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In the last lecture, we talked about an empirical method for finding shape factors; this is used

in the  industry when we have complex shapes and you may not easily able to find standard

expression for that.  Here is  an example; where we have the object d A 1 here and we want to

find d A 1 to d A 2, and so we put a translucent sphere on top;   so that the image of d A 2 will

fall on this unit sphere.  Then we take a camera  and take a picture of this area A 2 and we

will get this area A B as a picture.

Now, we want to show that   FdA1-dA2  is nothing but area of that image by pi. So first we look

at the expression da1-dA2; which is    1/π ʃA2 cosθ1 cosθ2 dA2 /  S2 where θ1 is the angle

between the line joining these two areas, and the normal of d A 1.  When we come on  this

sphere,  we know  that the line joining the center of this hemisphere to the object; d A S is

normal to that line. So θ2  here is 90 degree.   The cosθ1 dΩ1 are substituted by d S and d A 1

on a sphere.     When we integrate  this we will get  As cosθ1.   This is nothing but A b.

Finally, we will get   Ab / π R2; if we take R as unity  then we get Ab/ π.   So this is the simple

way to calculate shape factors empirically and it is useful in particular situations, where the



objects  have  compact  shape  and  we  may not  be  in  a  position  to  do   either  the  double

integration or obtain the shape factor from any simple tables available in books.  With this,

we have covered all  aspects of both estimating the radiative property of surfaces,  that  is

emissivity; absorptivity; and reflectivity.  Also we have  covered how to calculate the fraction

of radiation, leaving one surface which arrives on  another surface.  We now have got all the

tools necessary to solve real problems.  The real problem we are dealing with is, in radiative

heat transfer between surfaces.
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 We will now  look at radiative transfer in enclosures.  Enclosure is nothing but a series of

surfaces, which enclose a  given area. Not all surfaces in enclosure need  be actual surfaces,

some  of  them  can  be  imaginary  surfaces  defined  for  convenience.  So  here  enclosures

consisting  of 1, 2, 3, 4, 5 surfaces and an opening which  we can close by a dotted line, that

is  a virtual surface.  We have  6 surfaces in the enclosure.  The concept enclosures is useful

because ultimately the radiation that leave any one surface has to reach some other surface

within the enclosures.   It is a  closed system and it makes analysis of  heat transfer very easy.

As  the first example we  take up an  enclosure consisting of only black surfaces.   There is no

reflection involved in  the simplest case and this makes the analysis  extremely easy.

  First we look at this case and develop our methodology,  then we go on to more complex

cases.  Let  there be N number of surfaces in the enclosure and for each surface , let us say  is

the  ith surface. The heat is arrives  at  Qi and we assume  all surfaces as isothermal and



uniform.   This  is  not  a  very  restrictive  assumption  because  in  case   the  surface  is  not

isothermal.  We can divided it into 10 sub surfaces, where each of them can be assumed to be

isothermal.  We can divide any real surface in which, there is a temperature gradient  into

large number of small surfaces; each one of them can be assumed to be isothermal.  This

problem is easy to do and today with the availability of computer and the surfaces can be as

large as  1000 or 5000, there is no problem;  one can easily solve these equations.

 Hence with the  ith surface of the  enclosure the energy added is energy emitted minus energy

absorbed.  The energy emitted  by the  ith surface is nothing but σTi
4Ai;   that is the total

radiation emitted by the surface in Watts, and the radiation absorbed.  We look at the  jth

surface;  which  emits  this  much radiation  and ask what  fraction  of  this  radiation  reaches

surface i, that will be Fji,  which is a fraction of the radiation emitted by the  jth surface  which

reaches the  ith surface.  We sum  over all j surfaces in the enclosure, all the N surfaces of the

enclosures.  We get  an  expression,  which relates  the  heat  added  to  the enclosure.  If  the

amount of radiation emitted by the surface Ai is larger than the amount which is absorbed;

we have to add heat to surface to be keep it isothermal and in  steady state and that heat is Qi.

