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In this lecture, we continue our discussion on approximate methods for solving scattering

problems. If we recall, the earlier problems we solved without scattering were much simpler,

because  we  could  use  simple  exponential  kernel  approximation  to  convert  an  integro-

differential equation into a different equation; but when we include scattering, the problem

gets complicated by one order of magnitude, because a ray traveling in any one direction is

linked to rays travelling in all other directions through the scattering process. In scattering

problems, you have to worry about how intensity of the rays depends on angle.  If   we recall,

our intensity i prime is a function of both theta and phi. This is the azimuth angle. 

If  we recall that, we did not pay a lot of attention to the importance of angular variation, in

the case of problems involving absorption, emission. In most cases, we were able to make the

approximation  of  diffused  isotropic  emission  that  made  the  problem much  simpler.  The

angular variation was accounted through exponential kennel approximation, which turned out

to be quite adequate to deal with the problems involving emission and absorption; but when it



comes to scattering, these problems cannot be ignored; angular variation is a critical factor in

the case of scattering problems and you need to carefully account for the direction in which

the rays are going. 

(Refer Slide Time: 03:24)

Now, in  order  to  explain  how  scattering  problems  are  dealt  with,  we  take  the  simplest

example  of  the  two  stream  method,  which  we  discussed  earlier  and  we  continue  the

discussion today. So, what you are doing is, you are essentially converting the problem which

involves multiple directions to essentially two main directions up and down, and you thereby

try to simplify the complexity of the original problem.

 One direct way is to look at, azimuthally averaged intensity; that is we define an I, a function

mu, that is cos theta, as 1 over 2 pi, 0 to 2 pi I prime of both mu and phi, d phi. We average

the intensity over the azimuth angle, this direction, and only account for the zenith angle.

This refers to azimuth angel.



(Refer Slide Time: 05:42)

We average  over  azimuth  angle,  because  in  most  cases,  the  azimuthal  variation  is  not

important  as  variation  with  zenith  angle.  For  example,  take  the  example  of  direct  solar

radiation impinging on a surface.  The variation with azimuth angle is not as critical as the

variation with zenith angle.  That is the problem. Once you do that, the basic problem is

scattering, neglecting emission, boils around to writing a simple equation, mu d I by d the

optical  depth,  I  which is  now a function only of mu,  not  mu and phi,  minus this  single

scattering, minus 1 to plus 1, the probability phase function, it depends on mu and mu prime,

and I of mu prime, and d, d mu prime 
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 This is I; This is the simplified form of the radiation heat transfer equation in which we have

ignored the, or average over all azimuth angle, so that, the only account for the zenith angle

variation. In the two stream approximation, we have a very simple assumption, that I is the

function of mu is written as, equal to 2 values I up, when mu is greater than 0, and equal to I

down, when mu is less than 0.  After averaging over all azimuth angles, we are making a

further approximation, that the intensity is not varying with mu in the upper and the lower

hemisphere,  but  the  intensity  upwards  and  downwards  are  not  the  same.  We want  to

fundamentally account for the fact that intensity depends on whether it is going up or going

down, but within each hemisphere.  
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Now, this can be illustrated by a picture here, which we will see now. We are going to have a

simple model in which the upper and downward hemispheres are different. This is a simple

model  in  which,  in  the  upper  hemisphere,  intensity  is  independent  of  angle  and  in  the

downward hemisphere also independent of angle. And, you have only 2 values I up and I

down; that is the whole problem.  We are going to do that integration here, shown as follows.

Everything simplifies in terms of I up and I down, or I out and I in.  Once we do that, the

previous equation now, becomes very simple.
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We now write equations for I up and I down, and we illustrate that now by showing that, mu

d I up d tau is equal to I up minus single scattering by 2, 0 to 1, this is scattering phase

function, is now function only of mu and not of phi; and We are doing 2 integrations, one

from 0 to 1, and one from 0 to minus 1.

(Refer Slide Time: 10:09).
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We write this phase function, function of mu and mu prime, I, this is now down, into d mu

prime. 

