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Non-Isotropic Scattering

In the last  lecture we were looking at  the use of the two stream equations to  derive the

reflectivity of layer which is scattering. This could be a layer which is a layer of particles in

insulation or it could be a cloud layer.  The aim was to derive the overall reflection from this

layer; we had used the following equations.
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We have looked at the general equation for the upward intensities and a similar expression for

downward intensities. So, here we have two equations in two unknowns We  can solve it, The

solution to the equation can obtained in a very simple way in terms of new variables Y+/-. We

can   define Y plus or minus equal to I plus or minus I minus into, second order equation

which says d square y plus or minus by d tau square is equal to tau squared y plus or minus.
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Now, this can be solved very easily.  The  solution that you get will indicate that Y plus or

minus equal to c 1 plus or minus e to the power of gamma tau plus c 2 plus or minus e to the

power minus gamma tau.  This is a simple solution but , now the real challenge is to find c 1

and c 2 and related to the equal, so we can right in term of I plus or minus with an algorithm

of  the  form is c 1 e to power of gamma tau c 2 e to power of minus gamma tau. We can read

in as c 3 tau where gamma then the 1 minus in the scattering out albedo by h square.

 We  see that the intensity reflected depends on this albedo is 1, there is no damping and as a

single scattering albedo goes below one there is more absorption, so that is more damping. It

all depends on angle, if the angle is very large there is more path length.   There is more

damping, so we can relate c 2 to c 4 and c 3 to this one.  We will get c 2 is rho infinity*c 4

and c 3 is to infinity*c 1 and where rho infinity as we will see later is related to this overall

reflectivity of the medium.
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 The  boundary condition, we need to use in order to solve for c 1 and c 4, now the two

unknowns is that the upper flux at tau equals tau star is 0. That is lower boundary this tau is

star upper boundary 0, there assuming a black boundary, so there is no reflection. And at the

top the incoming radiation is equal to Io .

 Once this is done,  we  can  solve for c 1 and c 4 which are the two unknowns equation,  we

will get c 1 as rho infinity into I 0 by rho infinity squared minus e to power of 2 gamma tau

star. And c 4 as I by 1 minus 0 infinity squared e to the power of minus 2 gamma tau star.

This  is  the  complete  total  solution,  but  the  final  interest  in  this  problem is  to  get  and

expression for flux out of this layer, which is scattering and the  transition.
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 In terms of the ratio of the upper the downward  flux that is all it is, so, reflectivity of the

layer nothing but I plus of 0 the upper flux divided by radiation that  is coming down, that is

reflectivity.  This we can write as rho infinity e gamma tau star minus gamma plus or minus

tau star divided by e gamma tau star minus rho infinity square e minus gamma tau star. So,

this is an expression where reflectivity.  We can look at various limits of this expression, if

you recall gamma was related to the single scattering albedo.

 The single scattering albedo is 1, so gamma square if you recall was 1 minus omega by u

square, so if omega tends to 1, then gamma tends to 0. So, gamma 0  These things of course

the r layer would tend to 0, but one needs be careful here  as we have 1 minus rho infinity a

body l 0 in the top, so the layer will not reflective.

 Now let us look at the other limit when the gamma of the layer is very large, of infinite

region then this term will drop out.  If  tau star tends to infinity, you see r layer tends to rho

infinity which is not surprising, but that is why the term 1 mm is we scarred was related to the

gamma  We define rho infinity, we recall in terms of e single scalp scattering albedo.   So rho

infinity which is nothing but 1 minus rho to mega by 1 plus 1 omega,  and single scattering

albedo is 1,  hence rho infinity tends to 1.

 In the optically thick limit of this layer single scattering albedo is the only parameter that in

flow is the result.  The optical depth itself is not that that critical.  We look at the transparent

of the layer will come out as 1 minus rho infinity square by e to power of gamma tau star



minus rho infinity square minus gamma tau star. Again we see here in the limit as the transfer

very large of course the tau, tau star becomes very large then the transfer is go to 0 that is not

surprising, but when the tau star tends to 0 here.

 Then we have an interesting issue, which is that the layer transmittance will tend to 1 that is

because this term goes to 1, this term goes to 1. Y plus one is going to infinity squared which,

so in the thin optical thin limit of course transmittance has to be one that will not be too

surprising. Let us look at the other case where tau star tends to 0 on the top we saw that the r

layer tends to 0 which is a bit surprising. But, what we can do is we can look at this second

order term here 1 plus x normal says we get 2 gamma tau star and at the bottom you will get

1 minus rho infinity.

   The 2 gamma tau star term will play some role which is not completely negligible term.

