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Today we start a new part of the course, which is radiative transfer between surfaces. So

far,  we have  looked at  emission  by blackbodies  and the  radiative  properties  of  real

surfaces. Now, we are ready to ask this question, what fraction of radiation leaving a

surface actually reaches another surface? 

Now, this is a very important issue in engineering application. We would like to know of

the radiation leaving a flame,  what fraction reaches to the certain wall of a boiler or we

would like know of the radiation leaving a certain wall of an enclosure,  what fraction of

it will reach another wall. This problem is a three dimensional geometry, because as we

know radiation leaves the surface in all directions.  We would like to know what fraction

actually  reaches  another  surface  in  order  to  calculate  the  radiation  impinging  on the

surface.  This is purely a geometry problem.

But if  the radiation  leaving the surface  depends strongly on an angle,  then not  only

geometry is  the  issue,  we also have to  worry about  the directional  properties  of  the



radiation emitted or reflected by the surface. There are many examples in real life, where

one can assume that these surfaces we are dealing with are the diffuse-isotropic  emitters

and reflectors. In such a case, we will show that the geometry part of the problem gets

separated from the radiation part of the problem. In today’s class we will define what is

known as geometric configuration factor. This factor is a very important quantity. It tells

us what is the fraction of radiation that leaves one surface and reaches another surface.

And under certain conditions, this is purely dependent on geometric configuration of the

two surfaces,  and nothing else.  It  makes  the analysis  of radiation problem somewhat

simpler because we can separate the radiation part of the problem and the geometry part

of the problem easily. We will see some examples, where this makes our computation

somewhat easier. 

If the surfaces we are dealing with are not diffuse isotropic, then the geometry and the

surface property gets entangled and we have to do a very complicated kind of analysis. If

we encounter such condition where the properties of surfaces are very complex function

of angle,  then we use what is known as Monte Carlo method. We will discuss this Monte

Carlo method near the end of the course. These methods actually follow every photon

that is emitted or reflected by a surface and follow the photon till they are absorbed.  If it

is reflected, then it will follow the photon after reflection and ultimately until the photon

is absorbed in another surface. 

Today because of the availability of high speed computers, it is possible for us to follow

millions of photons from their birth and their subsequent reflection and absorption.  One

can do the life  history of  all  the  photons  and compute  the  total  radiative  flux.  This

method  is  very  computer  intensive,  but  has  an  advantage  that  it  can  deal  with  any

complex geometry, in any complex situation.  We use the geometric configuration factor.

Now, let us now look at the example here.
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So, we want to  ask if  the radiation  leaving the surface dA1,  elemental  surface,  what

fraction reaches the surface two, dA2. Radiation leaving the surface two and a certain

fraction is intercepted by surface dA2, and the fraction of the radiation leaving surface

one is intercepted by dA1.   The surface two depends upon the orientation of the surface

two with respect to surface one.  It depends on the distances, that is, the distance between

the center of the surface one and surface two and also the angle θ2 and θ1. These are the

angles between the line joining these two elemental surfaces and the local normal. These

are local normal. 

Now, we will  derive  that  expression.  It  tells   us  what  fraction  radiation  leaving the

surface one reaches the surface two. After that, we will see under what condition this

quantity is a purely a geometric factor. We will show that if the radiation leaving the

surface  is  diffuse-isotropic.  (  independent  angle  θ1 and  φ1 ),  then   this  fraction  is  a

geometric factor. 

In the next few lectures we will discuss the techniques of calculating this factor purely

from the geometry of the problem. There are several interesting techniques available to

calculate this factor. We will go through those techniques. 



(Refer Slide Time: 08:27)

Now, let us derive this expression for geometric configuration  factor. We will draw a

simple figure. The surface dA1 and dA2 has a normal. The angle between the line joining

these two surfaces and the normal to these surfaces are θ1 and θ2 respectively. And, we

asked what is the solid angle subtended by surface two and surface one. By definition of

the solid angle, d omega is nothing but area projected  of surface two divided by the

distance S squared. So, this is the solid angle subtended by surface two in surface one.

