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Welcome to the course, once again, on Introduction to Research. In this lecture, we are 

going to learn certain aspects of modelling; in particular, data driven modelling. So, the 

lecture is titled as Modelling Skills, but it’s not just about skills that we will discuss; we 

will also discuss what types of models we have, and what are the different ways of 

developing a model, and so on. 
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So, in particular, we will learn first what is a model? Of course, all of us know what is a  

model, and this term - model - is used in many fields with almost similar connotations, 

but it’s good to really clarify it upfront, so that we are all on the same platform, and then, 

move on to learn what are first principles and empirical models. Now, essentially, these 

are not just models, these are also modelling approaches. The first principles approach is 

a fundamental approach, whereas empirical approach is a data driven approach. And 

then, we shall quickly go through a systematic procedure for building data driven 

models. As I said, a few moments earlier, we will largely focus on data driven modelling 



because that’s where a lot of expertise is not available or lot of beginners find it very 

difficult. And therefore, I would like to concentrate on the same.  

And also, talk about a few critical aspects of data driven modelling - what are the things 

to watch out for, how to go about handling certain aspects such as noise in data, and over 

fitting or doing the right kind of experiment, and so on. We will also embellish this 

lecture with a couple of hands on examples like we did in the last lecture on data analysis 

in R. I hope now, with the previous lecture, after the previous lecture you are familiar 

with R. 
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So, let’s begin our discussion by asking - what is a model? In general, we know, we can 

answer qualitatively what’s a model. It’s some entity that allows us to emulate a process, 

the process behavior, process characteristics and so on; this term - model - is not only 

used in data analysis or research and so on, you can see this term being used even in 

fashion industry and elsewhere, or even models of houses and so on. So, we have a good 

feel of what is a model, but let’s try and define what a model is. It is a mathematical or a 

descriptive that is quantitative or quantitative abstraction of a process. It allows us to 

describe a process in mathematical terms, so that we can emulate or simulate the process 

behavior. 

And why would we need this model? There are several reasons. We know, again, but it’s 

good to list some of the prime end uses of a model. One of the most popular uses of a 



model is in prediction. That is as we call as the forecasting, like we mentioned in the last 

lecture. Once I have a model, and I know the inputs to the model - remember that a 

model consists of certain inputs from the user - and then, the model makes a prediction 

of how the process would respond, and we will talk more about it shortly. So, models are 

heavily used in prediction or inferring certain unknowns and also classification - we 

discussed this last time pattern recognition.  

There we talked about models, not necessarily mathematical form; they are more of 

models in the form of classes. So, we say when the data falls into certain class, then the 

process belongs to a certain set of operating conditions and so on. So, models are heavily 

used in classification as well.  

And the third application of modelling is in fault detection, where I build a model of the 

process under normal operating conditions. For example, I know how a friend of mine 

would talk, and sit, and so on when he or she is normal, but when something is wrong, 

may be something is mentally troubling my friend, then I know that something is 

definitely troubling him by observing the behavior. Now, what’s happening underneath 

is I am projecting my friend’s behavior against a normal behavior that I have observed 

over a period of time, and then, comparing both, and seeing well there is a huge 

difference, and then, finally, coming to a conclusion that something is abnormal. This is 

pretty much the same idea in fault detection as well. We built models of process under 

normal operating conditions from historical data or through first principles approaches 

and then, keep comparing the measurements that come out of the process against what 

the model is predicting. If there is a significant difference between the prediction and the 

measurement, then we raise an alarm, and probably conclude that there is a fault, and 

then, take it up for further diagnosis. 

One of the prime uses of models is also in simulations. We have heard of simulators. 

Some of you must have worked with different simulators in chemical engineering, 

mechanical engineering, aerospace, and so on. You have heard of air craft or flight 

simulators. There, the primary role of the model again is in predictions. So, we give 

certain inputs to the model, the same inputs that we would see when we operate the 

process, and ask how the process would respond. So, the model would make a 

prediction. We need high fidelity models in such applications, whereas when we use 

models in control, although I don’t list that here, models are heavily used in control, 



where the model makes a prediction of where the process is heading, and then, a 

controller takes an action to keep the response of the process close to the set point. 

There, in such applications, that’s in control, we may not need high fidelity models. We 

can work with fairly approximate models. And finally, we do find uses of modelling in 

design and optimization and so on. 

So, obviously, the list is a bit more than what I have given here, but what should be 

remembered is the end uses of models vary a lot, and therefore, the type of model, the 

kind of accuracy, the nature of the model whether you want to build a steady state or 

dynamic model or you want to build a time domain or a frequency domain model and so 

on, really it depends on the end use. So, you have to work backwards, and then, make a 

decision on what kind of model you want to build. 
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Okay so, just to even make this point very clear - the point on distinction between a 

model and a process and also a similarity - I am showing you a schematic here of the 

process and the model. So, if you carefully look at the process architecture, there are 

inputs which are causal and physical inputs going into the process, and then, there are 

disturbances acting on the process. You can think of… you can take any process and 

actually cast it into this architecture. And then, the process responds, which we call as 

outputs in the engineering terminology.  