Now, one weakness of the derivation that we are not just done is that we have assumed g to

be 0, that is asymmetric parameter was assume to be 0.  That can be a serious limitation and

cases where the scattering is not symmetric, so now, let us look at how we get the result

modified, when you include the effect of asymmetric scattering.  We extend is result we just

not derived to asymmetric scattering and what asymmetric scattering does is only a minor

modification this to this equation.
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 The basic equation, now assuming mu to be half 1 minus omega I plus the big difference

comes here.  We have g factor which was missing in our previous derivation.  It was notified



that g was 0 in the original analysis, so it looked different, here g is not 0.  The  second

expression involves the asymmetric parameter also, so  that there are two equations in two

unknown, but they are coupled because I minus appears I plus equation and I plus I may, so

you want eliminate they are,  we  can  combined them like last time. 

 We get a expression for I plus  I minus and it comes in just adding this equations and will get

it as 1 minus omega g into 1 minus omega and I plus  I minus.  We  are getting  now a single

equation for I plus I minus we  can get similar equation for the I plus minus I minus, so we

won't write it down to the similar.
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 Hence the solution to the equation is I plus will come out to the A to the power of gamma tau

B e to the power of minus gamma tau, now gamma is little bit different from the previous we

been have 2 square root of omega 1 minus omega g. So the asymmetry parameter is coming

in here, which was missing in the last derivation, then as before the relate c to A and b to D

those are essentially quite common.

 We notice  the  difference  between  the  previous  derivations,  which  involved  symmetric

scattering  to  here  which  is  asymmetric  scattering;  here  g is  not  equal  to  0.   We get  the

expression where if we put g equals to 0, you recover back what we did in the last derivation.

Now, the  next  step  as  in  the  previous  exercise  is  to  use  the  one  designation  and derive

expressions, for reflectivity and transmitivity that the same logic as before.
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 Let us now assume and use the boundary condition which is that I plus at the bottom of the is

equal to 0 black surface, and I minus at the top is equal Io.  Essentially, what we saying is we

have two plates, we have Io coming in at 0 and at tau star there is no reflected radiation,

because this is black that is assumption we are making. Once, done that expression for I plus

comes out as R infinity Io pi  to the power gamma 1 for tau star minus r into infinity square e

to the power of minus gamma tau star into e to the power of minus gamma tau star minus tau

minus gamma tau star minus gamma.
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 The I plus now notice that when omega equals 1 in the previous expression I got omega

equals 1 this term drops out, this term becomes 1, so omega equals 1  R  finite equal to 1

irrespective of the value of g.
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 That is a new insight  which is that is the single scattering albedo tends to 1; that means,

medium is not absorbing  then the R  infinity value, which is measure of reflectivity of the

medium, in the limit of very thick medium does not depend upon the asymmetric scattering.

So, this result is surprising, but what this implies is that in the limit of non absorbing medium,

it does not matter how the scattering occurs, it is symmetrically or asymmetrically, ultimately

all the photons have to emerge at the top.

Now, similarly when you take symmetric  parameter  equal  to  1 means primarily forward

scattering, now R infinity is 0, irrespective of the value of omega. Again this is interesting It

does not matter what the single scattering albedo is as long as most of the scattering is in the

forward direction, then there is not much chance of back scattering or reflection back, so that

R infinity tends to 0.
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Now some of the results we obtained here we can also look at in terms of figures, now here is

the albedo, reflectivity of a semi infinite cloud, when   tau star is very large. As a function of

the single scattering albedo on the x axis on a log scale, is the log scale here and R infinity is

this parameter.

Now, what we  notice clearly is that would be just right expression  is what, so r infinity here 

is very important because this is nothing but I plus of 0 by I minus 0, that is the albedo of the 

scattering layer that is why we are looking at that expression.

  This quantity the albedo of the cloud of particles as a function of the single scattering albedo

for two different asymmetry parameters, one is 0, which is nothing but symmetric scattering,

the other is g equals to 0.85, which is primarily forward scattering.  It states that when the

single scattering albedo is below 0.9 of actually, 0.99 the albedo of the cloud is very sensitive

to the value of g that is the asymmetry parameter.

 When we go from symmetric to asymmetric scattering the albedo  can go down 0.5 to 0.1 a

huge difference, but as you go to very high single scattering albedo like 0.99 or 0.49,  We

can  see  that  it  does  not  matter  where  that  the  scattering  is  symmetric  or  asymmetric

ultimately your reaching the value of 1. It is quite clear whether the scattering or symmetric,

asymmetric  is  usually  crucial  for  those  clouds  of   particles,  where  the  single  scattering

albedo  is less than 0.9, then we can see there is some preference.