  If the energy emitted is  more than energy  absorbed, we have to add  heat , that is  Qi is

positive.   On the other hand, if the energy emitted is less than energy absorbed and you

remove heat, then Qi is negative.   Now we also know as we go on to  simplify this equation;

we know that, i=1∑n Fi-j = 1.   We know that sum of all shape factors in an enclosure  is equal

to 1. We can multiply this by 1.
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 We are going to write it as j=1∑n  σTi
4 Ai Fi-j  - j=1∑n  σTj

4 Aj Fj-i.   By reciprocity AjFji is AiFij.

We can take AiFij common and rewrite this as (σTi
4 -  σTj

4) / AiFij.    Now we have a very

simple expression and this can be written further in a more elegant  form, which enables us to

interpret  it  physically.   We want  to  now  interpret  this  result,  which  we  have  obtained

regarding radiative transfer between  different surfaces as the potential difference between the

node i and the node j divide by a resistance.  We look upon this as a thermal resistance to

radiation and this term really is the potential difference.  We have an  electrical analogy, for

radiation.  Let us call it as the heat current. This heat current is equal to difference in potential

between the two nodes i and j divided by the resistance between the two surfaces.
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  Let us now illustrate this method with a simple example. Suppose we have  two parallel

black infinitely long  plates with surface 1 and 2.  By electrical analogy, we will say surface 1

as a potential   σT1
4  and the surface 2 is   σT2

4.      Q1-2 is  nothing but the difference  of the

potentials of the two surfaces divided by the resistance 1/AF1-2.

 We have two surfaces and the flow of heat or current.  The current in the analogy is due to

the potential difference, which is   σT2
4 in this case divided by the resistance.   We notice

that, this  occurs  primarily due to the geometry of the problem.   This we will call it as

geometrical resistance because this resistance    arises on account of the relative configuration

of the  two surfaces,  which is  a consequence of geometry of the problem and this  is  an

interesting example and but  for only  two surfaces.

Suppose, we  have  three surface enclosures; 1, 2 and 3 as shown in the above figure.   We

will have three potentials with a resistance between two each potentials which are 1/A1 F1-3,

1/A2 F2-3 and 1/A2 F2-1 which forms a triangle.     By electrical circuit theory,    we should be

able to solve this delta network using standard theorems  in electrical engineering.   But  we

must  remember  that  this  is  only   electrical   analogy    for  the  convenience  of   one's

understanding of the problem.

Today in reality as soon as  we go to more than  two surfaces  we are going to use a computer.

We will write down the expression for the various surfaces and  we will get  three equations,

for the  three unknowns T1, T2 and T3    and  we will invert this matrix very  quickly, using



computer. So the final method solution is a matrix algebra, but in order to have a physical

understanding of the various factors, controlling the heat transfer between surfaces it  is good

to draw electrical network.

For example, suppose this is very small,  tending to 0. Then this circuit will open up,  and the

current will flow from 1 2 3  only through 2.  No current can flow through  the other arm.

We are going to use electrical  analogy  mainly  to understanding, what is happening in  a

given radiative transfer problem. The actual numerical solution is based on  solving a set of

simultaneous equation, using standard tools available today on the computer. So, this was for

enclosures consisting of black surfaces.

(Refer Slide Time: 18:23)

Now we move on to something more ambitious and look for radiative  transfer between non-

black surfaces.   Before that  we give  one example.  Imagine a duct and let us say,  we are

trying to measure the gas flowing in the duct.   Using a thermocouple  let us assume that, the

walls are  at 600 K and the duct is black, and the thermocouple is also assumed to be black.

We want to know, what is the error in the measurement of  temperature by thermocouple

because the thermocouple is supposed to measure the temperature of the gas flowing in this

stream.   But the temperature recorded by thermocouple   Tc  will not be equal to Tg.    This is

because heat transfer from the gas to thermocouple will be by convection and that can written

as  hAc(Tg - Tc)  and this has to balance, the heat loss by the thermocouple to the duct.



  On account of  this balance,   Tg will not be equal  Tc and our interest is to understand what

is the error in the temperature measurement.  Our aim is to measure the temperature of the

gas, but the thermocouple will not get the temperature of the gas to increase because the

temperature  of  the  thermocouple  will  be  in   between  the  temperature  of  the  gas  and

temperature of the duct.   If we take a typical example suppose, the thermocouple is reading

800  K,  and  the  duct  we  assumed  is  at  600  K,  and let  us  assume that  the  heat  transfer

coefficient  in this case for convenience is around 50 Watts per square meter per  Kelvin.

Typical for gas flow at reasonably  high velocities,  we will get the temperature of the gas as

1080 Kelvin.  So the error  of  measurements of gas temperature is  quite  large.    It  is  the

difference between the thermocouple temperatures and gas temperature 280 degree Kelvin,

divided by the  gas  temperature.   This  error  is  pretty large  so  an  error  of  280 Kelvin  is

unacceptable.   Hence what one can do to reduce this error,  is to shield  the thermocouple.