Now, models also give you the outputs that are of interest to you. In fact, typically, the 

output of a model is same as the output of the process, but typically the output of a model 

is nothing but the variable that you want to predict. And the inputs to the model need not 

be necessarily the physical inputs that go into the process. The inputs to the model are 

generally more or the same as the inputs that are going to the process, but for example, if 

you looking at a dynamic model, in a dynamic model, the output is modeled as a 

function of the present and the past, because transients are important to us. So, the inputs 

to the model are not only the present input but also the past; whereas the process is 

operating in real time, and it keeps receiving only the present input at any instant; the 

past has occurred but at that time. On the contrary, in the model, you do feed the past 

inputs and so on, and then make a prediction, because model is after all a mathematical 

abstraction. 

And then, there are also certain user defined parameters and or user specific inputs that 

you will have to provide to the model along with the system parameters. So, the 

architectures are different, but the final use of the model is in prediction – basically, 

predicting the variable of interest to you. So, that’s very important. So, do not get 

confused with the inputs that go into the process and the inputs that go into the model. 
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Alright so, let’s look at how models are developed because we want to really gain some 

insight into how to develop and build models right. There are two broad approaches to 



modelling. One approach is to start from fundamentals, where you invoke the laws of 

physics, chemistry, biology, and so on; essentially science based or mechanistic models. 

And here, we invoke the laws of conservation primarily mass, energy, momentum, and 

use a few constitutive relationships may be from thermodynamics and fluid mechanics 

and so on; and finally come up with the model; the set of equations essentially. which we 

call as a model. Now, that’s one approach. 

The other approach, which is quite contrasting, where we don’t rely on science as much 

as we rely on data. There is a data science, but we don’t rely on the science of the 

physics to begin with; at some point in time maybe we can incorporate, but to begin 

with, we rely on data. And this approach is called an empirical modelling approach. And 

it’s also called a data driven approach, where I will use the data to identify the 

relationship between the variables of interest; typically, the input and output and so on or 

sometimes only to build a model for the output which we call as a time series model. 

And here data is the primary food for identification. Without data, there is no empirical 

approach at all. And the kind of models that come out of empirical approaches are called 

black box models, typically, where you don’t incorporate necessarily any physics of the 

process, explicitly. You work with a minimal understanding of the process, but that does 

not mean that there is no provision for incorporating the physics of the process or 

whatever you know about the process a priori; you can. And as you keep incorporating 

the prior knowledge into your empirical model, the black shade turns into gray, and there 

is some transparency that sets in and such models are known as gray box models. 

So, in that respect, the first principles models are actually called white box models 

because they are very transparent. If I look at a model, first principles model, I will be 

able to associate every term in that model with some physical characteristics of the 

process; whereas, that’s not necessarily the case with an empirical model. An empirical 

model is some mathematical fit between the input and output. So, to give you a simple 

example, when we go out on a test drive, let say to purchase a vehicle, the common sense 

thing that all of us do is take the vehicle, sit in the car and apply certain inputs to rotate 

the steering wheel and pedal, apply breaks, supply fuel, and so on, and you know, give 

all different kinds of inputs that we want to really test the vehicle on; and then, collect 

the response of the vehicle. So, what we are doing there is, we are applying inputs, and 

observing the response of the vehicle, putting it all together in our brain, and building a 



mental model. We may not be able to write an equation there. We are building an 

empirical model. We are not really building a model of the car from first principles. I am 

sure that would be a very deadly approach indeed, but we never do it and we have not 

seen anyone doing it. 

On the other hand, when we really sit in courses on in automobile engineering, 

mechanical engineering, and so on or in engineering design, we do learn what are the 

mechanics of a vehicle through equations, through first principles understanding and so 

on. So, that has its place, while empirical modelling has its place; where increasingly a 

lot of people are turning to empirical modelling, primarily because many processes that 

we are looking at, trying to understand, are quite complicated, quite complex, for us to 

write a first principles model. So, the experimental or the empirical approach is a natural 

recourse and that will continue; it’s here to stay; it’s  been there since times immemorial; 

it has been there from the time man has started to build models, try to understand 

processes from observations. 

(Refer Slide Time: 14:33) 

 

And for the rest of the lecture, we will focus on empirical approaches per se, but before 

we do that, I just want to draw your attention to a few salient differences between first 

principles and empirical modelling approaches. There are people who really vouch for 

first principles models, and say, that’s the best and so on; and then, there are people who 

argue in favor of empirical models and so on, but there is no hard and definitive rule as 



to which modelling approach is the best. It is a situation that really determines the 

answer to that question, and one has to take a very common sense approach through it, 

and a neutral approach. But in order to do that we have to understand what benefits or 

pros and cons that each of these approaches have got to offer.  

With the first principles approach, we do get causal, physically meaningful models and 

so on, and also, its ability to predict the process behavior is good over a wide range of 

operating conditions. However, they are difficult to solve analytically. Typically, we end 

up with non-linear differential equations ODEs and PDEs and so on, and those models 

may take a lot of time and computational effort to solve; whereas, the empirical 

approaches offer a lot of flexibility in choosing the models.  

In a first principles approach, I don’t have any say on the structure of the model that I 

have. Whatever the laws that I am applying, give me, I have to live with those kinds of 

models. Of course, I can choose to build some approximations, but even those 

approximations can be quite complicated. Whereas with the empirical model, I am trying 

to find a mathematical fit that helps me understand or map the relation between the 

variables of interest, and also a map that helps me make good predictions; that’s it. So, 

there may be many solutions of which I may pick the most simple one, and not really a 

very simple one, but simple enough model, and that flexibility really gives the empirical 

model a big, what do you say, you know, vote of favor. A lot of people really prefer that, 

particularly in control and so on. And therefore, relatively much easier to may be 

simulate, and less time consuming to develop, and so on. However, they require good 

estimation algorithms, because you are going to estimate parameters of the model and so 

on, and there can be considerable computational effort there. So, there is no escape there 

as well.  

