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In the last lectures, we were looking at enclosures with gray diffuse isotropic surfaces.   In

this  case  because  of  the  assumption  of   isotropic  surface  and gray surface,  the  problem

became quite simple and because the surface was gray we were able to avoid the wavelength

integration.   We got a very simple electrical analogy wherein we saw that the geometric

resistance within any two surface is nothing but,   1/Ai Fi-j and the surface resistance was 1-

ϵi /  ϵi Ai.   This  resistance is occurring because the surface is not a black  body, so the

resistance to a flow of heat and this the first term.  The geometric resistance is coming in

because of the relative configuration between  two surfaces. Using this idea of geometric and

surface  resistance we were able to draw typical example of surfaces which involved a battery

and surface resistance.
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A geometric resistance, another surface resistance and the second battery and if we have three

surfaces in the enclosure, we drew two more geometric resistances and then we had another

battery here. So, this is radiosity point  B1 , radiosity point   B2  and radiosity  point B3.

Between the three radiosity points we have the geometric resistance while  between these

radiosity  point and the black body radiation is surface resistance.

   We also applied this to a few simple examples and   now we will illustrate one example

which is of great relevance to many situations in engineering.  Imagine a convex object, a

cylinder surrounded by a general object with surfaces 1 and 2 as shown above.   We can draw

our  electrical circuit for this case as one battery A1 σT1
4.  1-ϵ1 / ϵ1 A1  is 1 because surface

one is  convex and is  surrounded completely by surface  2.   Hence  any radiation  leaving

surface 1  reach surface 2. F1-2 is 1. Surface two is geometric resistance and finally we have

battery here. To simply this further we can write this energy transfer from 1 to 2 as  σ[T1
4 -

T2
4] A1.    
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We divide  this term on electron by 1/ϵ1 +A1/A2(1/ϵ2 - 1)    Let us look at some limiting cases

of this to understand what it implies. Now, suppose the object 1  has a much smaller area,

than surface 2. This is  typical in engineering.   Imagine a  steel pipe going through a  room,

the  pipe area is very small compared to the room area. So, A 1 is much less than A 2 and

hence we  neglect the second term.  Then  Q1-2 becomes epsilon 1 sigma into the difference in

the temperature.     It means if the  room area is much larger the area of the pipe area   then

epsilon 2 value is not important. Whatever the value of epsilon 2 the heat transfer rate will

not change.   This  is because if this surface A2   is much larger than surface 1 any radiation

leaving surface 1 after multiple reflection, will reach surface 2. Because of that, it does not

matter what the reflectivity of the surface 2 is   (that  is 0 or 1) because ultimately radiation

leaving 1 will be reflected and  comes back to 1 by multiple reflections. 

  When  surfaces are large ,  radiation ultimately will,  so the rate of radiate heat transfer,

between surface 1 and 2 is not depended on the reflectivity or emissivity of 2, but only on the

emissivity of surface 1.  This means that we need not bother really about the exact value of

epsilon 2 or the emissivity of the room and essentially it means we can treat the room as a

black body. This because any radiation leaving 1, will ultimately be absorbed by 2 at  some

point  out  of  1  multiple  reflection.  So,  as  far  as  surface  1  is  concerned,  surface  2  is  a

effectively a black body. 



  These are very important concepts and we will encounter  this  concept little later when we

derive effective emissivity of certain objects.    This result is same as if epsilon 2 is equal to 1

Already, 1 this term drops out of and we are getting the same result. So, although surface 2 is

not black body, if its surface is very large it is behaving like black body and the rate of heat

transfer by radiation from 1 to 2 is independent of the emissivity of the surface 2. So, this

both practical relevant  as well as providing an understanding of the role played by the area

ratios. If some surfaces large area compared another surface, then the second surface really is

in a way behaving like a black body. 
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Now, let us take another example now a more practical example of relevance to mechanical

engineering, which is radiative transfer. In furnaces a typical furnace and here we talk of

metallurgical furnace not used in power plant has a roof and a floor and some side walls,

which  are  refractories  whose  job  is  to  really  reflect  the  radiation  and  avoid  leakage  of

radiation. These are the refractories, so when you call the roof surface 1 floor as surface 2 and

a side wall  refractory as  a  surface 3 and now generally assume that  these are  insulating

adiabatic surfaces, no heat is transferred through the surface or the heat leakage is small. Let

us take example where the emissivity of this is 0.8. 