The thermocouple barrier shield, which ensures that the thermocouple does not directly see

the wall of the cold wall of the duct  there by reducing   this error of 280 Kelvin to much

more reasonable number. Now this we will see in the subsequence example, how radiation

shield can reduce error in measurement of temperature.

As a major fact in meteorology , where routinely the temperature is measured outdoors,   it

shows the  error  is  a  fact,  that  sunlight  may directly  fall  on  the  thermocouple  or  on  the

thermometer.  We tend to either shield thermo meter or provide a special enclosure, which is a

shield  inside which the thermometer is kept.   All these are attempts to  show that the thermo

couple or thermometer, actually measures the gas temperature or air temperature and not the

temperature due to the heating by the sun or due to the fact that this thermometer is losing

heat to a cold sink. 



(Refer Slide Time: 24:00)

 We will take look at enclosure with gray diffuse isotropic surfaces.   The problem  now is

little more realistic, not just enclosures with black surfaces; which is rather rare.  Now we

have surfaces, where all the surface enclosures are diffuse isotropic.   That means they reflect

and emit radiation in a diffuse isotropic manner.    The angular effects  are very simple, but

we will make the approximation of the gray surface, which we had earlier argued is not very

common, which  is a starting point for our analysis.

 We will start with the gray surface, but later on we will also look at non-gray. Now in a gray

surface enclosure, suppose  the surface i not only is the  surface,  emitting the radiation  but

which is also reflecting radiation.   The reflected radiation is reflectivity of the surface ρ i Hi,

which is incoming radiation.   The total energy leaving the surface is a sum of emission and

reflection, radiation leaving surface is equal to emission plus reflection.

 As we count the photons coming out of a surface, either they are photons emitted by surface

or they are photons, which are reflected from that  surface.   This is ϵi σTi
4 + ρi Hi.    Now this

quantity will come frequently in gray enclosures because in context of black enclosures,   we

will have only emission, but no reflection.  In a gray enclosure,  we must worry about both

emission and reflection. Since this is going to come  very often we will give a name call

radiosity.

  Radiosity is  nothing but  radiation  leaving the surface that  is  the sum of  emission and

reflection per unit area.  The radiosity  leaving the surface unit area (Watts per meter square)



consist of  two components, the emission and the reflection.   Since we are dealing with gray

diffuse isotropic surfaces,  we can write this also as   1 - ϵi Hi using Kirchhoff's law.
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  This is a basic building block,  of the radiosity is as follows; first staying on the ith surface,

the heat leaving the surface is nothing but energy leaving the ith surface. Energy inside on the

ith surface multiplied by  Ai.   If we take a surface i and put a little control volume there, we

can see that radiation  Hi is coming and radiosity  Bi is leaving.  The difference between  Bi

and Hi  is a measure of how much heat  we must add  to maintain this surface at  a constant

temperature Ti.  This is a simple equation,  which can be also written in another way.   Heat to

be added  is also equal to  black energy emitted, another energy absorbed, both these are

equivalent; one is treated by control volume, we actually do not worry about the process of

absorption, deflection and emission. 

 We merely  count  the  photons  coming  in  and  photons  going  out  and  the  difference  in

medium  has to balance by the heat order. On the other hand, if we look at the surface and ask

how much energy is  absorbed, this energy coming into surface absorbed  is α i.    Using

Kirchhoff's  law  we  can  add  this   as,  that  is  also  an  equivalent  statement  of  the  same

expression.  One is  through  the  concept  of  radiosity  and  other  is  through the  concept  of

absorption  minus  emission.  Both  are   equivalent  and  here  we  will  be  using  this

interchangeably to get information about any given problem.



  The next question  we would like to ask is what is H i.   The energy arriving at the surface i,

Hi Ai  ,  has to be equal to energy leaving surface j, Bj Aj   times  the fractional radiation

leaving j and arriving at i. So the logic is same as what we did  in black enclosure except that,

instead of  σT4,   the black body  emission,  we are using the concept of radiosity.  Hence

radiosity is  a  convenient  way to  handle  problems by  both emission  and reflection.    It

combines both  total energy leaving surface j into area of j and this is a fraction arising at

surface of i. Now  we  sum over all surfaces j 1 to n,  which is your incoming radiation  at

surface i.
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Now let us combine all that and see how it looks like.   In surface i,  where it is leaving

surface i is Bi Ai - Hi Ai.   We are going to rewrite as   j=1∑n  energy leaving surface j  is Hj Aj

Fj-i.  Like we did earlier for the case of black surfaces,  we can multiply  numerator and

denominator  by 1.   We have j=1∑n Bi Ai Fi-j - Bj Aj Fj-i.      By using reciprocity Ai Fi-j is Aj Fj-i.