(Refer Slide Time: 11:47)

 What we have done here is that, the intensity in the upper direction depends on what is

already  the  upper  direction,  and  times  the  radiation  scattered  in  the  upper  direction  by

particles from radiation travelling upwards, and also radiation which is scattered upwards

from the downward going radiation. Both these are accounted for in this calculation.  The



advantage is, since we are assuming that I up and I down are independent of angle, we are

going to take it out of the integration; so, then, we are left with a simplified equation.

We have taken the I out of the integration, because it is a constant by our assumption. We get

a  simple  integration  of  the  phase  function.  Now, since  we are  going to  encounter  these

integrals quite often, it is useful to define a b of mu as half, 0 to 1, p of mu, mu prime d mu

prime.

(Refer Slide Time: 13:37)

 This represents the fraction of radiation that is scattered into the opposite hemisphere. It

shows,  a  ray traveling  in  direction  mu prime,  how much  of  it  is  going  in  the  opposite

hemisphere due to scattering.   Once we make this simplification, the final equation now for

intensity upwards as a function of tau is written as, I upwards, minus single scattering into 1

minus b into I upwards minus omega into b into I downwards. We have made the equation

symbolically very simple. Now, we can integrate the equation over mu, above equation, and

the function will become much simpler.  When we do that, and we define b bar, average value

b as 0 to 1 b of mu d mu.  In each hemisphere, this quantity will be defined.  If we do all that,

finally, we have visible very simple equation, minus half d I upwards by d tau, equals 1 minus

omega I up plus omega into b bar into I up minus I down. 
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 By all these approximations, we have reduced the calculation of the intensity going upwards,

in  terms  of  just  two parameters,  the  single  scattering  albedo  and  the  mean  back  scatter

fraction. So, remember that, since there is a downward intensity coming here, you need 2

equations; let us write down the 2 equations now, which we have to solve for; one is what

already we wrote, and I will repeat that.

Now, since this is the unknown term here, we have to write the equation for the downward

intensity, This  will come out as, 1 minus omega I downwards minus omega b bar into I up

minus I down. We have two coupled equations, two coupled, ordinary differential equation

for the intensity upwards and downwards.  There are only two parameters of interest here;

one is single scattering.

Another  one  is  b  bar,  the  mean  back  scatter  fraction.  Now, first  quantity,  which  is  the

quantity, which  we call  the  mean  back  scatter  fraction  is  a  quantity  that  is  related  to  a

quantity, which we call as the asymmetry parameter which we defined earlier, lectures if you

recall; when we talked about Rayleigh scattering, we clearly identified a quantity called g.

 The quantity g was nothing, but 1 over 4 pi, 0 to 4 pi, p, the phase function, function theta

and phi, cos theta d omega. This was the asymmetry parameter, and one must recognize that,

the asymmetry parameter and the back scatter fraction must have a connection. Now, the way

we have defined the back scatter fraction, it is connected to the asymmetry parameter that we

defined earlier as follows. 
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 If we recall, in our earlier discussion, when g was 0, we had a isotropic scattering, which is

equivalent to mean back scatter fraction of half; because isotropic scattering than the amount

scattered upwards and downwards will be same. Similarly, when g equals 1, there is only

forward scattering.   When g is 0, we have isotropic scattering and hence, b is equal to half.  

(Refer Slide Time: 21:48)

On the other hand, when g equals 1, you have only forward scattering; then, b delta has to be

0, because this is a back scatter fraction; if everything is scattered forward, the back scatter

fraction is 0. Similarly, when everything is backward scattered, b delta has to be equal to 1.



The relation between g and b is simple. Now, if you convert everything in terms of g, which

is our new parameter, we can write a new set of equations in terms of g, instead of b, which is

only a transformation of symbols here.

This  is a result which clearly shows that, if there is only forward scattering and no backward

scattering,  and g equals 1,  the second term will  drop out;  because then,  there will  be no

connection with the downward intensity into the upward intensity.  On the other hand, if there

is only backward scattering, and g is minus 1, this would become 1.  This term will cancel

out, and we would have 1 minus omega I downwards.

