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Design of Experiments 
 

So now, let us look at very popular Second Order Statistical Experimental Design, based 

on the second order model. 
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This is the central composite design, you can see that we have a square here; we are 

talking about 2 factors, 2 variables. So, you have a regular 2 power 2 design, 2 factors in 

2 levels so you have 4 settings, this constitutes the square, low-low and then you also 

have high-high and so on. So, you have an experimental design involving a 2 power 2 

factorial designs. 

In addition to that, you have the axial points you can see this is the first axial point, 

second axial point, third axial point and fourth axial point. The first second third and 

fourth are given arbitrary fashion, so you have 4 runs, 2 power 2. Then, you have 2 k 

axial points where, k is the number of factors, so you have again 4 axial points that 

makes it the total of 8. But, that is not all you also have the center point which is the 

geometric center of the design. I said earlier that, the repeats may be performed at the 



factorial points or at the centre points. So, you here you can have 4 or 5 repeats for your 

experiments.  

This is a very interesting and very commonly used design for experiments. There is lot of 

flexibility, where you want to locate you axial point. You may want to locate at either 

further or close to the factorial design, depending upon your requirements. What those 

requirements are? And how do you shift them? You will learn when you do a formal 

course on the Design of Experiments. 
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So, why do we require the runs at the center? They may represent the repeats okay, 

rather than repeating the experiments at all the factorial points and this may become very 

expensive especially, when you have very large number factors, doing experiments at the 

center of the design space is convenient.  

As the center of the designs space, is some kind of representation of the overall design. It 

also represents an important augmentation to the factorial design and it tells whether 

there is a curvature in the experimental response okay. Sometimes, there can be only 

linear variation with the factors but, sometimes if there is interaction between the factors 

then you have a curvature or a twist in the planar response curve. It may not be a planar 

or it may not be a simple, but there may be some kind of curvature. So, to detect this 

curvature you need the center points. How the center points help you to detect curvature 

is beyond the scope of this introduction lecture. 
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So, the center points help to detect the second order or curvature effects. The quadratic 

terms, it helps to identify whether that beta 11 plus beta 22 is significant or not. But, it 

doesn’t help you to estimate individually beta 11 and beta 22. Where did this beta 11 and 

beta 22 come from? 
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Let us go back to the model, if you are having only 2 factors then I said, you will have 

beta 11 x 1 square plus beta 22 x 2 squared. These represent the quadratic terms and also 

responsible for the curvature, in addition to the interaction terms okay. So, to find the 



beta 11 and beta 22, you require center points. Even though, you may not be able to find 

out explicitly beta 11 and beta 22 at least we tell you whether beta 11 plus beta 22 is 

overall significant or insignificant. If beta 11 plus beta 22 is insignificant then, both the 

beta 11 and beta 22 are not required to be present in the model. 
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What is the contribution from the axial points? The axial points contribute to the 

estimation of the individual pure quadratic effect’s significance. If the axial points were 

not present, only the sum of the quadratic terms significance could be gaged using the 

center points, this is pretty straight forward. 
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The axial points do not contribute to the estimation of the interaction effects. The center 

points and the axial points contribute to the flexibility of the Central Composite Design. 
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Now, we come into the final topic; Response Surface Methodology. Many industries 

want to optimize their processes, but did not know where to start and where to end. And, 

it is not appropriate, especially in the industry to embark on a grand exploratory voyage 

in the end dimensional space, hoping to sight the promised land sometime or the other.  



What is important is, first to do a set of screening experiments where you have a 

preliminary set of experiments and assess the overall trend. And, the Response Surface 

Methodology then enables you to identify the direction in which you should proceed. In 

other words, it points to the direction where you should set your experimental factors, so 

that you are progressing in the correct direction okay. Suppose, the goal of your process 

is to optimize then, the Response Surface Methodology will tell you the direction where 

the process will be increasing or the process response would be increasing in the fastest 

manner. 