So  we get a very clean result once more.

 We must recognize exactly same as the expression, where obtained earlier for enclosure with

black surfaces, but now instead of  σT4 our potential difference is the radiosity.   That is the

only difference that is appearing there so once we recognize that, it will be quite easy to

proceed further.
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 We can also combine the two expressions we derived  for the heat transfer and we can write

the  Qi by eliminating the irradiation; we can write as [σTi
4 - Bi] ϵi  Ai / 1 - ϵi.   Now this

comes  by combing the 2 equations we wrote for Q i   a few minutes back and eliminating  Hi

from the equation, the irradiation.  We get the expression  as 1 - ϵi / ϵi Ai.      This is useful

because it says  that if we take a surface at the certain potential   it shows the resistance

between that surface and the radiosity point  Bi and that is due to the surface not being  a

black surface and hence this quantity is call the surface resistance.

So this must be in  contrast  with the concept of geometrical resistance, which we derived a

few minutes ago; which was 1 / Ai Fi-j.     This is purely a geometric factor in this relation.

This resistance is fundamentally dependent on surface properties.  When emissivity of surface

i is 1, this term drops out completely and does not exist. It exists only when the surface is not

a black body, than does a resistance. So if the surface is a black body then  the radiosity point

is same as black body emission point are equal.  .
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Now let us write a expression, now for a  three surface enclosures so that  each surface has its

own resistance namely 1 / A1 F1-3, 1 / A2 F2-3 and 1 / A1 F1-2.

    So we have that complete resistance diagram.   Now for an enclosure consisting  of  three

gray diffuse isotropic surfaces and they consist of  three potentials here  as we have  three

surface  resistance  systems because the  surface is  not  a  black  body and  three  geometric

resistance term; on account of the relative configuration of the  three surfaces. 
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Let us take a very simple case first. Let us take  two infinite parallel plate's, emissivity ϵ1 and

ϵ2.    We assume that  we know the surface.  Therefore  F1-2 is 1 because of infinite parallel



plates.  We can write the electrical analogy for this case as, 1 - ϵ1 / ϵ1 A1.   This is σT1
4.

Therefore,  we have Q1-2 = σ[T1
4 - T2

4] A / [1/ϵ1 + 1/ ϵ2] -1.     This is the expression for

radiative   heat  transfer  into  infinite  parallel  plates  and  it  clearly  shows  that  the  major

geometrical resistance is right here.   We can see that  if we want to reduce heat transfer

between  two parallel plates,  then ϵ1 and ϵ2 become very small. 

The denominator here becomes very large and it reduces the heat transfer between the two

surfaces.   This is used in practice in insulation application.  When we  insulate a  particular

object,  we take a large number of reflective surfaces and we   line them up.
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 We have large number of reflective layers, these are nothing but plastic, thin plastic sheets

coated with aluminum and so emissivity  tends to be typically of  the order of 0.1 or less.   If

we just take  two parallel plates,  we can see that   Q1-2  is σ.   So let us say ϵ1 = ϵ2 = 0.1.

This will be  10+10=20.   If we reduce the heat transfer by a factor,  and it was only black

surfaces   we will get the expression  numerator, by having reflective gray diffuse surfaces

with emissivity  of the order of 0.1.

We are able to reduce the heat transfer by factor of 19 times so this is now very common

application both in spacecraft as well as in other application on the ground, where we cover a

surface to be insulated with the large thin parallel sheets of plastic coated with metal, like

aluminum and this is very inexpensive  and very effective insulator  we can have.  We must

remember, that this works extremely well in space; where there is no other mode of heat



transfer except radiation, but on the ground there will always also be convection between the

plates.

