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Welcome to the R session that supplements the lecture on Modelling Skills. In this 

session, we will work through two examples; in the first example, we will take up the 

CO 2 data set that we briefly looked at in the data analysis session. Once again, we start 

with a clean slate from R and load the CO 2 data set that comes with the base package. 

Always remember the CO 2 data set need not be just with one package, they are other 

packages when you load, you can also have the same data set. I am referring to the CO 2 

data set that comes with the base package called data sets. So, it has loaded the CO 2 

data. And to conform that’s indeed the same data that we worked with last time. Just 

look at the plot and you must quickly notice that it is indeed the same one. It has a linear 

trend, atleast prima facie, but it could be a quadratic trend or a cubic one, you do not 

know, but definitely it has a trend function of time. On top of it, we also have an 

oscillatory trend which we would like to model. And then, there could be a stochastic 

component to it which also has to be modelled. So, the goal here is to model the series, 



 

 

so that I can use that model for forecasting the CO 2 levels. 

We shall not go through the complete modelling exercise, because a complete modelling 

exercise may also call for some theory of random processes, where we learn how to 

model the stochastic components. I will only show you how to model the trend and the 

oscillatory part, and then the rest is reserved for some other course or may be if you are 

already familiar with it, you can go ahead and do it.  

So, here the first thing that we would do is we would model the trend, where the trend is 

a function of time. So, the time is a regressor and the CO 2 is the variable of interest. Or 

to extract the time vector we could use the time command. As you must notice here, in 

the work space panel, CO 2 is a time series object, and therefore, its always going to 

have time stamps as one of the attributes. We extract the time stamps and collect them in 

the tvec – it’s just a variable name that I have chosen. Now, we could extract the trend 

using what a routine known as lm in R, lm stands for linear modelling or linear models. 

The estimation algorithm underneath this routine is a least square - standard least squares 

algorithm - with a lot of other features as well. You could, for example, model only using 

a subset of data, you could supply weights and so on, but we are going to use the most 

plain or vanilla version of lm. And let’s call this model as lin CO 2 – that’s just a 

variable name that I am choosing. 

And let me show you what I am doing here. So, I say here I supply the formula that I 

want. Now by formula what we mean is the symbolic relationship between the predicted 

variable which is CO 2 and the regressor which is tvec. I do not have to tell lm that there 

is an intercept term as well. So, it is understood implicitly that there is an intercept term. 

On the other hand, if I do not want to the intercept term - for some reason I believe there 

is no intercept term - then I could use this syntax, but at the moment we do not know if 

there is an intercept or not; of course, we can look at things visually, but let us rely on the 

algorithm first to tell us if there is an intercept. 

So, this is the model now we have. Now, we can examine this model and we should do it 

to proceed further. The summary command is a very multipurpose command which 

applies to different types of objects; lin CO 2 is an lm type object, basically it’s a model 



 

 

type object and it has several components to it. But first let’s look at the summary and 

see what it is brings out. So, on the top, it gives you the formula which essentially is the 

symbolic relationship that we are modelling. And then, it gives you some statistics on 

residuals, what is the median and so on. You see some idea of whether the residuals are 

of zero mean, what is the range and so on, but we will come back to that. The primary 

interest for us is the estimates of the intercept and the slope. We have just fit a linear 

model. 

And as you can see here, there are four columns under the coefficients heading. The first 

column gives us the estimates; the second column gives us the standard error as we call 

one sigma error or the average error in the respective estimates. And then, the last two 

pertain to the statistics on these estimates and there are also stars here. So, let’s quickly 

understand what all of this is about. So, the estimates, of course, we can read off; by 

themselves the estimates do not carry a lot of information, they have to be interpreted in 

the context of the standard error. So, for what I mean by that is, suppose the estimate 

here was a very small value, you cannot come to the conclusion that the estimate can be 

neglected. Suppose slope turned out to be 10 power minus 4; it has certain units; so, it is 

going to be sensitive to the units. So, the value of something of the order of 10 power 

minus 4 by itself does not make any meaning or carry any significant meaning to it, 

unless it is interpreted in the context of the standard error. 

So, standard error here is much smaller relative to the estimates themselves. Conveying 

the fact that these estimates are to be treated as significant, which means you cannot 

really treat them to be negligible or theoretically zero. Now the t value column is 

something that I will not go over, it’s pertaining to hypothesis testing. So, may be in the 

course on hypothesis testing, you will find a lot of details on this. The last column, 

reports what is known as the p value; and the p value is again the probability of 

estimating this parameter, finding, obtaining an estimate larger than what we have 

observed, but without going too much into the details, the simple interpretation is, if the 

p value is extremely low, then the null hypothesis that the parameters are truly zero 

value. What are the parameters here? The intercept and slope, and that the entire purpose 

of this analysis is to test the hypothesis - that the individual parameters are truly zero. 