Let us say this temperature just as an example as  1000 Kelvin, surface 2 emissivity is 0.6

temperature is 500 K and we want to know the rate at  which heat is transferred from the roof

to the floor now.  Since, surface 3  is adiabatic,  when we draw our electrical  analogy ,



although we come to surface 3, but since surface 3 is adiabatic no heat flows through it and

so q3 is 0.   Any heat  going from 1 to 2  will have to go directly or goes by reflection through

refractory  back  here.   This is nothing but a  simple series of parallel circuit,  and  this is

surface resistance, geometric,, surface, geometric, and geometric.  Assume A1=A2=A .

We  have   (1/ϵ1 +  1/ϵ2)-1  +  [F1-3+F2-3/F1-3F2-3+F1-2F1-3+F1-2F2-3].  We  have  all  possible

combinations  here because we have reflection from the adiabatic side walls  and we can

substitute  numbers  and  get  an  answer,  which  we will  do  presently.   Let  us  understand

whatever role played by refractory.   Suppose   F1-2  is very small compared to F1-3,   where

F1-3 and F2-3 are very large. 

 If  we only retained this  term compared to  these two terms,  then  we will  get  a  simple

expression in terms of  1/F2-3 and  1/F4-3 in this clearly showing that essentially,  resistance is

very small and   F1-3 is 1.  F1-3 and F3-2 are quite small. Then the resistance is  very large.  The

other extreme case is where  F1-2 is large,  where this a open circuit and the flow actually go

through  both these are possible in this situation and both do occur in real world. 

Both situations occur, if the two plates are very close to each other.   These two very far  apart

if it is very small  and is an open circuit.   We need to calculate  F1-2  and  by the Hottel’s cross

string method We will get  0.5  as shown in the above figure because the distance between the

two plates is 3 meters and this is 4 meters and this is 3 meters. The gap,  will be 5 meters.

We apply the cross string method.
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Sum  of  the cross strings, sum  of  the parallel strings by 2  we get 0.5 putting this  into this

equation along with the values of emissivity and temperatures you should get a number like

Q1-2 is around 170 kilowatt per unit depth.    We can use same formulae to look  at a different

example.   Suppose  we have a large room containing a steam pipe and a water pipe. The

surface of the steam pipe is 1, water pipe is 2 and the inside of the room is surface 3 and the

main requirement here is that A3   is to be very large. 

Typical in many situation in industry A3 is much large than  A1 or  A3. There is a 3 surface

enclosure and we can assume this as adiabatic and since  A3 is much greater than A2 all of

you can visualize that  F1-2 is much less than 1, because the  these two parts fall apart.  Thus

from the exercise,  we have done  we will get a very simple  electrical  circuit.

This is (1-ϵ1)/ϵ1A1, 1-ϵ2)/ϵ2A2, 1/A1F1-3, 1/A2F2-3.  We have made the open circuit because  F1-

2 is very small so  that the flow is really occurring through the walls  to the other side.  We

assume  F1-3 = F2-3 = 1.   We neglect the radiation  exchange between 1 and 2, assume most of

the radiation from  1 reaches 3 and not 2.  We  assume that the two areas are same so that

1/ϵ1A and 1/ϵ2A.  1/A cancels out.   
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 We have very simple expression for the radiation between two pipes, which will be  Q1-2 =

σ[T1
4 - T2

4] A/ (1/ϵ1+1/ϵ2).     The answer  is determined by the emissivity of  surface 2.   The

emissivity of the  wall is irrelevant, which is not surprising because the room is very large.



Similar to what we saw in the case of the furnace if the walls  are  large the emissivity of the

walls are not relevant, same thing here. 

  The room is very large it does not matter what emissivity or reflectivity,  it   ultimately

behaves  effective  like  a  black  body and  so  the  heat  transfer  between  1  and  2  depends

probably on the emissivity of the two surfaces.  If we want to minimize heat transfer from the

steam pipe to the water pipe by radiation, we will just ensure that  the emissivity is very, very

small  or  keep the outer   surface of  the two piping as  highly reflective.  This  is   what  is

normally done all these steam pipes and the power plants and industries are usually insulated

and then further covered with the reflective film.  Its effective emissivity is pretty small and

we can see that  it can be controlled.  For  example, if we take emissivity of the order of  let's

say 0.01.  We reduced a transfer between the two pipes by a factor of 200 compared to if they

were black body.  This shows  us how one can control the heat transfer between the surfaces

by adopting surface  properties.   This is an of how providing a shield  to a thermo couple

also reduces the error due to  heat transfer. 

