated in that way, we

are all selfish in that way. But nonetheless that does matter because in many cases you

have evolution in IT systems which is not quite the way we think it should be.

(Refer Slide Time: 13:21)

So, some historical notes about this the first recognizable algorithm for anything was

Euclid’s algorithm for the GCD of two numbers, which we learned I think many years

ago. For some of you I suppose youngsters it was much more recently. So, this is the

historical first algorithm that anyone can identify. And this comes from the Gentleman’s

Name Al-Khwarizmi Muhammad ibn Musa, Al-Khwarizmi who was a 9th century

Persian scholar and mathematician. He also wrote a book which gave rise to the name

algebra also which introduced a word called algebra. And then this al-jabr became the

word algebra.

So, essentially this gentleman Al-Khwarizmi his name gave rise to the word algorithm,

and his book title gave rise to the word algebra. Now that has got to be an influential

book. And in fact, Latin works for a very long time would quote this guy as an authority

they would say Al-Khwarizmi said so. So, for a very long time this was a very influential

mathematician and he had a very big influence even in Europe in the middle ages

because of the quality of his work so anyway. So, this is the historical basis of algorithms

this is where it all came from.

(Refer Slide Time: 14:30)

And mathematics is in large part algorithmic, in the sense that constructive methods in

all in mathematics are inherently procedural like for example, bisect an angle in

geometry they teach us various things where you do certain things and those are

inherently procedural, procedural is nothing but algorithmic. And that was the tradition

in algorithm or in mathematics for a very long time until about the early twentieth

century that was the tradition in mathematics where everything was procedural, you had

a fixed process to find something.

And there is a very famous critique by a mathematician called Paul Gordon of a young

David Hilbert, Hilbert himself was a very famous mathematician in the late 19th and

early 20th centuries. And when Hilbert came up with an existence proof, where he did

not have an actual process to construct that object, he did not have a process to find that

value, he just showed that such a value existed. So, Paul Gordon criticized this saying

this is not mathematics, this is theology. In theology, they argue various abstract things,

they do not actually have a way to demonstrate that such an object exists like reasoning

about God, so that was what the critique was about Hilbert’s work.

And there was also a similar statement made by Kronecker this was actually made in

German the translation of that is God made the integers, all else work of man. In fact,

now this would be made fun of it and in fact it is if you see this in a mathematics book

today it will probably be in a pejorative sense will they actually make fun of Kronecker.

But the at the time what Kronecker meant was natural numbers and the process is for

manipulating them those are proper, existence proofs and stuff that you actually just

reason about in the abstract that is not good mathematics, that is not something that we

actually can accept.

(Refer Slide Time: 16:15)

But however, once again since the early twentieth century mathematics is not only

procedural, and this is one once again a classic example of this. I am really not

competent to explain this in great detail, but I will just go over this very briefly with you.

Now, Littlewoods this guy Littlewood was a friend and colleague of G. H Hardy, Hardy

being of course, the Cambridge mathematician who also worked with Ramanujan that is

the name I think you know. And there are two functions we would not go into what they

are p pi of x and li of x. And as x increases x being a natural number, pi of x is this value

and this difference also seems to keep increasing, so that li of x is actually larger and

larger than pi of x. So, the natural conjecture was even when you have larger and larger

values, this keeps increasing right, so that was the conjecture that pi of x is always

smaller than li of x.

Now, this seems very natural given that even as you get to very large values this value

keeps on increasing in this way right, but Littlewood had this great insight which is

really uncommon saying that no, this is not always the case and in fact these two values

keeps switching. They keep switching where one is larger than the other for a while then

the other one is larger than this for a while and so on and this switch happens infinitely

often that was a fantastic result. Now, the problem is we get to such large values and we

have not seen a switch and in fact this is actually getting bigger and bigger. So, when

does the first switch happen and that happens at a number called the skews number

which is ten to the ten to the ten to the thirty four this is obviously, much bigger than the

list of any number of things you can have in the universe the protons neutrons and so on.

So, this is the time of the first switch. If you get this far then there will be a switch where

li of x suddenly becomes smaller than pi of x. And then after that there will be an infinite

number of switches beyond that. Now, this is not something you can establish

constructively and in fact to this date we do not know as far as I know the first value at

which the switch actually occurs this is actually the bound skews number. So, this is an

example of an existence proof where in mathematics we know that something happens,

but we do not know the precise value at which it happens right.

So, there is no algorithm for doing this, but Littlewood came up with this result which

said it does happen I do not know where it happens, but it happens right. So,

mathematics has moved away from the algorithmic aspect not completely, but

mathematicians today do not really consider themselves as doing the kind of thing that

Paul Gordon would approve of. So, there is a lot more of this kind of stuff happening in

modern mathematics.

(Refer Slide Time: 18:57)

So, theoretical foundations once again those of you who are CS people do not need this

too much, but I will just go over this briefly. A Turing machine once again which is an

eponymous machine named after Alan Turing it is a model of a computing machine

where it manipulates certain symbols or according to some rules it has the basic

properties of computer input output storage. And there are different models of

computation beside Turing machines, but all of them so far are equivalent to Turing

machines no one has come up with a model that is different from a Turing machines they

all have the same expressive power, they are all quote unquote Turing equivalent.

And the Church-Turing thesis says that effective computability is the same as being

computable on a Turing machine right. So, in general, in theoretical computer science,

which is a domain that I came from or that I do come from, an algorithm is exactly what

you can do on a Turing machine. This is important to note because we have all these

fantastic claims or counterclaims or whatever about AI or this or that, but as far as

theoretical CS is concerned what does computability mean it means exactly what it

Turing machine can do nothing more nothing less. And every algorithm is therefore, is

essentially a function from the set of natural numbers to the set of natural numbers, it is a

computable function from n to n that is what this is.