 

 

So, when the p value is extremely low, the null hypothesis that the parameters should be 

zero value must be rejected. And if you recall, we use a phrase - if the p value is low the 

null hypothesis must go. So, it is just a catchy phrase to remember. And the three stars 

here are kind of telling you that the parameter estimates are significant. They all telling 

you the same thing; you can look at it from a hypothesis testing view point or you can 

look at it from a significance test for the parameters; either way what it’s trying to tell us 

we cannot ignore the parameters estimates practically. Therefore, this linear model 

should have both slow and intercept.  

Now the question is - if this linear model is sufficient? We have discovered that this 

linear model as significant parameters on it. Now, to do that, we can look at the 

residuals; for example, we could plot the residuals; the nice thing about R studio is it tells 

you whether the field that I am typing is a valid field in the lin CO 2 model. And by 

default, it may plot a scatter plot. So, we will plot a line plot. So, you can see here the 

linear trend as been taken off, but it seems to be some quadratic trends as well, because a 

pure sine wave of that frequency cannot have a shape like that; may be we can fit a 

quadratic model as well, and check if the residuals are much better behaved and so on. 

So, to build a quadratic model, you can go through this syntax here, and this is something 

that you may want to pay closer attention to. Again, the same story; we use lm, specify 

the relationship between the predicted variable and the regressor; the regressor is as usual 

our time vector. This time around we want to built a quadratic model. 

So, our model is y is some a, a 0 plus a 1 t plus a 2 t square. a 0 is implicitly understood 

to be present, so we present, we are supplying tvec here in the formula forcing lm to fit 

an a 1, and then we used this syntax I of tvec square. This essentially tells R that tvec 

square is another regressor; if we do not do this, and instead we say tvec plus tvec square 

what R would do is it would add up tvec plus tvec square, and treat that as a single 

regressor, and that’s not what we want alright.  

So, always remember, when you are creating regressors out of a single explanatory 

variable - here the time vector - then we should follow the syntax. Tomorrow you may 

have tvec plus may be cubic term or a logarithm term something like that; all of that has 

to be - each regressor - has to be encased in a similar fashion like this alright. So, we 



 

 

have a model. 
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And now, we can once again look at the quadratic model, and look at the parameter 

estimates. Of course, technically speaking, we should look at the residuals first, and then 

the parameter estimates, but we are taking a slight deviation from that. So, again, here 

the stars for me indicate or the p values as well indicate that the parameter estimates are 

significant. That is, we can reject the null hypothesis that each of the terms in my model 

a 0 intercept, a 1 - the first coefficient corresponding to t; a 2 - the second coefficient 

corresponding t square, are all not zero or the estimates themselves are significant. We 

do not have, unfortunately, in this case a true model. I do not know or we do not know 

how this CO 2 was generated. The actual process is far more complicated perhaps then 

the models that we are trying to fit; remember that. So, there is no truth to compare and 

that’s why we go through this hypothesis testing; of course, if we know the truth then all 

this modelling exercise is futile alright. 

So, there are a bunch of other pieces of information here that are reported by summary, 

but to go over that requires a good set of lectures on linear regression, and therefore, I am 

avoiding that. But if you are already familiar, you will enjoy these pieces of information 

and make more meaning out of this analysis.  



 

 

So, once again let’s look at the residuals and see if this time the trend - the quadratic 

trend - has vanished right. So, this time, we look at the residuals; yeah the trend has 

vanished. There could be, of course, a cubic one, we could do that, and then go on and 

check if there was a fourth order polynomial trend and so on. I leave that to you; now 

that I will shown you how to do this. 

Let me move on to the next step where we analyse the residuals. For now, we shall 

assume that the quadratic trend is the only trend, but you should not do that, go further 

and fit a cubic trend. We will assume that the quadratic trend is only one and analyse the 

residuals. Now, when we look at these residuals here, we can clearly see an oscillatory 

behavior, which means we can now try to extract the frequency of this oscillation; that 

means, the CO 2 level has a periodicity to it. It repeats itself after a certain time. Now, 

how do we extract the frequency? I can do this visually, but that’s going to be too 

rudimentary an analysis. Let’s instead use the Fourier Transform rule. I don’t know how 

many you are familiar, but if you are not, then Fourier Transforms allow us to detect the 

periodicity in a simple way by constructing what is known as a power spectrum or a 