The first principles models give us effective and reliable models, whereas the empirical 

models are as good as your data. Now, that is a very common criticism of an empirical 

approach, but you have to be careful when you take that criticism into account. Clearly, 

training a model is pretty much like training a student in a subject. Whatever questions 

that you are going to ask later on to the student or whatever you are going to really test 

the student, depends on what you have taught. If you are going to ask a question to a 

student of a course, on a completely different topic that you have not taught, then 

obviously, the student may not be able to answer in most probability. And that’s the 



same with an empirical model. You are going to develop the model from data. So, you 

have chosen a model structure and data, bring them together with the help of an 

estimation algorithm, and then, force the model to understand the data. If you have 

chosen the right model structure, and right estimation algorithm, things will work out 

well, and it would have captured the essence of the process for the operating conditions 

that are present in a data, that is under which the data has been generated. 

Now, if you are going to present a completely new data set from a different operating 

condition, then it’s very likely that the model may not work well, unless the process is 

linear and so on. So, to speak, the extrapolation capabilities of an empirical model are 

always questionable, but it depends on how you have trained the model. If you have 

shown the model a wide range of operating conditions, then, yes. So, the model will do a 

good job for you, but in any case, if the model is too complex, then, there is no other 

choice for us. We have to choose, we have to resort an empirical model. 

The other aspect that is not reflected here is, when a process is random, that is stochastic 

- and we had discussed this part in the last lecture - in such situations, first principles 

models hardly come to your rescue. There is no choice, but to build models from data, 

which we call as time series models. So, empirical models have a lot of points in favor of 

them as long as you are aware of the limitations. The prime limitation being model 

quality is strongly dependent on the data quality. If you remember that, then, you will not 

really give excessive importance to the empirical modelling approach, really tread with a 

lot of wisdom, so to say. 
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So, let’s move on now and just get a feel of what are the different types of model that 

one can develop for a liquid level system. Now, this is a very simple system that we see 

in our households everywhere, and also in industries, where there is a flow coming into a 

vessel or a tank, if you like it, and there is some storage of the liquid in a tank, and then, 

there is an outlet flow. Both the in and outlet flows are regulated by valves. And let us 

say, I am interested in knowing how a change in inlet flow affects the liquid level. This is 

very important, because look at the flush systems in our toilets and so on; they are based 

on an understanding of how the flow affects the liquid level. There, of course, you have a 

mechanical device controlling the liquid level, but in industries there are automated 

controllers controlling the liquid level. In all cases, we need to know how the liquid level 

changes, when there is a change in the inlet flow. 

Now, the first scenario is probably that I want to understand its steady state. How the 

outlet flow and liquid level are related, because that actually becomes a part of the model 

eventually between the inlet flow and a liquid level. So, at steady state, we know from 

Bernoulli’s principle, fluid mechanics, and so on, we can derive a relation between outlet 

flow and the liquid level of the head that people talk about. And we know that the outlet 

flow is linearly proportional to the square root of the liquid level. This is called a steady 

state model. This is true at steady state. All you have to do is perform an experiment at 

different steady states, measure the outlet flow rate and the liquid level, plot the outlet 

flow rate verses the square root of the liquid level; you should see more or less a straight 



line. Well, if you have access to an experiment, you should try it out and you will see 

that this is not perfectly right, but this is a fairly good model. Now, we just now said 

eventually I want a dynamic model; that is that tells me how the liquid level changes 

when not only at steady state but between two steady states, when there is a change in 

the inlet flow. 

Now, for this we will have to write the material balance, that has apply the mass balance 

for the law of conservation of mass, and we assume incompressible flow, and we end up 

with a differential equation - first order differential equation – unfortunately, non-linear 

in nature. So, the equation that you see here has come about by applying two things. 

One, the conservation law of mass, and two, the steady state model that we just 

developed in the case one. Now, I can simulate this. Obviously as I mentioned earlier, 

this is a first principles model. There is no way to analytically solve this. I will have to 

use a numerical solver; essentially use numerical integration techniques to determine the 

liquid level profile - for a profile, input profile - which is the inlet flow.  

Now, what I could also do in order to have an analytical solution, I could approximate 

this non-linear model with a linear one, assuming that the changes in the inlet flow are 

not going to be too wild, and therefore, I can think of a linear relationship between the 

liquid level and the inlet flow. A fairly reasonable assumption under many conditions in 

many situations.  

So, what we do is, we approximate the non-linearity, the source of the non-linearity in 

the ODE in case two is a square root. So, we can approximate that with a linear one 

using Taylor Series Expansion. So, what we have done is, we have approximated with a 

first order approximation of the square root, and whenever we approximate, typically 

approximations are within the vicinity of an operating condition of a nominal point, and 

therefore, we rewrite this ODE as a linear approximate model. It is still a first principles 

model, but it is an approximate model, but now the model is in terms of what are known 

as deviation variables. That is how far you are away from your reference operating point, 

typically chosen to be as a steady state. On the other hand, I may say, well, you know, I 

don’t know any of this laws of conversation, and the valve equation and so on. I will 

choose to fit an empirical model, and then, there are two possibilities: a gray box and a 

black box model. Suddenly, I discover that in this empirical approach, no, no, no it’s 

conservation mass is not so difficult to write. So, I do write, and I have some idea of how 



the model should look like as in case three; but now the problem is we are no longer in 

continuous time, because we are going to build models from data, and data is available 

only at sampled, in a sampled instance in time; it’s not available at every point in time. 