Now, let us ask what is the  radiation leaving surface one. 

This, from the definition of intensity   i'λ11 Cosθ1 dΩ dλ.  This is the radiation leaving

surface one in the direction towards surface two and radiation that leaves one, which

arrives  in  surface  two   times  the  solid  angle  subtended  with  surface  two,  which  is

dA2cosθ2/S2.  This is the solid angle that subtended by two in one.  We have to define

what is dΩ1.   We rewrite this as dΩ1.  This can be further expanded to  i'λ1 Cosθ1 dΩ1

cosθ2 dA2 /S2. Now this is the radiation that is leaving one and reaching two.   We have to

find the total radiation leaving surface 1 in all directions.
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If we take all directions and integrate to all directions, then radiation leaving surface one

in all  directions is nothing but π i'λ11 dA1 dλ.   While doing this integration,  we are

assuming  that  radiation  leaving  surface  one  is  diffuse-isotropic.  Only  then   one  can

calculate  this  quantity.  Without  assumption  of  diffuse-isotropic,  this  quantity  is  a

function of θ and φ.   If given the values for θ and φ we can integrate and get the answer.

Now, we say what is the fraction of radiation leaving surface one and reaching surface

two. That is the definition of   FdA1-dA2. 
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  FdA1-dA2  equals  the fraction of radiation leaving one and reaching two.    The radiation

which leaves one reaches two divided by radiation leaving one in all direction. 

 We can see that   i'λ1 and dλ1 will cancel out here.  Now there is a simple relation for

differential geometric configuration factor.  It is cosθ1 cosθ2/π S2.   That is the dA2.   

 We should notice that this is a non-dimensional number because it is a fraction. This is

non-dimensional because it represents the fraction and it depends only on the angle θ1

and θ2 , area of surface two and the distance. So, there will be some relation.
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Now, this relation has some interesting features. Notice that  dA1  FdA1-dA2  will be equal to

cosθ1 cosθ2 dA1 dA2/π S2.   This is a symmetric function. We can interchange θ1  and θ2.

Therefore by symmetry, it is also equal to dA2  FdA2-dA1.  This is known as reciprocity. The

reciprocity is a very important property telling  us that, the total radiation leaving one

and arrives at two  and the same radiation leaving at two and arriving at one. This will be

very useful because if we are able to calculate  this quantity, then we also know this

quantity; because this depends only on the area ratio. 

Now, this  geometric  configuration factor  between differential  areas requires only one

condition; that is, we are dealing with diffuse-isotropic emitters and reflectors. So, once

we have made that assumption, this geometric factor comes out naturally. So, as long as

the  radiation  emitted  and  reflected  by  a  surface  is  diffuse-isotropic,  then  we  are



guaranteed that the relation between radiation leaving surface d A 1 and arriving surface

d A 2 is purely a geometric factor. But as we can realize, this equation although very

useful, is not very practical; because in application in Engineering  one doesn't need  FdA2-

dA1 , but we need FA1-A2.  That is the geometric configuration factor between finite areas.
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  This is a quantity that is really of great interest to us. Now the question is, we have just

shown that the geometric configuration factor between differential areas is completely a

geometric factor, if the surfaces emit and reflect in a diffuse-isotropic fashion. But is that

conditions sufficient for calculating this factor between finite areas? The answer is, no,

one has to apply some more conditions. 

If  we want to calculate within finite area, then we have to integrate over the two surfaces

A 1 and A 2. This intensity leaving surface one  cosθ1 cosθ2 dA1 dA2. This is the quantity

in numerator. In the denominator, we are looking at  π times what is the total radiation

leaving  surface  one.  Now, if  we  look  at  this  general  expression  for  the  geometric

configuration factor between finite areas, we will find that this will be a purely geometric

factor, only if   i'λ is not a function of space in A 1 and A 2. 

