
Carbon Accounting and Sustainable Designs in Product Lifecycle Management

Prof. Deepu Philip

Department of Management Sciences

Dr. Amandeep Singh Oberoi

Imagineering Laboratory

Dr. Prabal Pratap Singh

Department of Management Sciences

Indian Institute of Technology, Kanpur

Week 11

Lecture 49

Database Schema (Part-2)

So, let us now continue again with our discussion on the database schema and we have

touched upon different kinds of commands in the SQL that is structured query languages.

And now to connect two different relations with between them in a database, we need to

first identify what are the different kinds of constraints that are possible.

So let us talk about the integrity constraints. So database is as good as it has the data. So

if we have bad kind of data in a database table, then the database is of no use.

So these constraints, what they do is they try to prevent the entry of incorrect

information, right. So how do they do is they try to specify conditions so conditions

specified on a DB schema. They use those conditions to check whether the data we are

filling is based on those conditions or not. And they ensures that all the tables or the

instances relation instances are legal as per the definition of those schemas, right. So, let

us first start with the constraint named as primary.

So, primary key. We have already discussed that how we are trying to define a primary

key in a ER diagram using an underline, right. So, this is the same key. Now, we are

translating it into the database table. So, what they do is they uniquely identify each row

or tuple, whatever.

You can say and in an instance so the main thing is they uniquely identify the contents of

a table. Now what constraint they provide they that no two tuple can have same primary

key. So in a student database you can relate this with the id of the student that no two

student will have the same id and another constraint that they inherently provide is that

they cannot have null values. So a student in a school must have a student ID. It is not

possible that a student is not having any ID.

So how to write the commands in the database to create a primary key? So let us take an

example of student database only. So we can write create since we are creating a table. So

create table. The name of the table let's say it is students now let's define the fields of this

table so the first could be id that is the student id and the data type of the id is int that is

integer.

And here we will try to define the constraint of the table. So we are trying to define ID as

the primary key, so we should write primary key here. The next field could be name.

This could be a string and we can specify a string using where char keyword and we can

initialize it with the length of 50. Finally, let's say this table has an age attribute as well

and this will be an integer, right.

So, this is how you will try to specify that this field of this table will be a primary key

that is the unique identifier for each row in this table, right.

The next important constraint is foreign keys. So, what it does is it establishes relations

between two different instances, two instances. Instances is nothing but the table in a

database so to connect two different kinds of tables you will need to provide foreign key

in those tables. So this is nothing but a field in a relation which is a primary key, with

primary key constraint will be a foreign key for other instance. So let us go back to our

example of creating students. So let's say a particular student in a school is enrolled in a

course. Now we have course enrollment table as well. So each student should be related

to that course.

So the primary key of this student must be mentioned in that course enrollment row as a

foreign key for that table, right. So that is how we connect it. Now we can take it as an

example. So if we are specifying the course enrollment, so we can define the table as

create table. The name of the table that is an enrollment.

And we can write the enroll ID. This the course enroll id will be an integer. So this is the

data type and this will be a primary key for this table so each course will have a course

enrollment id and it cannot be null the second thing in this table that we are trying to store

is the student id. So we defined our student id using the id keyword only. So we can write

id this will also be an integer and then we can have course id.

This will also be an integer and now we define our foreign key constraint so to define it

we will use the keyword foreign key. And we will use the name of the field that we are

trying to use as a foreign key. So we will write id here and from where it is referenced, so

we will use another keyword references students. This is the name of the table which is

connected to this enrollment table, right, with id. And we can close this specification now

what this complete command will do is it will create a field name with the name

enrollment id which will be an integer and this is a primary key of this complete table.

So each row in this table will be having a unique number for this enrollment ID. The next

is the student ID and this is coming from the table from the student table which we have

already described. Now we can also have multiple attributes for this table. So let's say

course id is another attribute finally to specify how this enrollment table is connected

with the student table we will use this keyword foreign key. And we will specify which

key in this current table is having that field with the foreign key.

So this is id and the other references keyword will try to specify which of the table in the

database will have this key. So the DBMS will search for this table. Find the primary key

of that table, matches it with this ID that is the field or attribute of this table and then

specify that this is a foreign key. So this is all happens by the technologies available or

the software capabilities of the database management systems. So the next key is the

unique key constraint.

So, this constraint will ensure all values in a particular column, or group of columns

across the table ,right. So the distinguishing factor between a unique key and a primary

key is that a unique key can have null values right. Now an example of this is we can

create an employees table. Create table with the name employee and it will have an EMP

ID which will be an integer and it will be a primary key.

And we can have an email for this employee this will be a string. So we can use where

care and now let us specify that it will be unique. So we can close this definition here. So

this email will stay unique across the table, right. And it can have null values.

That is, an employee may have no emails assigned to them, right. But if an email is

assigned, then across the column, the value of that email will stay unique in the table,

right. So that is how we use this unique key constraint. The next is not null constraint. So

as the name suggests, it will ensure that the values filled by the user will not have null.