So, we move from time t, which is a continuous time variable, to k - discreet time k. This 

k here, in case four, stands for the sampling instance, the k sampling instant.  

That is I am observing now. I have observed the process in order when I was collecting 

data, at a regular intervals in time which we call as a sampling instance, and now from 

some prior knowledge of the process, I know that there is a first order linear relationship 

between the liquid level and the inlet flow rate. So, I write an approximate linear 

equation, but in discreet time, and it’s a first order difference equation essentially. So, 

because I moved from continuous time to discreet time, I moved from a differential 

equation to a difference equation. And now, the goal in this kind of a modelling approach 

is to estimate these parameters a and b, and the epsilon that you see is a error that you 

have made in approximation. Of course, we also would like to know what the magnitude 

of this error is and so on, but the primary goal is to estimate these parameters a and b. So, 

here, we say this is a gray box empirical linear discreet time model, a lot of qualifiers, of 

course, but to be very clear, the gray box nature comes about because I have incorporated 

prior knowledge of a linear model and first order dynamics. 

Suppose, I don’t know any of that, and I just want to build a dynamic model; I can do 

that as well. Then, we end up with a black box model and I don’t have any equation 

written up here because the choice is yours. Of course, through a systematic study you 

will be able to discover that eventually the relationship between the liquid level and the 

inlet flow rate is that of a linear one and a first order one. Typically, when we start off in 

black box modelling, we start off with simple models. So, we would start off with a 

linear model, and because this is a dynamic process, we have to choose the order of the 

dynamics first order, second order, and so on. And therefore, through a careful study we 

can converge to a first order linear model. And this case study is discussed in detail in 

the book - one of the books that have given as references at the end of this lecture alright. 

So, this hopefully gives you a feel of the different kinds of models that one can develop 

for a process, and as you have seen here, the nature of the model that you develop 

depends on what you want to know, and what kind of rigor that you are looking for, and 

what you have with you - what kind of knowledge is with you. In an empirical approach, 



you have data and minimal process knowledge. In a first principles approach, you don’t 

have data to begin with, but you have a pen and paper, and you have, you are equipped 

with good understanding of the physics of the process right, but a good solution - 

working solution - is always a gray box approach, which is a marriage of these two, so 

that you don’t have to really take sides whether on the first principles or empirical. 
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So, I just mentioned a few minutes ago, that a systematic procedure will help you get a 

good model, and in particular, I am talking about an empirical approach here. So, I give 

you a flow chart for a systematic way of identifying the model, and let me quickly go 

over this. Primarily, you have three stages. One is data acquisition and we don’t talk 

about that here; we assume that data is available to us, and so, the first stage we really 

don’t discuss much. And then, the second stage is, of course, model development, which 

is at the heart of this procedure. And the third stage is model assessment; that’s very 

important and that applies to all models that we develop, whether it’s a first principles or 

an empirical model, it’s important to assess the goodness of the model; is the model 

capable of predicting the process over a good range of operating conditions? Is it doing 

well on a fresh data set? Even a first principles approach has to be validated. So, please 

don’t be under that impression that this is not required for a fundamental model. And 

maybe we want to ask, if in an empirical approach, if the parameter estimates that I have 

obtained in a model, do they have large errors in them. That is a something of interest. 



And the third thing that we have to watch out for an empirical modelling is over fitting. 

Remember I said building a model from data is pretty much similar to a student learning 

a subject. The student is presented with the text book, and the course material, and then, 

the student tries to understand the concepts of the subject, eventually, through a proper 

interaction with the course material and the instructor. Now, in the end, you have to ask 

if the student has over learnt; that may seem very strange - what is meant by over 

learning? Now, over learning is, let us say, I as a student I am trying to solve an 

assignment problem and the assignment problem is based on a certain concept. If I have 

understood the concept, that is, if I at the end of the problem solving exercise, if I have 

gained mastery of the concept on which the question has been based, then the goal of 

solving the assignment problem is more or less achieved, but if I start paying attention to 

the numbers, the very fine details that are very specific to that question, but has very 

little to do with subject itself, and I am trying to really memorize all of that, then I am 

over learning right. So, that is probably a simple analogy of over fitting in modelling as 

well. And that occurs primarily because of presence of noise in data and I have an 

example to show you later on. So, remember that there are three stages: data acquisition, 

model development, and model validation. 

Let me quickly talk about the model development part. You see that there is a pre-

processing - data pre-processing - we talked about at in the last lecture. We have to 

watch out for missing values, outliers or any other anomalies, get rid of them and so on. 

And a big part of that is visualization; involves visualization of data. And we had an 

example in the last lecture highlighting the importance of visualization. Once we have 

understood the data well and it’s ready for modelling, we should not straight jump away 

necessarily to build a model unless I know the model structure very well; that is, I know 

it’s a first order or I know that it’s a linear model, non-linear model, and so on of this 

type, and so on. So, an intermediate step involves what is known as a non-parametric 

analysis, where I make minimal assumptions on the process, and try to gather as much 

information as possible from the data, so as to make a good guess of the model structure; 

that’s called a non-parametric approach. And this step, can be skipped if I already know 

the structure of the model that I am going to fit okay. So, in many situations the non-

parametric analysis may not be even present. 