If the  intensity leaving surface one is varying with space    then i'λ1 in this integration

cannot be taken out.    If you want to take out this term i'λ1   out of the integration, then it

should not be a function of space in one and two.  This will happen if emission  and

reflection  is  uniform,  and does  not  vary with  space  and finally  incident  radiation  is



uniform.  Only then we can guarantee that this quantity is independent of angle, and

independent of space, and  we take it out of the integration.  We then have a simple

expression. Now, this is not commonly met in real situations. Especially, the condition

that the incident radiation should be  uniform  is rarely met because most surfaces we are

dealing with, gets radiation from all directions and the radiation incoming from different

surfaces impinging on a given surface will not be uniform.

So, if the incoming radiation coming at surface is not spatially uniform, then there is a

chance that the radiation leaving the surface will not be uniform in space. Even though

the properties of surface like reflectivity are uniform,   the reflecting radiation will be

non-uniform.
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So,  one must remember that in this condition, finally we get for  FA1-A2, as an integral of

A1 and A2.  This is written as 1/A1 A1ʃA2 cosθ1 cosθ2 dA1 dA2/π S2.  This is now a truly

geometric factor. It depends on the relative orientation of  θ1 and θ2  of the two surfaces.

This is a very useful quantity to have  only if incoming radiation is uniform in space. 

 Secondly, surface properties like emissivity and reflectivity are invariant in space.  We

want  radiation  to  come  uniformly  on  that  surface.  And  the  surface  properties  like

emissivity  and reflectivity  should also not  vary in  space.   This  condition  is  not  met

commonly in many practical applications.  We have to keep that in mind that,  the use of

geometric configuration factor between finite areas is not always valid, unless we have a



new condition that the incoming radiation is uniform spatially, and this surface properties

like emissivity and reflectivity do not vary in space. 
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 We can also see from this symmetry of this particular equation. We can also see the

following conditions are satisfied A1  FA1-A2 = A2  FA2-A1.    This is called reciprocity.  This

is a very useful property. If you happened to get hold of FA1-A2  from some source, we also

know FA2-A1  immediately. It helps  us to generate new shape factors or geometric factors

based on available values.  This is a basic parameter which we will be now studying in

the next few lectures.  We should try to understand under what condition these can be

applied and what are the real life examples, where this can be implemented. 

Now in today’s computer world, in principle, this integration which we talked about,  can

be done on the computer. But,  one must recall that although this can be done on the

computer fairly easily, it is important for  one to actually tabulate correctly the limits of

the integration because that the computer will not know. We have to indicate what are

limits of the integration that is A1 and A2.   Once  we have given those limits,  there are

many software packages which will do the integration for  us. But for simple geometries,

these configurations have already been done and given in various tables in books.   We

will take a few examples to illustrate the values of geometric factors.  The very common

geometry which we will   encounter  quite often in the real world are, quantities for



which integrations  have already been conducted and the relationship is already available

to  us. 
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 One example that  we will now look at is  that between a small area  dA 1  and  the long

element.   So, FdA1-dA2    is  parallel well defined quantity from the definition given there.

Now,  we need to integrate over this length to get the configuration between  element

dA1 and a strip A2.    In this case, the basic   dA1 dA2  we know from the definition, but

we need to integrate over one of the elements. That is the element  dA2 to get a relation

between   FdA1-dA2  to strip one. 

Now, this integration can be carried out fairly easily.  This is purely a geometric problem.

We will now write down a few steps indicating how this integration is done.  We will

look at this integration  from areaFdA1-dA2.      A2  is the strip that we are looking at.  We

can look at  the basic geometry of the problem and wherein the distance,  the normal

distance between the two elements.  One element is dA1.  The other element is shown as

above in the figure as dA2.   The projected distance between the normal to the plane  is

'L'. 