What we would be saying that, let me write down, so that we appreciate this.  When g equals

0, you have a simple equation, which we have dealt with earlier; this problem has been solved

earlier; this is isotropic scattering. Now, if g equals to 1, this term drops out; we have half d

upwards d tau, depending only on this parameter. If g is minus 1, minus 1 and minus 1 is plus

2, by 2, 1; This   will cancel with that and we will have 1 over half d upwards d tau, will be

equal to 1 minus omega I downwards. So, g is minus 1, minus 1 minus is 1; 2; this omega

gets cancelled with this omega; this will cancel with this; We  are left with 1 minus omega

term here;  This omega by 2 here will add up to this; then we will get the following answer.

(Refer Slide Time: 25:34).

This result clearly shows in the second case, that the upward scattering here depends only on

downward  scattering,  because  everything  is  back  scattered.  Here,  the  upper  scattering

depends only on the upper intensity, because there is no backward scattering. Now, let us



write down the two equations that govern this problem in terms of g, before we solve it. The

first equation is what I wrote earlier, and the second equation for the downward intensity

which is, can be written down by inspection because of the symmetry of the problem. We

have two equations, in two unknowns, that is I up and I down, in terms of two parameters, the

single scattering albedo and the asymmetry parameter.  We can make this problem little more

interesting and we can combine these two equations and with the slight manipulation, we will

get this equation.

We  can  see  that,  we have an equation for  the,  essentially the mean of  the upward and

downward intensities, in terms of the asymmetry parameter and the single scattering albedo,

and one can derive a similar equation for the difference between the two they look quite

similar.

(Refer Slide Time: 28:17)

We can solve these equations fairly easily. The solution of the above equation, a part of it we

have  done  earlier;  when  we  dealt  with  isotropic  scattering.  Now,  we  are  dealing  with

scattering which is not isotropic, because there is an asymmetry parameter which is not equal

to 0. So, solution to this problem is, I up plus I down, which is equal to some constant alpha,

e to the power of gamma tau plus another constant beta, e to the power of minus gamma tau.

There is a similar expression for I up minus I down. In general, we can write, I up is equal to

a e to the power of gamma tau plus b e to the power of minus gamma tau; while I down can

be written as c e to the power of gamma tau plus d e to the power of minus gamma tau. We



can connect the two of these constants here, because they are not completely independent.

Finally, we will connect everything to the total reflective layer called total albedo, called r

infinity. 

We will define that quantity r infinity now, for convenience. To solve this equation, we need a

boundary condition, and the boundary condition that we will say that, downward intensity,

that is coming in, let us say, solar radiation, that is I 0; and at the bottom, the total optical

depth. We have, a layer with tau equals 0, tau equals to tau star this is the incoming radiation,

This surface is perfectly non-reflecting.  The upward intensity of the bottom surface is 0.

(Refer Slide Time: 31:23)

This   is  the  simplest  case  that  we can  visualize,  If   you  solve  this  equation  with  these

boundary  conditions,  we  will  get  the  following  expression  for  upward  and  downward

intensity. First, I will write the upward intensity, as the function of the optical depth and we

will  define the parameter  r  infinity, which we will  define soon. So, one is  exponentially

increasing  and  another  one  is  decreasing  term.  Here,  now,  we  have  introduced  two

parameters.  We should  define  what  these  parameters  are.  One is,  r  infinity, and we will

understand the meaning of this symbol very soon.

Now, we can   see that, there is some kind of total reflectivity of a thick medium because,

when omega 1 is  1,  this  quantity becomes 1.  So,  when the single scattering albedo is  1,

everything is reflected.  When omega is 0, this goes to 0. This is a, essentially a parameter

related  to  the  total  reflectivity  of  the  medium,  which  we will  highlight  and gamma,  the



parameter that comes in the solution, is related to the single scattering albedo and asymmetry

parameter. We have been able to obtain the upward intensity for a given I 0, the downward

intensity,  in  terms  of  this  parameter  r  infinity,   this  parameter  gamma.  All  of  them are

connected only to two factors which control the reflectivity in a scattering medium, which is

the single scattering albedo, which tells you what fraction of the radiation is scattered as

compared to the radiation, which is both scattered and absorbed. If omega tends to 1, we have

a very highly scattering medium. If omega tends to 0, we have a highly absorbing medium g,

the  asymmetry parameter,  tells  us  something  about  the  direction  in  which  the  scattering

occurs. If the scattering occurs equally in all directions, then, g is 0 and we have isotropic

scattering, which we have dealt with earlier.