(Refer Slide Time: 20:12).

So, therefore, there are certain things algorithms cannot do. One easy example is

computing over the real numbers, because computable functions are only from natural

numbers, natural numbers. And similarly there are certain logical operators that you and I

use in our daily lives like, however and nevertheless there is no algorithm that can

actually capture them. Similarly, the set of all functions from N to N is a strictly larger

infinity than the set of all computable functions that is a very easy result to show, if you

are interested. So, there are uncomputable functions we can actually come up with

examples of them. Therefore, in the abstract even in the abstract realm, we know that

algorithms do not actually capture everything. There are things which we cannot do

using algorithms.

(Refer Slide Time: 20:55)

And to move onto more pragmatic aspects strong AI is the view that human level

cognition is algorithmically possible. So, there are some scholars who claim this Daniel

C, (Refer Time: 21:05), and so on. They try to give a physical interpretation of the mind,

they actually say or think they propose that human minds human brains are nothing but

Turing machines maybe with a very different physical architecture, but that is what they

are. And anything that a human being can do a machine can hypothetically do. So, there

is nothing really special about you as a person yes.

Student: Sir could you explain how algorithm works functionally as then (Refer Time:

21:31) output I mean I am not being able to poses that so far.

I may be missing your question to some extent, but can you clarify exactly what the.

Student: how structure algorithm I mean I am not an engineer I mean so if you could

explain that.

Ok

Student: you also made a difference between pure computing and algorithm so at the

very beginning, so if you clarify these two things.

(Refer Slide Time: 22:12)

Suppose, I have let us take a very small example of something I need to do. So, for

example, if I have a list of numbers right, so if I have 3, 6, 8. I need to find the least of

these values that is a classical; it is not even sorting, just to find the least value you know

in an array. How would you do that? So, the way that classically algorithms proceed or

the way that computer scientists have for the last seventy years process this is they think

about ok if I am a human being and I do this. How do I do it, can I come up with a step

by step process?

Now, once again the one classic example of this is we all know how to make a peanut

butter and jelly sandwich right. Can you describe how to do it to someone who has never

done it before? And more precisely can you describe how to do it to a robot? And it turns

out that yes you can, but it is a very intricate process because a lot of implicit knowledge

that I have has to now be put forward it has to be really described in great detail. Now, of

course, there are certain programming language concepts and so on that I am not going

to get into data structures and so on.

So, basically once again if I need to find the least value what do I do, I say I will set this

to be the least value, I will have a value that I say call the least, and then I will go step by

step. And then if I see the next value as being less than this I switch. So, I said that to be

the least, and I keep going all the way to the end. And whatever I am left with as the

value in least is the least value in that array right, that is an example of an algorithm

where this is your input, and then this at the end should be the output. Once again

missing a lot of important details right.

So, the end if you look at or if you have I do not know how common this is in India, but

you have Ikea furniture some assembly required, where you have furniture that comes to

you not this way, but it comes to you with parts that you need to assemble. And then

there are some instructions on how to assemble them, you need to put this screw there,

and you need to do this and use this tool and that and so on that is also an algorithm in a

very different context. Essentially, a well developed well-described process for doing

something where you start with an input and get a well defined output that is an

algorithm, right anyway.

So, coming back to all this. The strong AI is the view that human level cognition is

algorithmically possible this is not really a scientific fact it is a theory, it is a kind of

school of philosophy if you want to call it that and that it is also view that the human

mind is algorithmic in nature. So, anything you call as being your own thoughts, your

own emotions, your way of thinking, your way of processing something all that is

ultimately algorithmic.

And this unfortunately is somewhat philosophically controversial, the mind brain identity

thesis is not completely free of controversy, there are people who agree with it, some

people who disagree with it and so on. And then there is a very well known book and a

theory called Singularity by Ray Kurzweil where this gentleman proposes that you

ultimately can get to a point where you can your mind can actually be downloaded into a

machine and so on, and then you can have eternal life in that way in some sense. You are

no longer the physical embodiment in human body you are actually going to live inside a

machine as a program.

And then once we are not going to be discussing all that today by the way, just

mentioning this because it is a relevant fact in the context of algorithms, it is not the

point of this discussion. The computational theory of mind has some ethical implications

for example, human rights, how do they change, if you consider that human being is

nothing but Turing machine that is something that we can also discuss which we will not.

(Refer Slide Time: 26:08)

In terms of the pragmatic basis of algorithms, this is something that we do think about.

There is a stored program concept, which came about in the 1940s give or take Von-

Neumann very well known mathematician made the observation that at the time there

were computers being used for various special purpose tasks. So, you would have

different machines physically different machines doing different things in different roles.

And it was obviously, getting too expensive to replicate machines for each task that

people wanted to do. And for von-Neumann inside was the stored program concept

where you have a general purpose machine and then you give it the specific instruction

you want depending on whatever task you want to do it, want it to do.

So that was the store program concept where instead of storing only the program or only

the data for the program, you also could store the program itself. So, you do not have

storage just for data, you have programs also being stored. And now of course, we are

very familiar with this concept where the general purpose machine is the so called

hardware and the stored program is a software. And depending on the software that you

run the same machine can do different things, you do not need one laptop to check email,

a different one to run Firefox, the third one to do something else and so on, you have the

same machine that can do multiple things.