 One can do all the simple geometry that this calls  for and one can easily show that  this

angle between the normal to the surface  is β.    θ2 is the three dimensional angle.  In the

above figure we can see θ1   is the angle obtained when  we draw the vector S joining



dA1 and dA2,    while  β is the projection of this on  the plane.  Once  we know that β  and

this distance is l,   cosβ  is the vertical distance here. 

 We will now use the geometry and  will stick  to the notation in the figure.  We will draw

a small  cube cosβ. This is purely a problem in geometry, by π.   We then  integrate in the

x direction from minus infinity to plus infinity,  the normal to the plane of this board.  It

will come out as  dx/(l2+x2)2. 

Now,  we can do the integration that is fairly straight forward.  We will get that answer

now as cosβ dβ/2.  So, this is a very simple result indicating that the geometric factor

between the element dA1 and a finite area  A2 which is the strip, is nothing but cosβ dβ/2.

It can also be written as 1/2 d(sinβ).    We will examine  the result when we integrate

with A1 and A2 when we look at the geometric factor between two surfaces, which are

infinite in one direction. That is, they are very long in one direction.  Such examples

occur  in  practical  situations,  where one dimension may be in  furnace or some other

situation or a cloud; where one dimension is very large compared to the other dimension.

Then, the problem is essentially a two dimensional. But, remember that in radiation the

basic phenomena in three dimensional, although one dimensional is long compared to the

other dimension,  we still have to take into account the three dimensional nature of the

phenomena,  which   cannot  be  ignored.    We are  going  to  addresses  this  issue  by

calculating geometric configuration factor in those situations, wherein one dimension is

extremely long compared to the other two dimensions. We want to know whether some

simplification we have arrived at   will enable us to calculate things without actually

doing  the  integration.  This  method  is  quite  useful  and  powerful  and  has  a  simple

geometry and simple interpretation in terms of energy.
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We will look at an example now. We will take a simple example of a triangular enclosure

triangular system. Imagine, we have a triangular enclosure A1 A2 A3.   All dimensions that

are perpendicular to the board are very long  and are infinite.  We are looking at the

problem where this dimension is extremely long compared to what is there in this plane.

The question is, does such a configuration  simplify  the problem.  Now, we will appeal

to reciprocity.  We know FA1A2  and FA1A3.  We want to calculate these quantities without

actually performing integration.   This is  possible  because we can write down energy

balance  that is the radiation leaving surface one and reaching surface two as well as

radiation  leaving surface one and reaching surface three,  as equal  to radiation  in the

surface one. 

This shows that  FA1-A2 + FA1-A3 = 1.    This is  because these are plane surfaces.  A plane

surface cannot see itself.  For a plane surface, that is, which are not concave,   F A1A1  is 0.

This is called as self-viewing factor.  The self-viewing factor is the fraction of radiation

leaving  a  surface  which  comes  back  to  itself.  Now, this  can  happen  only  when the

surfaces  are plane or they are convex.   The self-viewing factor is 0.  We are considering

a case, where all the three surfaces   A1, A2, A3  are completely non-  self viewing.  
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  This  the surfaces A1, A2 and A3      are all  non-concave.  Therefore   FA1-A1 equals  FA2-A2

equals  FA3-A3  equals 0. So, they do not see themselves. Now, let us write down the first

law of each case.  The  radiation leaving surface one and surface two are  ending in

surface three which equals one by first law.  This is because whatever is leaving reaches

the any of the other two surfaces.    This dimension is infinity. Similarly,  FA2-A1 + FA2-A3 =

1 and FA3-A1 + FA3-A2 = 1.     So, we have three equations here with six unknowns.  We can

solve for all these values. But we know by reciprocity, which is A1 FA1-A2 = A1 FA1-A3 = A2

FA2-A1 = A2 FA2-A3 = A3 FA3-A1 = A3 FA3-A2.    We now have six equations  and six unknowns.