  These are the examples illustrating the use of electrical analogy and simple approximations,

to simplify the problem that we encounter in solving problems, but we notice that if the

number  of  surface  enclosure  becomes  very  large,  then  there  could  be  some  problem in

handling such cases.  Now let us take a few examples  relevant in the case of shield.   We had

looked at thermos  flask shield earlier. 
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Suppose, there are two parallel plates 1 and 2 both having the same emissivity epsilon, and

these  are  infinite   parallel  plates.    We know that  heat  transfer  between the two infinite

parallel plates Q1-2 is nothing but σ (T1
4 - T2

4) / (2/ ) - 1     One can see that if suppose we hadϵ

kept the epsilon very low at 0.01,   that will be 200-1=199.    We can reduce the heat transfer

by a factor of 200 almost compared to the heat transfer between two black plates. 

But suppose we want to  decrease further the rate heat transfer,  between the two plates  we

can put a shield.   Now we put a shield.   The role of the shield is to reduce the heat transfer

on this plate. Let us say the  plate is  also a shield  and emissivity is epsilon on both sides of

the shield. Now,  we can draw the  electrical analogy  here.  It can easily shown that  Q1-2 = σ

(T1
4 - T2

4) / (4/ ) - 2.ϵ

Now, this  is  coming in because between these two parallel  plates,   is  2 epsilon minus 1

between these two parallel  plates.    Therefore clearly   Q1-2  with shield is equal to Q1-2

without shield divided by 2.  Essentially we put one shield between two parallel plates with

the same emissivity and shield introduced is also of same emissivity. Then it cuts down the

radiation transfer by half because of the same logic.

(Refer Slide Time: 28:20)

If we have 'n' number shields  then  it can be shown that Q1-2  is equal to  Q1-2 without shield

divided by n plus 1. With  no  shield. of course, we get back to the old result, this one shield

we get which is what we saw with two or three shields.    It is quite clear that we can bring



down the radiation transfer between two surfaces by a quite a large margin, by having a large

number of shields. 

Now, this is what is done in the case of insulation.  We can have hundreds of these thin plastic

layers coated with aluminum.  We have coating aluminum on both sides, which makes it

highly reflective.  The epsilon is pretty low and in addition  we can bring down the heat

transfer by the factor of 100.   Previously  with the single shield or any other shield the

epsilon  was  very low or  reflectivity  was very high,   we can  cut  down the  heat  transfer

compared to two  black bodies by factor of 200. 

 We can have 199 shields. Then we further reduce it by a factor of 200.  This is an effective

method,  of reducing  the  surface heat loss and is used routinely in both space  applications

and other applications.  It is just called an insulation blanket and is essentially hundreds of

plastic layers, which are highly reflective and which are very inexpensive as well as a  low

weight insulation because plastics are light and thus are not very heavy.
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 This  is  widely used and  one must  have  seen  it  in  many applications.   This  is  widely

effective technique to control heat transfer. Now, we may give  example of another insulation

with which all of  us are familiar with thermos flask.  In a thermos flask,   We have an inner

cylinder  and  an  outer  cylinder  shown  in  a  better  figure  here.   Let  us  assume  that  the

emissivity of the two surfaces is kept low by coating. They are highly reflective.  The outside

may be a temperature of 300 degrees  Kelvin room temperature and inside can be hot coffee



may be 370 Kelvin.  We essentially minimize the convection and the conduction losses and

then the only loss left is radiation. It can be shown that  heat transfer from 1 to 2 can be

treated  as between two parallel plates and then we assume that the surfaces are grey diffuse

isotropic.   

 This is one result, but we will they are result more rigorously in a subsequent lecture, when

we deal with highly reflecting coating. Now, if we treat this as a diffuse isotropic surface  we

are not really making the right assumption because we must recognize that the surfaces are

highly reflective. Hence, it  cannot be treated as diffuse isotropic, but we will show later that

the answer we get by assuming  diffuse isotropic is not that different from actual accounting

for the mirror  like reflection that occurs in this case.   Let us look at some numbers for this

case and let us see what it looks like for the thermos flask situation. 

 We neglect the heat transfer by conduction and the convection because we have essentially

reduced them by evacuation.  But the key issue to should remember is that ultimately we

control conduction control totally and have   only radiation. Let us put some typical numbers

here and see what are the numbers, suppose we assume surface 1 is at 80 degree centigrade.