On the other hand, if the scattering is predominantly in the forward direction, then g tends to

plus 1; while if scattering is predominantly in the backward direction, the g tends to minus 1.

This is the main quantity of interest and if we define, and we have defined albedo before also;

it is the ratio of upward intensity by downward intensity,  This can be shown in this case, to

be anything, but r infinity.

(Refer Slide Time: 36:42)

The albedo of the semi-infinite cloud is r infinity; that is, a quantity of great relevance, for

example, in understanding cloud physics and quantity like that. Now, given the information,

we are, can also calculate the net heating rate. The net heating rate will be nothing, but pi

times I up by I down; this is of course, a quantity of great interest in calculating the heating of



the layer, or atmosphere. Now, let us take a special case of a non-absorbing cloud; that is, we

set omega equal to 1; special case. It is essentially a non–absorption or purely scattering

layer. In which case, our equation for upward intensity becomes nothing, but I 0 into 1 minus

g into tau star minus tau as shown above. 
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 In this simple situation where there is no absorption, the upward intensity depends only on

the asymmetry parameter and the optical thickness.  We can see that, in this case, the albedo

which is ratio of the upward downward intensity, r will be nothing, but, this can be calculated

now. So, r will come out as, the reflectivity albedo as 1 minus g into tau star, 1 plus 1 minus g

into tau star. This is a very simple result and we can see again, that if g equals 1, everything is

scattered in the forward direction, or has to be 0. This is understood from the definition of g.

If g equals to minus 1, everything is back scattered; that becomes 2; this becomes 2. So, r

becomes 2 tau star by 1 plus 2 tau star; and of course, in the limit, as the tau star tends to

infinity, or becomes very large rather, r has to tend to 1.
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 That is quite simple. The other case where we have isotropic scattering, r becomes tau star by

1 plus tau star.  We clearly got  a  simple idea of  what  happens when there was forward

scattering, what happens when there is backward scattering and what happens when there is

isotropic scattering. We can see typically that, in the case of backward scattering, very often

the reflectivity can be twice that of the isotropic scattering, especially when the optical depth

is small.

But if the optical depth is very large, then it does not really matter; if the optical depth is very

large, in both cases, surface tends to 1. So, our understanding is that, if the layer has a large

optical depth, we are talking about 10, or above 10, then it does not really matter, whether the

scattering is  isotropic,  or non-isotropic,  the reflectivity is  around the same value,  1.  This

insight we are getting fairly easily; we can   also define a transmittance, which is also useful

for many calculation. We will write down the transmittance. So, both reflectivity, or albedo

and transmittance are quantities of great relevance in practical application. The amount of

radiation transmitted is 1 by 1 plus 1 minus g into tau star for a non-absorbing layer. Again,

you see that, if g is equal to 0, you have isotropic scattering; tau is nothing, but I will call the

transmittance with a different notation, because we do not want to confuse with optical depth.

The   transmittance is Tr, so, transmittance tends to 1 plus 1 by tau star, when g equal to 1,

that is forward scattering, then transmittance is equal to 1. Not surprising, all the radiation is

transmitted in the forward direction; there is no absorption. We must have 1. And, when g is

equal to minus 1, we have transmittance is equal to 1 by 1 plus 2 tau star. So quite clearly,



when there is backward scattering, the amount of radiation that is coming in the forward

direction is much smaller, than when there is forward scattering. And, as a matter of fact, in

the limit of very high optical depth, high tau star, and the transmittance can go to 0, if there is

backward scattering. This simple analysis of a layer of non-absorbing particles has provided a

general insight about the nature of albedo and transmittance in a very simple context.

 What has to be kept in mind in the analyses is that, if the only quantity of interest in a given

application  is  the  transmittance  or  albedo,  and there  is  not  much interest  in  the  angular

dependence of these quantities, then the kind of analyses that we have done here is quite

adequate. But if we need further information on the dependence of albedo or transmittance,

on angle, then this analysis is not useful; analysis, azimuthally averaged, and finally, also

averaged over all angles.

  Our focus  only was on up and down.  This is  useful  for many applications,  which are

concerned  with  fluxes  and  overall  hemispherically  averaged  quantities,  but  if  you  are

interested in quantities varying with an angle, then the analysis done so far is not adequate.