 If we have medium with a very single scattering albedo, then we do not have to worry about

the scattering symmetric or asymmetric.  But, in more real situations where there is some

absorption in the cloud, then we are going to be somewhere in this regime.  We can see here

that there is a large difference between the albedo which is 0.05, for a symmetric scattering to

around 0.35.  There is a decrease in the albedo the cloud by factor of 7 as we go from g of the

0 to 0.85, so this must keep up in mind at single scattering albedo is very important parameter

in this situation.
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Now, let us look at transmittance, the transmittance you do expect it to go down as the optical

depth of the cloud increases, so this goes down as optical depth increases, but the way it goes

down is sensitive to single scattering albedo. When, the single scattering albedo is equal to 1,

it goes down in a certain way, but if it is 0.9 it falls much more sharply. This is not surprising

because at 0.9, the lot of absorption is going on, so naturally the transmittance will drop to 0,

but you get out of 10. While, in the case of the single scattering albedo been 0.99 or 1 the

absorption is not playing much of a role 
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Now, next we look at albedo of this cloud we see that the albedo crowd is dependent on the

crowd optical depth not surprising, the  single scattering albedo. We see that when singles of

course is one, then it requires only optical depth to be of the order of 40 to 50, that you have

also almost reached the symmetric value. While, for more absorbing cloud layers with let us

say omega equal to 0.9, we see that the you see that the albedo reaches very rapidly a value of

around 0.2 at optical depth of around 5.

 In absorbing cloud the assumption of semi infinite cloud in valid in for optical depth   around

5 because most of the photons are very quickly absorbed and does not require much thickness

of the cloud for it behave like a semi infinite cloud. While, when very no absorption in this

case you require a thickness cloud of the order 50 or 60, to get the asymptotic value of semi

infinite cloud. 
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Next we look at the absorptance of the cloud. How much radiation absorbed of course omega

is 1 with the absorptance we do not have to worry about it, but even omega is 0.9 here. We

can  see that the ability of the cloud to absorb radiation  reaches a   maximum when optical

depth   reaches 10 of 15, but  after that  there is no change. So, this again is an indication that

clouds which have absorption do not have to be extremely thick before they behave like

semi-infinite clouds. 
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Now, this graph shows the minimum thickness required for the cloud to behave as infinite as

a function single scattering albedo the asymmetry parameter. When g= 0 that is the scattering

is symmetric, We  can  see that by the time you have single scattering albedo  of 0.999 you

have reached thickness of the layer of 100 for  clouds to be same infinite. While, if it is only

0.9 which we saw earlier it requires only the thickness of the 4 of 5.  We can see that the

asymmetric reflection causes the need for higher optical depth for you to declare as semi-

infinite.

 The asymmetry  parameter  play a role in determining how thick  a cloud should be before it

can declare it as  semi infinite, now before you go  further   let us also look at the non

absorbing  cloud and some depth. The non observing been cloud that we are dealing with

here, where omega is equal to equal to 1, that is you have consider it to be have than the

reflectivity and transmitivity  can be  written  down in a fairly simple manner.
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 We have a non absorbing cloud, for which omega is equal to 1.  Then we can define the

reflectivity of this cloud as being equal to 1 minus.  Again we can see that unless cloud is

extremely thick reflectivity, will not go to 1. The  transmittance will be 1 by 1 plus  Once

more we see the  fairly strong impact of non absorbing cloud of the asymmetric parameter. It

has huge factor  to play, if g is 0 we get a  simple  result and as g tends to 1 you see that the

phenomena is somewhat more complicated.



For example, for R as g tends to 1 and g tends to one to R tends to 0, we recall that as g tends

to 1, we only encourage forward scattering. If there is a lot of forward scattering there will be

no back scattering,  we cannot  expect  any rays  to  comeback as  most  of  the scattering is

occurring  the  forward  direction.  Now, we  can   seen  how  we  can  solve  for  reflectivity

transmissivity, and  absorptivity of a  layer based on basic properties of  the particles in the

cloud, and those basic properties are the asymmetry parameter, optical depth  and the  single

scattering albedo.

Now, let  us presume  that this  information is  available we  want understand  the  total

transmissivity  of the layer, so this is done very simply in terms of ray racing, but we will also

show that all the ray  tracing  is basically very  meaningful method.
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 We are let us see earlier of glass those properties are known, radiation comes here at intensity

and on the first face it reflect rho back it space. Once it is does that you should recognize that

whatever  is  not  reflected will  go on transmitted and by the time it  comes to  the second

interface. So, what did not reflect and absorbed is then transmitted then it comes here, once it

comes here it gets reflected and so on. Once it comes here it is reflected, now this term has to

be rho into 1 minus rho into tau square.