Finally, I have some good decent guess of the model structure, and then, I have to 

estimate the parametric of that model, where I apply estimation algorithms which are 

essentially optimization algorithms to estimate the parameters, and then, I have a model 

with me. So, that’s pretty much the model development in a very, very simple way that 

can be possible, but that can be possibly explained, but remember there is so much there, 

that’s a huge ocean in itself, and in any of these, at any of these stages, there are no 

definitive answers or formulae for you to really go through, but there are very good 

guidelines based on theory of data sciences. It’s very important to know at least the 

basics of those principles, and have certain guidelines in place, so as to minimize the 

effort.  

Now, one very important thing that you would see is that we are able to incorporate prior 

knowledge; that is, there is a provision for incorporating domain or prior knowledge at 

each of this stage, and I have also emphasized this aspect in the previous lecture as well. 

In any data analysis exercise, we should incorporate the domain and prior knowledge as 

much as possible.  

And the last, but not the least important aspect of data driven modelling is that it is an 

iterative exercise. It’s very unlikely that you will be able to get the best model in just one 

round of this iteration, one pass of this flow chart here. It is very likely that the model 

that we develop is not satisfactory in many respects, maybe it’s not predicting well on a 

fresh data, may be the parameter estimates have large errors in them and so on. 

Now, why would this occur? Perhaps because the data quality itself is bad, that’s very 

likely, which means we may have to go and repeat the experiment or the data quality is 

good and I have chosen a wrong model structure, which means I have to re-examine the 

models that have assumed, or that I have chosen a wrong estimation algorithm, in which 

case, I have to go back and choose a better estimation algorithm and so on. So a 

systematic study will really help us minimize this back and forth steps, and also, be able 

to pin point, with a fair degree of accuracy, as to what the source of problem is when the 

model is not satisfactory. So, please keep that in mind. 



(Refer Slide Time: 35:19) 

 

Now, within the empirical models, there are two broad classes of models that one 

encounters and I just want to briefly discuss those. I am not referring to the linear, and 

non-linear, and so on. This classification is based on more or less the same lines as we 

discussed in the data analysis lecture. The deterministic verses stochastic models and so 

on. So, the first class of models that one would see prevalently in the literature, 

predominantly in the literature is a time series models, which cater or which are suited 

for stochastic processes, where the causes are either unknown or known with error; that 

is, they are actually random themselves. 

And a simple example for that would be that of an atmospheric process. Suppose I want 

to build a model that predicts the atmospheric temperature. Now, what do I do? Yes, I 

probably know that there are several factors affecting the temperature, but I have not 

measured them or probably I don’t know the complete list of causes that influence the 

atmospheric temperature. So, a natural recourse is to take the historical data and hope 

that there is something in the history that will repeat itself; not exactly, but there are 

patterns, and correlations, and so on, and then, build what is known as a time series or a 

dynamic regressive kind of model. These are very common in many, many fields. On the 

other hand, let us say, I want to model the relative humidity of air. Now, I know that the 

relative humidity of air is significantly dependent on the temperature - atmospheric 

temperature. So, I have the relative humidity measurements, I have the temperature 

measurements and I can build a model between these two; that still counts as a time 



series model in the general literature, primarily because both the temperature and the 

relative humidity are random in nature. So, we can build what are known as multivariate 

time series models, but then, you know, it’s a matter of perspective. You can also call it 

as an input-output model. So, the time series model, when you look at the terminology, 

typically, it means you are building model based only on the response of the data, but 

many people use it with a larger connotation. 

Now, some of the challenges in building time series models are choosing the right model 

structure; that is how much in the past, for example, affects the present, and that, of 

course, again, guidelines and some mathematical as well as statistical methods are 

available to help us, but again there is no definitive answer. And making the right 

assumptions. For example, in stochastic processes, do I assume the process is stationary 

or non-stationary or it is stationary with a deterministic trend like the one that we saw 

last time, the carbon dioxide emissions, we saw a trend. There’s a linear trend, and then, 

on top of it there were oscillations and so on. So, we don’t know. Or if the underlying 

random process is linear, non-linear and so on. And, of course, the unwritten challenge is 

estimating the parameters; that’s anyway challenging in empirical modelling. 
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Now, on the contrary, we have what are known as input-output models, which are causal 

models, where I try to explain one variable using other variables that I think are causing 

or influencing the variable of interest. You may like the temperature relative humidity 



example or may be if I am measuring the power verses current in a wire or the 

temperature of a reactor verses a coolant flow and so on. There I can think of an input-

output relationship between these variables and will regressive models. Of course, 

multivariate models are also possible.  

Now, one of the challenges here, in this input-output models, is this so-called Regressors 

or explanatory variables as we call them, may be known accurately or may not be known 

accurately. In the temperature, relative humidity example which we called as a 

multivariate time series models can also be considered as an input-output model, but the 

difference is that the temperature which is the regressor for relative humidity, is a 

measured variable, is not something that I am able to adjust. Unfortunately, I am not able 

to, I don’t have the ability to adjust the atmospheric temperature. If people had that 

ability, then it could be a chaos right. So, the temperature is a measured variable and 

every measurement has error in it. So, the regressor, in that kind of a situation is known 

only with in error; whereas in a coolant flow verses temperature of a reactor, I probably 

have the provision to induce changes in a coolant flow and measure the temperature. 