Then  we see surface 1 and we assume surface 2, which is the essential ambient to be on a

cold winter 16 degree centigrade and we are assumed the emissivity of the order of 0.2,

which is achievable with silver surfaces. 

Assume all that we will find that Q1-2 is the order of 5.7 watts per meter square. It is quite

small and if  we actually assume this is the only heat loss and we can add little bit of heat loss

due to conduction. We will find for this heat loss, the coffee should remain quite warm here

for many, many days. But in reality most of us have the experience that in a good thermos

flask the coffee remains only hot for may be 8, 9 hours. The main reason why our calculation

is too optimistic is that the heat loss to the top heat loss to the cap this is very large.

 The key thing to remember is that from this exercise is that the difference between a good

thermos flask and an average thermos flask is the design of the cap because one  is able to

control very closely the heat loss through the side by controlling conduction convention as

well as radiation.   The main leakage of  the heat is now through the cap  and the cap design

becomes critical. So, between a good design and a bad design is, how well the cap is designed

to prevent evaporated heat loss through the cap here.    For the good thermos flask, the heat

loss through the cap is being controlled by a very careful design of the cap, which is the



major heat loss path.  This also gives  us a very good idea as how sometimes  one may miss

out when  one looks at the design of thermos flask,  that the cap design is the most critical.

One may think that keeping the  evacuated gap is major problem. The cap is so designed as to

reduce the heat  loss.  This kind of calculation helps  us to highlight the role the dominant

parameter.
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   Now suppose  we have an enclosure  consisting of  large number of surfaces not just 2, 3 or

4 that we discussed in the last two lectures. Then we cannot  solve it using  through electrical

analogy but, solve it on the computer using the power of matrix algebra.   This method is

called the radiosity method.   

We solve radiosity by matrix inversion,  we set up the whole equation in terms of the radio

what the radiosity of  surface j, B j is nothing but emissivity   of  surface j , emissive power

plus what is arriving in surface H j  we also know that H j while arriving  at surface j is what

left at  surface k. How it arrives surface j, summed over all surfaces k equal 1 to n, but by

using reciprocity , this can be made look simple H j. We write this as Aj H j F j k using

reciprocity. So, A j is not being summed over. 

  It cancels out,  and we have simple expressions  in terms of B k F jk.   We can write Q j heat

to be removed as radiation leaving surface minus the arriving times area of surface. We can

also write it as radiation emitted minus radiation  absorbed for a gray diffuse isotropic surface

alpha j is equal epsilon j.
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 This is actually absorbed radiation by emitted radiation. Now, what we would like to do is

essentially eliminate radiation row all this expression, because that is  unknown quantity.  We

write everything in terms of radiosity.  We can do by elimination  of Qj from the equation we

get two equations. Now, which is Q j is equal to epsilon j A j sigma T j to power of 4 minus B

j divide by 1 minus epsilon j.  This relates the heat transfer to the temperature surface and

radiosity. Similarly we can write Qj as sum over all k surfaces 1to n radiosity of surface j

minus radiosity of surface k Aj F j to k. 

This we derived when talking about electrical analogy. Suppose a true radiosity is unknown

problem, and we have N surface enclosures. In some surfaces temperature is known, but heat

flux is not known. In other surfaces heat flux is known and temperature is not known.  If that

is the case we can rewrite our formulation as follows: sigma over k, which is correlated data,

that is when j is not equal to j 0 and j equals to k equal to 1, F j k 1 minus epsilon j into B k is

that rewriting the expression by substituting k v A and getting everything in terms of B. 

If  we know the temperature with the known quantity  we write the everything in terms of

unknown quantity and these are known shape factor and surface temperature. On the other

hand in another surface, where the flux is known, we will write this expression. So the two

equations we have,  one where in the temperature is known and  we use equation two where

the heat flux is known.   On any given surface we expect that either the temperature is given

or the heat flux  is given and in surfaces in which temperature is given we want to know the



unknown heat  flux to be supplied to keep the temperature at that value and in surfaces where

heat flux is given, we want to know what temperature that surface will attain.
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 In the first case the unknown is Q j in this case the known is T j, but we could solve for the

two unknown. But then we prefer to solve it in terms of unknown radiosity and once the

radiosity are known we can go back to these equation and if B j is known we can calculate Q

j. If B j and d j are known Q j and B j and Q j are known, so this equation can be used as A T j

or Q j, whichever is unknown once you know B j, so this is the matrix inversion  technique,

very simple methodology  today with computer available. 