So the user must specify the value for that particular column where we specify this

constraint, right. So we can have a different example for this we can write create table

let's say the name of the table is products and since it is a table about product we can have

a product id. This will be an integer and a primary key for this table and the product name

this will be a string so let's say we will use. Where char and now we can specify not null

so in this table. If we are specifying a product table then the name of the product should

not be null we must specify a name for each product, right.

And all these things we need to specify as a keyword, so we need to write these things in

our console and we will see in the upcoming lectures. How we provide these commands

to the console of the MariaDB database management system. And then we will see

whether these are executing successfully or not.

The next constraint could be the composite constraint. So these constraints are useful.

When we have a combination of two or more fields in a relation, that uniquely identifies

a tuple or a record in the relation instance. So these are useful when let's say the

individual field available in a database table may not be. So an example of this could be

let us define a table create table with the name orders. And this will have order id as an

integer product id with the data type integer quantity of the order with the data type

integer.

And now let us define our primary key a composite primary key using two fields of the

same table namely order ID and product ID. So what this specification is telling us that in

this table, each row will be uniquely identified by the combination of order ID and

product ID. So if this kind of specification is provided to the database, then the

uniqueness of a particular row is based on the composite values of these two fields. So,

these are also available in all the RDBMS as a constraint. The next constraint could be

check constraint.

So, what it does is it ensures that, a custom condition is satisfied by the attributes of an

instance. So let's say in the student database management system, we want to check

whether a particular student is legally valid for a particular class or not. So we may assign

age as a particular class. Attribute of this table so that we can check whether he or she has

passed a particular age let's say age of 15 to appear in a particular class.

So these kinds of constraints when the database users are filling the data in that database

management system the DBMS will automatically check whether the particular row is

following this check constraint or not. Specified on this table, so let us see how to specify

this constraint so in a banking sector we can create this constraint easily using this table

create table accounts, right. And we can have an account id this will be an integer. And

the primary key the balance of this account this could be a decimal the specification of

10, 2. And finally we can specify our check constraint.

So the DBMS will check whether the balance is greater than equal to zero or not so this

command will only fill those legal instances those legal tuples in the database table

accounts where the balance is greater than equal to zero. If a user provides less than zero

that is in negative then the DBMS will throw an exception or an error to the user and will

ask whether the user is correctly filling the data or not.

So this way we can wrong input of data in a database while filling the data. So now we

understood that there are different kinds of structured query languages syntax and what

are the different kinds of integrity constraints. Now it is time to again switch back to how

to translate from an entity relationship diagram to the actual database schema. And then

create the database tables inside a database.

So let us again study how to translate these er diagrams to database schema. So the very

most basic entity relationship diagram we studied in our previous lectures was the

employees entity set so what was that this employees. They will have an employee id

they will have an age and they will have a name so this is the er diagram now we need to

translate it to a database schema. So this could be employee empid as integer name as

string and age again as integer.

So this is a schema. Now we need to define a table. So when we try to define or create a

table in the database, the DBMS will first try to define the fields of the table. So let us

create a small table and it will have fields like EMP ID, then name and then age. So let's

say the ID for the first employee could be 141306.

Name could be ABC and age could be 34, right. And this is how there are different kinds

of employees. So to create this table from this database schema, we can write these SQL

commands. So create table with the name employee. And they will have an empid which

will be an integer and it will be a primary key.

So, we have not yet shown that it is a primary key in our ER diagram. So, we can just

underline this, right. So, now it is a primary key and we can write name another field as

this where care 50 and age as integer, okay. So this is how from the requirement analysis

towards the conceptual design where we studied the ER diagrams. Then we tried to

develop the schema and so let us write here requirement analysis that this was the first

step then we move to the conceptual design.

Where we developed the er diagram then we developed the DB schema and now we have

created the DB table for this simplest example right. The next thing we know about er

diagrams is that they have relationship sets. So :et us see how we can translate these

relationship sets. So, what they do is they map it to a relation in a relational model. Let us

draw our example of the participating constraint that we defined previously in our earlier

lectures.

So it had employees as an entity set and departments As another entity set, right. And

these two entity sets. Were connected with the works relationship. So to define a relation.

We use diamond as the diagrammatic representation. We can connect this. Now the

attribute of this. The descriptive attribute of this relation is. Since when a particular

employee is working in a particular department and employee usually will have an EMP

ID and all other attributes we define like age and name.

Similarly departments will have a department ID which will be a primary department

name. Budget of the department, right. And so we will have another entity set named as

location which will store the addresses of each employee. So it will have address as the

primary key and let's say it can have capacity as another attribute. So to translate this er

diagram with a relationship named as works into a relationship table inside the database

we can write this the following SQL command.

So it can be create since we are creating different kinds of tables. And we are specifying

only the relationship, here this works. So we already understood how to create an entity

set inside a database table. So we can define these employees and departments easily but

now we have this relationship to define. So let us define this relationship with a table so

we can write create table works.

And it will have a emp id because an employee is working in a particular department. So

we will use the emp id of the employee and let's say it will integer we can have the

department id which will also be an integer. We can have address. Let's say it is a worker.

And the descriptive attribute that is since.