power spectral density, where you analyse the contributions of different frequency 

components within the signal to the total power of the signal. And the simple rule of 

thumb, which has a theoretical basis to it, is in a power spectral plot if I see a peak at a 

certain frequency then that frequency component is significantly present in the signal. 
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Now the base package in R does come with tools to perform spectral analysis or Fourier 

analysis; there’s a command called spectrum, but I prefer the Time Series Analysis 

package and it’s called the TSA. And I am going to load that, because it has a nicely 

wrapper or a nicely wrapped routine which is built on the base package to do this 

spectral analysis. 
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So, I have loaded the TSA package, and you should be… you should see this kind of a 

display. Now, when I load a new package in R, always there is a possibility that some of 

the routines in the new package share the same name with the routines in the existing or 

the base package. And R gives you a warning that the following objects are now marked 

from this package and so on. So, basically, they are telling you that acf, arima, tar and so 

on, if they are of interest to you, there is an overlapping between these two packages. So, 

you have to be careful and so on, but, anyway, we will not go into that. But one thing 

that I want to tell you, the TSA package also has a CO 2 data set, which looks quite a bit 

different from the CO 2 data that we have been working with. 
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Anyway, so, let’s quickly look at the periodogram, the command is periodogram. And I 

am going to really directly pull the residuals here, periodogram of quad CO 2 dollar 

residual; you can see a dollar operator is being used to extract the component. And 

beautifully it shows me the frequency content of the signal. So, the way to interpret this 

plot here is on the x-axis I have power, and on the… sorry, on the y-axis I have power, 

and the x-axis I have frequency. And what it’s basically telling me is that at this 

frequency, roughly, I have the maximum power; and this obviously, there is don’t need 

to guess, is the main frequency component that we are interested in. But there is 

something else also this spectral analysis reveals which is a presence of a harmonic 



 

 

alright. And this is, perhaps, well to conform whether there is harmonic or not - 

harmonics are integer multiples of fundamentals. 

So, if you think of this big one - the frequency at which there is a big peak as a 

fundamental - then approximately the tinier one to the right of that, can be thought of as 

a harmonic. And typically, presence of harmonics means some kind of non-linearities in 

the generating phenomenon and so on, but it’s very interesting, because visually we 

could not see this peak. So, you see, mathematical analysis brings out what we cannot 

really visually see, but at the same time visual examination is very important.  

Now, if you look at the power contributions from very low frequencies - almost near 

zero frequencies - there seems to be some significant contribution that is perhaps 

indicative of a very low frequency trend, which probably is indicating that we should 

have also modelled the cubic one; even our visual analysis, in fact, reveal that if you go 

back to the plot, there seems to be some kind of a cubic trend. In fact, if you plot the 

cubic one, I should tell you that you will find the a three - that is a third coefficient, the 

forth coefficient - also being significant. 

So, try it out, try fitting the cubic one and the fourth order one, and see what the analysis 

tells you whether the trend is indeed a third order or a fourth order polynomial, and then 

we have already learnt how to analyse the residuals, extract. So, now, you use these 

models to remove the trend and the sinusoid, and then you can see the residuals, which 

of course, I won’t go through at this moment, but you can always write to us if you want 

know how to do it in more detail. We can send you the script.  

Alright then, so, let’s move on to the second example. In the first example, we have 

learnt, essentially, how to perform linear regression in a systematic manner in R. We are 

also going to do one more linear regression here, but this example pertains to that of over 

fitting example that we went through in the lecture. 



 

 

(Refer Slide Time: 18:53) 

 

So, let’s clear the screen here, and generate the data required for the over fitting example. 

What I am going to do is, I am going to generate the input as a sequence here, from 0 to 

4 in steps of 0.02. So, I have 201 values of uk, and correspondingly I will generate the 

noise free response. If you recall, go and refer to the slide which gives you the 

relationship or the data generating expression for the noise free part, and this is what we 

had, and then let us call that as xk. Now, as we have always said, we never get access to 

the true response, we only have access to the measured value of it. So, to make the 

situation realistic, now we add noise. And we add noise in this fashion right; we add 

Gaussian distributed noise of the same length as xk. And we adjust the amplitude of the 

noise such that the signal to noise ratio is fairly high, and that’s what I am doing here. 

By default, if I don’t have the scaling factor there, the variance of vk would be one; it’s a 

unit variance random noise that I have been generating. So, let us generate the 

measurement; here I have yk equals xk plus vk and that’s the noise part I have, noise or 

the measured value. So, let’s simply plot here uk and yk, and see if this is what indeed 

we wanted yeah. So, it looks pretty similar to what we we wanted; of course, it looks a 

bit noisy, not so noisy. You can add… if you want, you can increase the levels of noise 

and repeat whatever we are going to do.  