  Broadly we have a matrix of unknown and these are the B j's these is are either Qj or epsilon

j sigma d depending on which is specified and accordingly the matrix module will change, so

invert the matrix to obtain B j. So, that is the main spirit of the radiosity method.   We have

shape factor and  emissivity's are known and in those surfaces where heat flux is specified we

put 1 matrix element and where in temperature is specified we have another matrix element

we know all the matrix element invert the matrix and get the radiosity.
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Once  we  know  the  radiosity,  you  can  go  back  to  the  previous.   The  radiosity  where

temperature is specified  and have estimated the radiosity by inverting matrix we get the flux

where flux is specified and radiosity is estimate from inversion we get the temperature. So

that there is the equation used to surface either B j or Q j, given that B j from the inversion

matter.  These are the matrix elements here in thus equation and this can be completely be

automated. 

 There are standard software  available which will solve for this and the advantage we can

realize is today computers an inversion technique very, very quickly. We can solve this kind

of problems with 100 or 200 surface or even thousands. 
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   All though there are three surfaces like in a furnace,  it  can turn out that the temperature of

the three surfaces is not uniform. They are non adiabatic , if the non-isothermal , but all are

dividing into many surfaces may be 10 or 20 as many as you would like to do so that within

each element you can assume. 

Similarly, here is a non-isothermal element so you divide into many parts, so we divide into

100 parts, a 300 parts.  We have a 300 surface enclosure not a difficult one. We know the

shape factor and we know the surface properties we can easily invert the matrix to get the 300

radiosity  and given the radiosity, get temperature or heat flux given the methodology as the

quantity. This is now fairly  routine method in which terms observed for radiosity and these

are the methods, which is a preferred method today. Although we discussed the  electrical

analogy that  is  more  for  our  attempt,  to  illustrate  the  physical  insight  in  drawing  those

electrical residences, but as soon as we get into a situation, where the number for surfaces

both 2 or 3, the electrical energy becomes much more very useful. It is much more useful to

just  use the radiosity method and just  inverter  matrix  now. Just  so that  we call  that  this

method is a useful technique.
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 We will now go on to illustrate through the radiosity method the emissivity  of a  surface.   If

we have a large sphere with small opening, let us call this area as A1 and the opening area is a

A0.   This shape factor and F0-1 is 1 because surface A0 is flat and it is only seeing the other

surface.  The  shape factor is 1, so at F10  is nothing but  A0 by A1 by reciprocity.  The

radiation leaving surface 1 and going through the gap is the radiation leaving is 1, the surface

but  we  also  know  that  radiosity  1  is  the  nothing  but   emission  plus  reflection  and  the

reflection is of radiation that is emitted by 1 and A0  is an imaginary surface. 

So, only radiation emitted by surface 1 and it is seeing itself. Since, we know F10, we also

know F11. F11 is nothing but 1 minus  A0 by A1. Therefore, this is substituted  here will get

B1 as 1 plus 1 minus epsilon1 A1 minus A0 by A1 into epsilon 1 sigma T1 to the power 4.  If

we define the apparent  emissivity  of the cavity epsilon a  upper   emissivity is  radiation

leaving the cavity 0 divide by what it would leave a black body at temperature Td and this

can be calculated and comes out neatly as epsilon 1 into 1 plus 1 minus epsilon 1 into 1

minus is A0 by A 1. Now, we are doing all this exercise because to illustrate the point as the

hole in this cavity becomes small and smaller that is as A 0 by A 1 becomes externally small.

This term goes to 0, so we get 2 minus epsilon 1, so the upper emissivity cavity reaches the

limit this epsilon 1 into 2 minus epsilon 1, very interesting result because we find that if

epsilon1 is 0.9, the apparent emissivity of the cavity is 0.99. 



  If  epsilon is large, so we can make the apparent emissivity of the cavity approach 1 and so

this is the standard practice by which we obtain black body in the laboratory by having the

small hole in a large sphere, which is at a uniform temperature, which can be a copper sphere.

That is small hole emits radiation like a black body because all the actual emissivity of the

cavity may be 0.99. What is coming out of the cavity will be approach 1 as closely as we can

arrange area of the hole to be much smaller than the area of the cavity.  So, this  the standard

method of creating black body in the laboratory. So, with that we come to the conclusion of

the  discussion of   gray diffuse  isotropic enclosures.  In  the  next  lecture  will  tackle  more

complex problem of non-gray enclosure.