So, there I know exactly what kind of changes I am inducing in the coolant flow and 

only temperature is a measured variable. So, the coolant flow is considered a 

deterministic signal or a variable in which case the regressor is known accurately.  

So, you have to look at a situation and determine how to treat each variable. So, it takes 

us back to the same thing that we learnt in last lecture, deterministic or stochastic. And of 

course, you can have different models and there are several challenges again here. For 

example, in cases where I have the privilege of performing an experiment where I 

change the factors or the explanatory variables - how should I change them? what should 

be the level of excitation and so on? Or which regressors? In multivariate regression 

there may be different factors, several factors affecting the variable of interest, then 

which variable should I factor in or which set of variables should I factor in? And there 

are also situations where the measurements and regressors are available at different 

sampling rates and so on. 

Now, in practice, all modelling exercises involve a mix of both input-output and time 

series modelling, because even in an input-output modelling exercise, we may not be 

able to explain all the variations in the variable of interest. So, for instance, in the 



temperature and coolant flow reactor example, I may be able to explain most of the 

changes in the reactor temperature using the coolant flow, but there is something in the 

measurement that I cannot explain using the changes in coolant flow and that something 

is probably sensor noise. So, how do I model that sensor noise? There, I have to take a 

time series approach. So, sometimes there may be no predictability in that sensor noise, 

then I only have to estimate the statistics, but in any case, I have to address both the 

deterministic and the stochastic portions of any any model. There is no escape to it. So, 

we will just quickly go through some of the critical aspects of empirical modelling. 
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And the first aspect in empirical modelling where we perform experiments or even if you 

don’t is that of the excitation in the regressor or in the factor or input, whatever you want 

to call it. So, let’s look at a simple example where I have a steady state model. The y is 

the output and u is the input and y is a quadratic function of the input. So, I have three 

unknowns, and therefore, I need data corresponding to three steady states, clearly. In 

other words, if I write the equation for estimating the unknowns - three unknowns - in a 

matrix form, at these three instants - different instances - in time k 1, k 2, k 3, remember 

we only have sample data. Therefore, we use this notation. When I write the equation of 

the model in a matrix form, then the big U matrix that we see here comes into picture, 

which maps basically y to the parameters b naught, b 1, and b 2. This big U matrix has to 

be non-singular or a full rank. Of course, in discussing this example, we have kept noise 

out of the picture. So, it’s a noise free condition. We are not making any noise here. 



When it comes to noise, there are other things to worry about, but even in the noise free 

condition, it’s important to remember that we have sufficiently excited data. 
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In fact, for a dynamic system, very interestingly, let us look at this example, where the 

output of a system is dependent on the past input, the one input beyond a past and the 

second input beyond the past. So, u k minus 1, u k minus 2 and u k minus 3 are 

essentially lagged inputs, but that 1 there, means essentially one sampling instant. This is 

the hallmark of a dynamic system. It has a memory essentially. So, I want to once again 

identify these three parameters.  

Suppose I perform an experiment where the input is sinusoidal. This is very common in 

mechanical systems or all systems which have a kind an oscillatory characteristic and so 

on or which are characterized only at specific modes or frequencies. There, if suppose I 

perform an experiment with a single sinusoid, then, what i mean by single sinusoid is a 

single frequency sine wave, and then, it turns out that the process manifests as a two-

parameter model. You just have to work through the trigonometry here. So, what I have 

done is, I have taken this input and plugged it into the equation here and asked how the 

response would look like. It turns out that the response appears as a two-parameter model 

to the user, to the experimentalist vis-a-vis the reality which is three parameter models. 

So, what has happened here? What is the consequence now? The consequence is only 

two of the three parameters can be identified. 



In other words, going back to the same story that we had in the steady state case, now the 

big U which would now consist of u k 1 minus 1, u k 1 minus 2 and u k 1 minus 3 in the 

first row and so on for the remaining two rows that becomes singular when input is a sine 

wave of single frequency. Therefore, I do not have enough information in the data to 

estimate all the parameters and that is the key. Always data should contain sufficient 

information to estimate the parameters. On the other hand, if I have an input which is 

made up of two frequencies - sinusoids of two frequencies - then I have sufficient 

information. You can show that, it’s very easy, check for yourself. Construct this matrix 

- big matrix U - that I showed in the last slide, but now with the first row being u at k 1 

minus 1, u at k 1 minus2 and u at k 1 minus 3 likewise at k 1, k 2, k 3, for two different 

situations, and you will find that the matrix is singular in the first case, that is when you 

use a single frequency sine wave, and it is non-singular or a full rank when you use a 

multiple or two frequencies at least in the sine wave alright. 

So, for dynamic systems the story looks different, but the bottom line is the same. Have 

sufficient information in the data. We will conclude with two things. One with 

understanding, and understanding of how noise effects our modelling, and then, finally is 

a bunch of questions that we want to answer in any empirical modelling exercise. 
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So, how does noise affect our data? Well, of course, in many different ways. It affects 

the accuracy of predictions; we will not be able to predict the output accurately. It brings 



about errors in parameter estimates. And three, it affects the goodness of the 

deterministic part of the process that we want to estimate. 