This is very useful, it helps you to decide and plan your next level of experiments. So, in 

any experimental work, an important objective could be to identify optimum levels of the 

various factors which will maximize, minimize a suitable objective for example, reaction 

yield, conversion, process time, energy consumed, etcetera. So, your objective function 

may be either minimum or maximum. So, you have to proceed in such a manner that, 

you go to the correct desired condition. 
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So, the current level of operation may be usually far away from the optimum and we 

cannot afford to wander in the wilderness of the n-dimensional experimental variable 

space hoping to eventually reach the optimum. Response Surface Methodology deals 

with identifying optimum settings of the factors in a systematic manner. 
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So, as I said earlier the Response Surface Methodology helps you to find quickly in 

which direction the processes increasing the fastest. You have to increase in the process 

responses what you want. So, if you consider case involving 2 variables, x 1 and x 2. The 

method of steepest ascent an optimization tool helps you to know the direction in which 

the responses are increasing in the fastest possible manner and this is directly shown in 

terms of the green arrow, for this particular case. 
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So, when you have 2 factors, this is the form of the equation, the true response involving 

the random error component and this is the model which is being proposed and you have 

to estimate the beta naught hat and then the remaining parameters beta hat 1 beta hat 2 

beta hat 12 corresponding to the interaction, beta hat 11 and beta hat 22 and the last 2 

corresponding to the quadratic terms. 
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Again, we can use linear algebraic techniques in order to identify the optimum 

conditions. So, in order to find the stationary points, the so called stationary points, you 

have to partially differentiate your proposed model with respect to x 1 and x 2 and set 

them to 0, solve the resulting systems of equations and, or system of equations and 

identify the stationary conditions. 
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To do this, would be quite tedious especially, when you are having many factors. We 

may as well use the linear algebra techniques for which several tools are available at 

present, for example, MATLAB, Scilab and so on, or there is no big deal in writing your 

own program, if you are having inclination towards that okay. So, coming back to our 

Response Surface Methodology approach, we can represent the second order model in 

matrix notation as shown here; beta naught hat plus x prime b plus x prime BX. And, the 

stationary point of the solution can be obtained by differentiating this in matrix terms, to 

get b plus 2 BX and we get the stationary conditions by equating this to 0. Again, all the 

bold terms indicates that they are vectors and matrices and not the regular usual scalars. 
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So, what is the form of the X vector, the B matrix and the small b vector? We came 

across all these, in this equation so we have to identify the form for all these. So, you 

have X as the vector, comprising of the different factors starting from X 1 so on to X k. 

Then, you have the B matrix, given in terms of these coefficients and what is this beta 

hat 11? I already told you, what beta hat 11 is. So, this is beta hat 11, beta hat 22. So, you 

can easily show that this is the form of the model. It might be interesting for you to find 

out, why some of these terms in the capital B matrix are divided by 2. So, I think it’s 

worth the effort to find out the reason. I will leave it to you. Then you have the b matrix, 

which again comprises of the parameters to be estimated and it is given in this particular 

form. 
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So, when we want to use this matrix method, we solve this particular equation and then 

we identify the stationary condition in a very simple way, minus half times the B inverse 

times the small b vector okay. So, that will give us the stationary conditions and then 

using those stationary conditions, we can give the estimated predicted value of Y by 

using this relationship. 
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So, whether the optimum obtained is maxima or a minima, you can again use or sort to 

linear algebra tools we can check the eigenvalues of the capital B matrix. So, we find the 

eigenvalues of this matrix. 

So, if the eigenvalues are all positive then, the stationary point in the region of 

exploration is a minimum, if the eigenvalues are negative then we have hit up on the 

maximum. Again, there will be some complications when you have 1 eigenvalue and 

which is positive and another eigenvalue which is negative, I will not get into these 

complications, but I think there is sufficient unexplored, uncharted territory as far as the 

student is concerned which he can get into and learn at his own pace. 
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So, we are coming to an end of the introductory series of lectures. It has been a real 

pleasure to talk about the various concepts associated with the Design of Experiments. I 

didn’t only focus on the various experimental designs because I felt to appreciate and 

understand the experimental design and also to understand, then analyze and present the 

results from the experimental design concepts, proper introduction into the basics of 

statistics and probability is also necessary. So, I covered lot of ground talking about 

normal distribution, the random variable, the sampling distributions of the means, the chi 

square distribution, the f distribution, the hypothesis testing concepts, believe me all 

these will come in your Design of Experiments analysis and knowing them would be a 

good investment, so that you can better appreciate the Design of Experiment concepts.  



I have also given NPTEL lectures on this fascinating subject. You are welcome to look at 

that for getting further information and understanding on this fascinating subject. 

Thanks for your attention. 