So it will be a date time object. So let's say it is a date. Now, let us define our constraints

here. So, EMP ID will be a primary key, DID is a primary key. So, primary key will be

EMP ID, DID and the address which is also a primary key for the location entity set,

right.

The next is the connections that is how we are translating this relationship between three

different entity sets or three different tables in the database. So now we actually utilize

our foreign key. So foreign key will let us first define the foreign key as EMPID. And it

will reference employees so references employees table the other foreign keys for this

works table is address. It will reference location location table another foreign P for this

table is DID.

And it references department right. So this way this works table will have three different

foreign keys this one this one and this one. Because it is connected with three different

tables and each row or each tuple in this works table is will have the information of all

the three tables connected to it. So that we can understand that how a particular employee

is connected with a particular department and the actual location of that employee where

he or she is residing. So that is how we can translate this complex ER diagram to a table

in a database.

Now let us talk about another kind of ER diagram which we already discussed and try to

translate it. So we saw that there was a relationship of managing different kinds of

departments. So let us draw that ER Diagram. Employees and departments. And the

relation we are discussing now is manage.

So employee will have an empid name and age. Department will have a D.I.D. A name

Henry Bajat right. And we can have a descriptive attribute of since. So this will be a date

kind of data where we are trying to specify that a particular employee is managing a

particular department since when right.

So here we are trying to translate an ER Diagram with key constraints so relationship sets

with key constraint. So what was the key constraint in this er diagram let us revise it each

department has at most. One manager for department will have only one manager and an

employee can manage multiple departments. Now, to show this key constraint, we define

an arrow here in the ER diagram. So, now we need to translate this ER diagram into a

database table.

So, we can write create table department manager. And we can specify the attributes of

this table as did that will be an integer d name where care or string and budget that would

be real the empid. This is an integer or this since descriptive attribute that will be date

now the primary key here is the id only not this employee id and the foreign key. That is

how it is related. So this is EMP ID which is referencing employees table, right.

So what this definition is saying is that since it is having a key constraint, the actual

identifying information, uniquely identifying information is the department ID for a

particular manager. So which department a particular manager with the EMP ID is

managing is the actual primary. And this manage is also related with the foreign key

using the employee ID. With the employee entity set or the employee table in the actual

database, right.

Now let us talk about the last translation that is the how to translate weak entity sets so

we talked about this weak entity set using the example of using employees database.

And how the dependence the information about dependence of an employee is stored in a

particular database of employees management system. So let us redraw the entity

relationship diagram for defining a weak entity set so start with the employees entity set

it will have an id. This will be an EMP ID. Employee will have a name and an age. Now

let us say we have a dependence table.

So each employee will have some dependents and the organization where this employee

works is providing different kinds of policies for their dependents. So a policy, a relation,

let's say define a relation policy and this relation is connected with these two entity sets,

right? And dependents will have d name and age. Now to identify a particular dependent

in the employee management system, we must have the owner employee with whom this

dependent is related to. So that is why we have this.

We are specifying this as a weak entity set with full participation. And this will also have

a policy as cost of the policy. As the descriptive attribute for this relationship right now.

Let us jot down the various features of a weak entity set so these kinds of entity sets will

participate in a one to many relationships. They will have a key constraint and they

provide total participation.

We already talked about all these terms in our previous lectures. And the difference

between this ER Diagram and all the previous diagrams which we have translated is that.

Let's say if an owner entity or the actual employee with whom these dependents are

related to when an owner entity gets deleted. That is let's say they switched the

organization, so when they get deleted we should remove all the associated dependents or

weak entities. So, these were the characteristics of weak entity sets.

Now, we need to translate these characteristics using our database SQL language. So, let

us define here. Create, we need to define this relationship. We need to define this

relationship. So we need to define a table for this so create table.

Let us say name policy with the name d name as a dependent name with where care 50 h

integer cost this cost. This could be real the employee id it is a primary key. So we should

underline it in ER Diagram employee id is integer and primary key is a composite key

here. So we should use employee id and this d name so together these two informations

will identify the unique rows or the unique dependents. And how they are connected is

specified by foreign key.

Foreign key for this table is empid which is a primary key for employees entity set and it

references employees references employees. And now we need to specify other keywords

as well on delete cascade So until here, the definition was mostly the same, right. But

with this keyword, what happens is whenever a particular employee leaves this employee

entity set. All the information associated with that particular employee using his or her

employee ID will be removed from the tables of the dependents as well automatically by

the DBMS.

So, this keyword will specify that we need to perform all these tasks declaratively to the

DBMS. So, other important information about this definition is that this EMP ID cannot

be null. So now we can understand why we are trying to define it as a primary key in the

employees table as well. Because we must have an employee unique ID so that we can

associate the dependents with them. Employee ID cannot be null.

So this will associate an owner of the dependents. Further the cascade keyword will

delete dependent info when employee entity gets removed. So with this, we complete a

basic introduction towards the translation from an entity relationship diagram to the

database schema. And how to specify those into database tables using structured query

languages. In the upcoming lectures, we will try to install MariaDB on our system.

It could be Windows or Mac. And then we will try to understand what are the different

kinds of database normalizations and we will try to specify them in the MariaDB itself.

Thank you.