(Refer Slide Time: 47:48) 

 

So, normally, in quantifying the effects of randomness or the noise in data, there is a 

quantity called a signal to noise ratio that is used widely. It is not just in electrical 

engineering, but in every data analysis exercise, this signal to noise ratio is a very nice 

quantity that helps us explain or understand the impact of randomness on the quality of 

the model or the parameter estimates. And a signal to noise ratio is defined as the 

variability in a signal. Think of it as the level of amplitude or the power in the signal. 

The signal, what we mean by signal, here is a deterministic part.  

So, imagine that I am measuring, going back to the flow reactor and, sorry, the reactor 

coolant flow temperature, for example. I am performing an experiment, where I am 

introducing changes in coolant flow and I am measuring the temperature. There, I induce 

changes in coolant flow and I measure temperature. And when I measure temperature, 

the measurement contains two effects. One effect due to the changes in coolant flow and 

the other comes from the sensor noise or any other disturbance. The signal in that 

situation would be the true response, that is a response contained in the measurement due 

to changes in coolant flow only and the rest is all noise. So, obviously, if I want to get 

good estimates, that is of the model, of the coolant, of the reactor, then the level of 

response due to the coolant flow should be way higher than the noise right. And this is 



true for anything. If you are listening to a speaker in a classroom, the speaker has to 

speak loud enough - which is hopefully the signal of interest to you - compared to the 

sources of noise in the classroom, which could be due to a fan or an air conditioner and 

so on. So, there the signal to noise ratio is the amount of power or the amplitude - you 

can say squared amplitude - in the speakers’ speech signal vicav ( there is some term , 

not understandable )  or divided by the amplitude square of the noise contributions 

coming from the ceiling fans and air conditioners and so on. 
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So, higher the SNR, better the parameter estimate is; that is lower the error. So, to give 

you a simple example, I have a process here, which I am going to simulate. So, I am 

simulating a simple process here. u is the input and b 1 and b 0 are parameters that I 

choose, and x is a true response of the process, but I don’t have access to the true 

response. I have access only to the measurement which is y. So, the way I am simulating 

is I simulate I generate x first, the true response; and then, I add some random signal to, 

some kind of noise to x to generate my measurement. Now, I pretend that I do not really 

have access to x. I only have access to y and u, and that I know that the underlying 

relationship between x and u is this. So, when I fit a model between y and u using the 

data, what do I get?  

Let’s look at it quickly here and the two different situations; on the left, you have the 

situation where the signal to noise ratio is 100. So, I have adjusted the noise level in v, 



such that the signal to noise ratio is 100 and the codes for this are available on my 

website. What you see on the right is the case or the situation for SNR 10. Clearly, on the 

right-hand side, there is more noise as you can see in the scatter plot. In both cases, I am 

plotting y verses u. u is on the… input is on the x-axis, and what you see on the left top 

of the plot is the equation of fit of straight line. So, I have done this in matlab, and it 

gives me the equation of line, and it does a fairly good job of estimating b 1 and b 0. The 

true values of b 1 are 5 and b 0 are 2; b 1 and b 0 are 5 and 2 respectively, and the 

estimates are pretty close in both cases, but the difference comes about when we look at 

the so-called the standard error in these estimates. 

Now, what I have obtained here are b 1 hat and b 0 hat. The hat denotes the estimates. 

So, sigma b 1 hat and sigma b 0 hat are so-called standard errors, which I compute 

through some theory. Let’s not talk about that right now, but what is more important for 

us to notice is the errors that I am reporting for SNR100 are much lower than the errors 

that I report for SNR10 right. In fact, they share a relationship which is essentially that 

the errors in parameter estimates are proportional to square root of 1 over SNR. What 

this means is, I have a fall in the SNR by factor of 10 which means the errors should 

increase by factor of square root of 10, which is roughly about 3.6. So, you can see here 

in sigma b 1 hat when SNR is 100 is 0.036, whereas when SNR is 10 sigma b 1 hat is 

0.114, which is roughly about three and half times the error in the case of SNR 100. So, 

there is theory to tell us how the errors are dependent on SNR, but what’s more 

important to understand is wherever possible we should perform an experiment to make 

sure that the SNR is high enough; of course, respecting other constraints in the 

experiment. 
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And the other aspect, which is a final aspect, of the noise that I want to talk about, which 

I have mentioned earlier, is over fitting that occurs primarily when you have noise. Once 

again what we do to simulate the data, we first generate the response of the true process, 

the equation for which is given at the top. It’s a third order polynomial, and I add some 

noise to the true response maintaining a certain SNR, decent SNR like 10 and so on, and 

I generate my y; that is the measurement. So, once again we pretend that we do not have 

access to the true response which is a reality. I have access only to the measurement y 

and the input that I have given to the process. Now, the input and output plot is shown 

here. I can see a polynomial kind of relationship, but I do not know whether it is a 

quadratic or cubic and so on. So, what I do is, I try out third order, fourth order, fifth 

order polynomials, and obviously, as I increase the order of the polynomial, here I have 

generated about 200 observations. Sorry 100 observations. I can fit a 99
th

 degree 

polynomial to it. It exactly explains the relationship that I see in the left plot, but if I do 

that the danger is that on a fresh data, the 99
th

 degree polynomial will fail miserably.  

As you can see here in the center plot, the third order polynomial… what we see here in 

the center plot is the prediction of these polynomials of different orders that I have fit on 

a fresh data. So, I have reserved certain data for training and another data set for testing. 