We can solve this problem completely without doing any integration.  In such a situation

the  results  are  very  simple;  We  can  just  eliminate  what  we  do  not  want.  This

simplification implies that this integration is not required. 
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If  we encounter a situation with three surfaces which forms enclosure   then  we can

show that  FA1-A2 = A1+A2-A3/2A1.     

This configuration factor between two finite areas  A1 and  A2, if they are part of an

enclosure containing three surfaces and all surfaces are non-concave,  is the sum of the

area of the two surfaces involved in the interaction minus the area of the third surface

divided by twice A1. . Similarly, we can write the other two.    FA1-A3 = A1+A3-A2/2A1.

This is a very powerful result because we have avoided all integration. We need to know

only the surface area of the three surfaces.  That is fairly an easy quantity for surfaces of

known shape.  We have managed to avoid the difficult three dimensional integration that

is usually called for. 

 This can be used in a situation where one dimension is very large compared to the other

two dimensions,  because the problem becomes essentially a two dimensional problem.

But,  still  the integration  that  we have to  do is  three  dimensional.  We can avoid  the

integration  by  appealing  to  Law  of  conservation   of  energy  and  reciprocity.   By

combining  energy conservation  and reciprocity,  we get  this  relationship  between the

shape factors.  This is a very useful result and it has application which we can adopt very

easily.  There could be situations where  we actually do not have three surfaces, but one

can always construct a three surface enclosure. 



(Refer Slide Time: 49:03)

Let  us take an example. Suppose there are two parallel plates, may be a furnace for

example; We have one plate as surface one,  and the other as surface two.  The distance

between the plates is D. The dimension normal to the board is infinity.  We need to see if

FA1-A2 can be calculated without any integration.  Now, the way we will do this is, we will

construct an enclosure.  We draw  two dotted lines connecting the two surfaces.  This is

an imaginary surface.   Let us call this surface three and  surface four.

Then, we apply the rule we just derived to this triangular enclosure (refer above figure) ;

three, four, one.   From our earlier formula we know that   A1 FA1-A3 is equal to  A1+A3-

A4/2A1.    Similarly, we can construct other triangle here.  Let us call this as five and six.

We can also say A1  FA1-A6 = A1+A6-A5/2A1.    We constructed two triangles on the same

base of surface one and applied the triangle rule for non-concave surfaces and arrived at

two expressions. Now, what  we really want is FA1-A2.   We have FA1-A3 and FA1-A6.   Now,

we can apply the first law of Thermodynamics. 
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 This enclosure,  we can say is the radiation leaving surface one, reaching surface two

plus radiation leaving surface one and reaching surface three.   The radiation  leaving

surface one reaching surface six has to be equal to one. Therefore, the quantity    FA1-A2 =

1 - FA1-A3 -  FA1-A6.   This is from the first law of thermodynamics.  We have already

derived the expressions for these two. We can rewrite FA1-A2 as  1 - [(A1+A3-A4) / 2A1] -

[(A1+A6-A5) / 2A1].    

We have been able to get the configuration factor between surface one and two in terms

of just the areas of one, three, four, five and six.  These can be easily calculated. Since

these dimensions are infinite in this direction, all these are essentially lengths  of various

surfaces here.  We can see  there is a minus half here  and the one is cancelled out. So,

finally  we can add four and five. We will get [(A4+A5) - (A3+A4)] / 2a1.     It is a very

simple result, which has several physical insights. 

  In the next lecture we will proceed further in using this method.   In this lecture  we

define  a  quantity  called  geometric  configuration  factor,  which  is  a  purely  geometric

factor  when it is applied between finite areas  if the radiation leaving that surface is

uniform in space.  We showed that for certain situations in which one dimension is very

long  compared  to  the  other,  there  is  a  simple  way  to  evaluate  this  geometric

configuration factor without actually doing the integration.  In the next lecture  will look

at how this simplification helps us to solve some interesting problems.