So,  one needs  to  go to  a  more sophisticated model,  which  accounts  for  the variation of

intensity with angle, which was not done so far. So, let us see the kind of approximations that

we need to make, when the intensity is a function of angle. 
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Once more, we will ignore the dependence on the azimuth, but first, we will write down the

equation with the azimuth angle explicitly indicated, so that, we understand. The   general



form now is, both angular dependence explicitly there, and the pure scattering problem we

are dealing with; this is scattering phase function into the intensity.   This is the general

problem of  scattering;  they neglected  the  emission  term in  this  analysis.  Now, the  most

rigorous way of doing this problem is to expand I, which depends on the optical depth, the

zenith angle and the azimuth angle, in terms of spherical harmonics where I of m, i depends

now on, tau and mu, cos of m, minus phi. 
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So, essentially, instead of assuming things are independent of the azimuth angle, which was

the  early  approach  we  took,  now,  we   explicitly   want  to  account  for  the  azimuthal

dependence of intensity in  a cosine expansion and Legendre polynomial expansion, and then,

in this case, m is equal to 0 will represent the earlier result, the azimuth average. If we want

to go beyond azimuth average, then this kind of expansion is called for.  Then, this function

p, which is our phase function, depends on the angle mu pi and also angle mu prime and pi

prime.  

Now, this has to be expanded in terms of m equals 0 to n as earlier; and then, Legendre

polynomials will come in now; beta and a  are constants, which we have to evaluate. These

are the Legendre polynomials, which we will show what they are. These are the Legendre

polynomials, are the appropriate basis functions for radiation transfer.
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One can show that, they are the most optimal choice. You could make other choices, but they

will not converge, or be as accurate as these functions. Let us look at how these functions

look  like.  These  functions  were  discussed  earlier.  This  is  the  example  of  the  Legendre

polynomials of order 1, 2, 3, 4 and we can see that, the first polynomial is a linear function;

the second is a quadratic and the third is a higher order and so on. These are simple algebraic

functions, which are optimal for this problem; If  we want to further know what these look

like, these are the axis one beyond axis x and so on. These polynomials are the ones which

are used in many of the problems of this kind. 
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So, once we have used these polynomials in our analysis, then the equation of ray transfer

now becomes much simpler; and let me write down what equation we will get. We will get

equation for the I of m now, because everything is expanded in terms of spherical harmonics.

We removed the phi dependence through m. Now, it only depends on tau and mu as before;

but now, we are accounting for azimuth variation, which we have not done earlier. 

 We are inside now the integral over all azimuth angles. This integration over the azimuth

angle is now, has been done. We have now, n plus 1 equations; that is, I am going from 0 to n.



We have n plus 1 equations in n plus 1 unknowns; the m equals 0 case is what we had done

earlier; that is the azimuthally averaged quantity.

(Refer Slide Time: 53:35)

That was a simple problem which we performed earlier in this lecture.  So, m equal to 0 is the

azimuthally averaged quantity, which we have dealt with in the early part of the lecture. Now,

we want to do something more and we adopt the so called, the Eddington method. In the

Eddington method, we do not assume intensity is uniform in the two hemispheres; we allow

for the intensity to vary and the simple assumption, that is, that was proposed by Eddington is

that, I is equal to I zero plus I 1 mu.
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 Essentially, he is varying the distance vary in the upward and the downward directions, and

on account of these assumptions, the phase function also is simplified now. It becomes 1 plus,

in terms of the asymmetry parameter. We have now, a simple equation for I 0 and I 1. We

substitute  all  these  in  the  equation  that  is  given  earlier.  Now, we  will  get  two  coupled

equations for I 1, which is 3 into 1 minus omega I 0, This  will be 1 minus omega g into I 1.

We can eliminate I 1 from these equations and you get a single equation for I 0, which is very

similar to what we had derived earlier for the azimuthally averaged case. This analysis shows

that both the, analysis done early in this lecture and the Eddington method, which is little

more, generalized intensity, which is dependent on angle, lead to very similar equations for I

0. This   can be solved and the solutions we will get will be similar to what you got earlier

this will be continued in the next lecture.