 We have to cut on radiation, but we cannot cut down convection.  Hence the convection will

go up  but  we can reduce convection by evacuation.  That is by reducing the amount of

matter  between  the  two  surfaces,  reduce  the  pressure  so  that  the  number  of  molecules

between the  two surfaces is small, and  then  we cut down the convert heat transfer between

the  two plates. In space  there is vacuum so there is no other  mode other than radiation, so it

works very well as per on the ground. Also we can use effectively provided we confine  some

other  ways to suppress convection.
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Now let us take an example,  to illustrate this issue further. Suppose, we put between  two

plates  a  shield.    For  example   let  us  now take   a  simple   steam pipe.  Let  us  say the

temperature in the  steam pipe is  400 Kelvin, about 120 degree centigrade and  its emissivity

is 0.8.  We would like to know what the heat laws by radiation  in the room surrounded  and

the room walls are 300 K. Now this problem can be solved  by, treating the pipe as a surface

and surrounded  as shown above.   We can do a simple resistance model. Let us take  two

surfaces as 1  and 2 so we have  σT1
4 (1-ϵ1 / ϵ1 A1) (1/A1) F1-2 where F1-2 is one. 

Let us assume room to be a black body, so that room emissivity is 1.   We will get now σT4.

Therefore, heat transfer rate per unit area of the pipe is nothing but ϵ1 σ[T1
4 - T2

4].    The

minus 1 plus 1 cancel out and only 1/   is left behind.    We can estimate this because weϵ



know emissivity is 0.8,  T1  is 400 K;  T2 is 300 K.  We will get number like 794 watts by

meter square so that is the kind of heat loss.  

 We notice that, this heat loss is very  It is more than the heat loss by free convection from

this steam.  Hence it really is useful now to add some insulation on the steam tube to reduce

heat loss not  by condition, but also  by radiation.   This  is one example of typical application

in industry, where a pipe containing steam going long distances; will cause large heat losses

which are inevitable. 

(Refer Slide Time: 48:52)

Now let us go to the example of the thermocouple shield, we thought of a wall of duct with

the thermocouple there and we put a shield here. Let us say emissivity thermocouple is now

0.5,  the  shield  thermocouple  has  an  emissivity  of  0.4;   for  convenience.  Let  us  say

thermocouple is measured at the temperature of 800 K we would like to know the actual gas

temperature.     The shield  is surface 2, a duct wall  is surface 3 and thermocouple is surface

1.  We can calculate the heat transfer from the thermocouple to the shield which can be

written as σ[T1
4 - T2

4] / [1/ϵ1 +A1/A2(1/ϵ2 - 1)].    We get this by writing down the electrical

energy between 1 electrical circuit  and 2,  the heat transfer rate plus  the radiant transfer

from the thermocouple to the shield has to be  equal to that from the gas to the shield  and to

thermocouple.

 This is a balance between rate transfers from thermocouple to shield with convective transfer

from gas to shield. We know the thermocouple temperature,  as 800 K.  We want to know the



gas temperature; given the measured temperature and we do not know the shield temperature.

There are two unknowns Tg and T2.   
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 We write one more energy balance,  for the shield.   First thing is radiate transfer between the

shield and the duct.  Then we   need to  derive between the shield and the thermocouple and

this  has   to  be  equal  to  heat  lost  by shield,  by convection  .    This  is  radiative  loss  to

thermocouple and convective gain from gas.      Now we have 2 equations and 2 unknowns.

We can solve  it  numerically.  We find that, if T of the thermocouple is 800, heat transfer

coefficient by gas   is  130.4 Watts per meter square Kelvin.

This is a typical value for high speed flow in a duct, then  we already assumed epsilon of

thermocouple is 0.5; epsilon of the shield is 0.4. We will find that the temperature of the gas

is around 808 Kelvin,  and that of the shield  is 779 Kelvin. Now this illustrates the important

role of the shield.   When the shield  is not there, we had an error of the order of 280  Kelvin.

When  we put the shield, the thermocouple was not directly seeing the wall of the duct and it

was exchanging radiation only with the shield the shield already had a high temperature; so

radiative loss of the a thermocouple to shield becomes small, so the temperature of the shield

gets closer to the gas temperature.  Thus we can see there is only around  1 percent  the error,

so 80 Kelvin error, which is equivalent to 1 percent. So we reduce the error from almost 25

percent to 1 percent by just adding one shield.



 The using of shield is a very popular measure  in the measurement temperature because it

drastically reduces  the error  introduced by radiative transfer.   In  the above example we

showed clearly the importance of shield and reducing the error and this was done by using

simple shape factors and radiative transfer enclosures.   We will continue along this line and

look for more complicated examples in the next lecture and we will see how to extend this

idea to a much more complex problem, as well as more realistic problems, including those

which are non gray. 

Thank you.