The third order polynomial performs the best, the fourth order performs reasonably better 

and the fifth order polynomial goes for a toss. It predicts completely different. In fact, 



it’s unstable and I could have avoided this over fitting. So, this is what we call as over 

fitting. 

If I had looked at the improvement that I have obtained by fitting models of successive 

orders. So, the plot on the extreme right shows us that. What have done is with each 

model I have… Remember no model perfectly explains. So, there is going to be some 

residual. I have taken the variance in the residual or you can say the squared, sum 

squares of the residuals and plotted it verses the order that I have fit. So, when I start 

with the lowest order, obviously, the sum square is very high, and as I get closer to the 

true order, the sum square comes to a minimum, and thereafter, the improvement in the 

sum squares is very, very marginal. So, by increasing the order of the polynomial I have 

not benefited much. In fact, what I have lost out on is the ability to predict very well on a 

fresh data cell. So, a plot like this of how much improvement I am obtaining verses the 

order or whatever model complexity that I am fitting is always helpful in avoiding over 

fitting okay. 

So, why does over fitting occur? Essentially when I start confusing the local chance 

variation. So, if you see in the plot here, there is a global trend which is a polynomial 

trend on the left-hand side plot, but also there are some local fluctuations which are due 

to noise. So, if I start confusing those local fluctuations with a global trend, then I am 

over fitting, and that is what should be avoided in all situations. And that can be done 

with a careful study. So, just to give you a feel of what are the kind of errors that we 

obtained in the estimates of the third order polynomial, I report the estimates here, along 

with standard errors reported in the brackets underneath. They are called one sigma 

standard errors, and you can see that the standard errors in this parameter estimates are 

quite low compared to the estimates themselves, making us accept the third order model 

to be a satisfactory one. It has done a good job of predicting well on the fresh data and 

also the parameter estimates are low in errors. So, this should be the typical approach to 

empirical modelling. 
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Let’s conclude this lecture with a few questions for reflection, and obviously, we are not 

going to discuss them in detail, but in any empirical modelling approach, in fact, also to a 

large extent first principles models, these questions apply. One is always faced with the 

question what type of models to choose? Again, there is no formula there. We have to go 

based on the end use, how easy it is to estimate, prior knowledge of the process and so 

on. And the general guideline is keep the model as simple as possible. Not simpler, then 

simple, but as simple as possible. Good enough to explain, easy enough to estimate and 

so on, and of course, also convenient enough to implement, if you are going to 

implement the model online. And also, we will have to worry about two different 

models. One model that explains the deterministic portion and the other that explains the 

stochastic part. How do we correctly account for the deterministic and stochastic? That’s 

a big challenge and one has to go through a careful procedure. There is no time to 

discuss those, but there are certain systematic procedures in place, and the key is the 

model assessment stage where you check for over fitting of the deterministic and 

stochastic model; whether you have nicely segregated the deterministic and the random 

effects.  

Will the experiment influence the model that we fit? Of course, yes. There is no doubt 

about it. The data quality is highly influential on the model quality. Your model is as 

good as the data. So, perform experiments with care, think of the class of, range of 

models that you want to build. We have already seen excitation matters. If I poorly excite 



the process in the experiment, then I will have limited information, and therefore, I have 

not interrogated the process or interviewed the process enough to make a decision on a 

good model. 

And how do I, what kind of experiment should be obtained or designed? As I said, we 

should perform experiments taking into account all the factors, suppressing the sources 

of disturbances as much as possible, choosing a nice instrumentation which limits the 

noise levels and so on. And then, there is a design of experiments subject which tells you 

how you should go about designing the experiments, not only to enhance a signal to 

noise ratio, but also making sure you have all the factors that affect the variable are 

excited sufficiently, how to minimize the time, perform in an optimal way, and so on. So, 

you should refer to the design of experiments subject.  

How do we set up the problem of estimating? There are different estimation algorithms, 

least squares, maximum likelihood, Bayesian methods, so many different methods of 

estimation - which one should I pick? Again, you will have to understand how these 

estimation algorithms perform, but the general guideline is - choose the one that is 

efficient. That means, that gives you estimates with low errors and also computationally 

less burdensome; and usually these are conflicting factors. An algorithm that gives you 

efficient estimates need not be the computationally most friendly one.  

And of course, how much data to be collected – that’s a big question. It has a huge 

impact on the errors in the parameter estimates. So, general guideline is the errors fall 

down as a function of 1 over root n, where n is number of data points that we collect, if 

you have chosen the right estimation algorithms. So, obviously, more the data, better the 

estimate that one should expect.  

Another question that doesn’t crop of here is domain of modelling. I may collect data in 

time, but I may build a model in frequency domain. It’s very, very likely, particularly, in 

periodic… in detection of periodicities and so on. So, that’s another decision one has to 

make. Again, that completely depends on the application that you are looking at. 
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So, with those words I would like to close this lecture and here are a few references. 

Again, not exhaustive. The case study that I was talking about earlier, the book that I 

referred to earlier in the lecture is the one that’s given at the bottom - Principles of 

System Identification. There is a book, there is a website for this book on my web page 

and you can download some of the mat lab course. For example, for the over fitting and 

the signal to noise ratio examples that I illustrated. Please feel free to write to me if you 

have any questions. So, hopefully you enjoyed the lecture and that you have a good 

modelling session whenever it is. 

Thanks. 