 

 

Now, let me go through two or three different models and then will conclude the session. 

So, the first model I just want to show you, if you had access to the noise free part, and 

you had and you knew that the relationship is a third order polynomial, then you can… 

let’s do that here okay. Let’s call this as mod xu, and call the lm, and supply the 

symbolic relationship. So, we have here xk tilda uk plus I uk square plus I of uk cube 

alright; so that’s it alright. So, that brings up the summary for the model that we just fit 

between x and u. And I quickly want to draw your attention to the warning message at 

the bottom of this display. It says that essentially a perfect fit. It has to be, so what it says 

is, the relationship is perfect, there is nothing left unexplained, there is no residual from 

this model so to speak, and that’s also reflected in the median of the residuals are 

extremely small. There is zero up to the numerical precision. And also, the parameters 

estimates have been identified in a perfect manner and so on, but this is all a utopian 

world, we don’t have access to the noise free path. So, we move now to reality, am just 

showing you, that if you had everything in hand, the lm will perfectly identified that for 

you. 

So, let’s move on to the over fitting demonstration or the over fitting example. In the 

lecture, I pointed out that when we over fit, that is, in this example if I fit a fourth order 

polynomial or a fifth order polynomial I am over fitting; if I fit a second order or a first 

order, I am under fitting. So, in practice - do we know what is a order of the polynomial? 

No, we do not. So, how do we go about determining it. Let’s assume that we are given 

there is a polynomial relationship, even if you are not given, the plot of y versus u tells 

me or strongly indicates the polynomial kind of relationship. Now, I start guessing; we 

necessarily, obviously, rule out the first order, that is a linear one. We can begin with the 

second order, third order, fourth, and fifth, but I will skip the second, because the 

primary purpose is to show over fitting not under fitting okay. 
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We will first identify the cubic polynomial relationship between y and u, and then build 

the other two models, and let me do that here. mod yu 3. So, I have here. And also, what 

I am going to do, is I am going to pick the first hundred and fifty points for building the 

models and use the remaining fifty-one for prediction. This is something that’s probably 

going to be useful for you. And that exercise is also necessary, as I have mentioned the 

lecture, for cross validation. So, in lm, I can exercise this option by saying subset use a 

first one fifty points; you can use any one fifty points or even change the length and so 

on. Okay so, I have this mod uy 3; let’s also build the other models right here in a similar 

fashion and the fifth order polynomial as well. So, I am going to build all of them at 

once. So, these are the three different polynomial models. 

Now, we want to ask how good these models are right. A good test for these models, of 

course, is to look at the individual model - the parameters estimates in these individual 

models. So, here is a summary of the third order polynomial fit, and you can see that the 

parameter estimates are close to the truth. In this case, I know the truth because I have 

simulated the data and the estimates are quite close to the true values; you can never 

expect them to be exactly equal for obvious reasons. And the stars here also indicate 

along which are coming out of the low p values that the estimates are significant, good. 

So, third order polynomial is good. 
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We can also look at in a similar way the fourth order. Now, you see something different. 

I have over fit, because this is the fourth order polynomial look at what is happen. The 

intercept term is pretty close to the truth, and then starts the jumble tumble here, that we 

have the estimates deviating from the truth significantly to the extent that the coefficient 

on the third order term is not significant; you can look at the error. The error in the 

estimate of the coefficient for u cube is quite significant compared to the estimate itself; 

and like wise for the fourth order coefficient as well. And that’s why there are no stars 

here telling you that the null hypothesis, that the coefficients on u cube and u to the 

power four are zero, but we know that that is partially correct, but atleast we know for 

sure the coefficient on u to the four should be zero. What we should take home from this 

simple exercise is, when we over fit, we can have a situation where the parameter 

estimates, even though the true parameters are not zero, can turn out to be insignificant. 

So, we do not know how this over fitting is going to hurt, and I always like to give this 

example, that data is the food for identification and parameters are guests. So, when you 

do not have enough food for your guests, then some guests may go satisfied and some 

others may go hungry. We do not know who will go hungry and who will go satisfied, 

but the bottom line is they will always be some guests who will go hungry and the guests 

here are parameters. What we mean by hungry is here large errors; we do not want that; 



 

 

when we invite guests, we want all guests to actually go satisfied. So, always remember, 

data is food for identification; we don’t want to over invite, we may under invite, but that 

is also not good in modelling. We want to invite exactly the number of guests that are 

meant for the food because you don’t want any wastage of food either you have 

remember. And that analogy, hopefully, will stay with you whenever you are modelling. 
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And we should expect a similar behavior for the other one as well. So, for the fifth order 

polynomial as well, you can see none of the parameter estimates except the intercept 

term are significant, which means they have large errors in them. So, this has, obviously, 

gone for a full toss; we can compare, I will just compare the predictions. I will show you 

how to compute the predictions of the models. And we can quickly compare the 

predictions of the third order and fifth order polynomial on the remaining fifty-one points 

or we can choose the full data sets. We will just choose the remaining fifty-one points. 
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Let me do that. So, we call this as yk hat. So, let me... first the procedure to compute a 

prediction is to first create a data frame. Remember, that R accepts data frames for 

modelling and predictions and so on. So, lets create a data frame, where… I can simply 

say here uk 151 to 201. So, those are my… that’s my test data uk. And now, I can make 

the prediction here alright. So, mod uy three dot test data predict dot lm or simply 

predict; predict knows by looking at the object that you feed, which is moduy 3, that’s a 

model; it understands that it has to work on a linear model object. So, predict dot lm 

explicitly is telling R that the object or the model that I am supplying is a linear model 

type, and then, I am supplying the test data on which it has to compute predictions. So, I 

have done that. And similarly, let’s do this for the fifth order as well. I leave it you to 

compare the fourth order; something to work on for yourself. 

Okay so, we call this as yk hat, hat is typically used in estimation for a prediction 

approximation and so on, and I have used the same convention. Now, let’s compare the 

predictions here. So, I have a plot. Let’s plot the yk first. In fact, let us call also yk test; 

create a variable which corresponds to the yk for the test data alright. So, now plot uk 

test or yk and test and; this is not uk test; we have not created, sorry. So, here is the plot 

for the 151 to 201 points between yk and uk. This is a true, the measurements. Let’s ask 

what are the predictions of the third order and fifth order polynomial models. We can use 



 

 

here lines and say uk test, yk hat 3, and we can use a red color to see how the plot is. So 

sorry; this is color. So, let’s take a different approach here. Let’s plot simply the yk hat, 

yk test, and then plot yk hat 3. So, we can compare the predictions here. I have plotted yk 

as the function of time. 
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But we might as well plot as we did earlier here. We can plot this as a function of u as 

well okay. And then, here lines. Alright great !  And then we can also plot, maybe, on 

blue - in color blue; the prediction from the fifth order polynomial and see where it has 

gone. So, you can see, that in this case the predictions of the fifth order has gone apart. In 

the lecture, we have seen that the predictions had gone unstable as well. Now, how these 

predictions behave completely depend on the realization of the noise that we add, but the 

fact is, first of all, the parameter estimates are not reliable in the fifth order case. And 

therefore, we should not even trust the model; even if you were to trust that the 

predictions are not so great. I can tell you, if you were to repeat this exercise, these plots 

here will look different and the estimates will look different, because you will generate a 

different realization of noise. 

But the bottom line is, if you were to over fit, there are two symptoms that will be clearly 

visible. One, that you would see the large errors in parameter estimates, which means 



 

 

you have over estimated, you have over parameterised your model; and two that the 

predictions will fail somewhere between miserably to not so miserably, but they will be 

poor on a fresh data set. Always, in modelling therefore, if where ever possible have a 

cross validation data set; of course, some times may have two smaller data, but it should 

always be a practice to have a test data set, where you can test the trained model on the 

test data pretty much like we test students, trained on assignments, on exam papers right. 

So, go through this exercise by yourself and get a feel of what it means to model. I just 

also want to show you whether it is a lin CO 2 or the models that we have been fitting for 

example, mod y k 3 sorry uk uy 3. If you just type, this is what it would give you, but if 

you want the full list of components in mod uy 3, attributes will tell you what are all the 

other things that are contained in each of these models that are returned by lm. You have 

coefficients, the fitted values, you can compare the fits; the fitted values are the 

predictions of the model on the training data; you can extract the residuals like we did; 

then you can also get other details as to how it was called and so on, depending on how 

well versed you are with linear equations. 

There is also a non-linear version of the lm routine and there is a generalized version 

called glm. The non-linear version would use the non-linear least squares method; 

hopefully, some day we will have a chance to go over those as well, but we will have to 

conclude.  

And let me do that by saying, by hoping that you have enjoyed this modelling session 

and write back to us, as always, with any questions that you may have pertaining to 

modelling or how to fit models in R and we will definitely be glad to help you. 

Have a good day. 