Now, going through this twice and finally, when it comes out here escape reflection here

because to the rho into 1 minus. Now, this can be repeated when it has, so we have an infinite

series of reflection terms.  The expression for net reflectivity of all this comes over that rho



first  term,  the  common  term  here  is  1  minus  rho  square  tau  square.  This  is  quite

understandable because anything has goes backup has to go through this layer twice so that

twice square and has to escape reflection of the two interfaces 1 minus rho square, but then

this infinite series which can be written as follows.
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 By  applying  to  summation  series  rule  finally,  you  get  the  rho  infinity  as  rho,  so  this

expression for the overall reflectivity of the layer I we will call it net reflectivity of the layer,

in terms of reflected add each in reparse transmittance. Similarly, one can derive and net

transmittance which will come out as tau, now let us examine that result which I obtained by

ray racing.  Ray racing is physically very satisfying and simple approach, but it is important

recall at this stage.

That in ray racing especially, when  there are a large number of rays  it is easy to neglect or

ignore some term, so it cannot be taken for granted that everyone will get this expression.

There can be terms that are missed out, so it is not going to be easy to be able to check this

result, for example, let us see what happens to the layer if reflectivity tends to 1.  These terms

drops out and rho net  tends to   one but  on the other hand if the optical depth of the medium

because very, very large, because a more complicated expression here this term become very

large drops out tau square cancel out   the total  reflectivity will be a function only of the

interface reflectivity. 



If  you  look  at  the  transmission   as  reflectivity  tends   to  1  that  it  is  not  surprising  that

transmission is 0, because this particle tend get reflected backwards mostly and ultimately the

amount  energy transmitted  through  will  go  to  0.  So,  this  result  is  useful  to  look  at  the

expression for absorption. We can see either rho is 1 or tau is 1. In either case the  absorption

is zero and it  is not surprising if  a particle in the medium is reflecting  then there is no

impact  on  absorption   the  transmission   tends  to  1  then  there  is  of  course  there  is  no

absorption , if the all photon are transmitted. 

 Over all the simple model does give as insight about the nature of this process, but it is

important to recognize that although ray racing is very powerful tool. It is possible to make

some error now and then because one did not  account from some streams , so although ray

racing is very popular and is very often used , but while actually doing the problem.  It is

desire to adopt ray is seeing one should be really clear that there is no one or no object which

is interfering with the path or which you want to the measure.   That question has to be kept

in mind   before one can adopt this kind of approach, now although we got enough insight

because we adopted ray tracing. Its importance is in the fact that there could be alternative

way in the deriving the layer mean functions in terms of individual interfaces.
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 The  best way to do it, what we  have done a long time ago, is using the radiosity method, so

in the Radiosity- irradiation method which we have already adopted when we were dealing

with shape factors. We do not want to follow individual rays we only want know the impact



of the total number rays in the system, and so we do not do  individual counting in which in

which case. We can make some mistakes.

We really use this layer as the black box use intensity coming here is 1 This   is surface 1, this

surface 2, surface is 3, surface 4, The schematic we are going to apply is you going to assume

that incoming radiation 1 and outgoing radiation is B 1 and come radiation with 2 is q i 2 and

what going on it is B2. Now, I want use q i 2 a notation I want to follow what done we use

earlier a value H i or H 1, this is H and other S 1. So, the advantage  now that there is

radiosity should be 1 here has be equal to what the reflected already times H 1, it is 1 in or

case by notation plus.

So, this the second term is equation is 1 minus is rho, so you right is us rho H 1 and H minus

is 1 1 minus rho into H 2, this one this become rho plus. Similarly, for B 2 the second term is

rho into H 2 and so we write expressions for also B 3 and B 4, so this H 1 is 1 so this comes 1

minus rho plus rho B H 2. We   are able right to B 1 in term of H 2 and B 2 also in terms H 2,

but we need two more expressions The y are B 3 which rho time H 3 plus 1 minus rho time H

4 incoming radiation.
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 Since there is no radiation below H 4 is 0, similarly we get B 4 this is nothing but 1 minus

rho times B 3 extremely, so now we have 4 expressions for the 4 radiation.  Now we can

calculate the various terms involving net radiation.
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First we solve the radiosity. They will look at how to calculate the other terms, so it is solve

for all the 4 with 4 equations, we get B 2 is solved to be B 3 and B 4. We have solved for B 1

B 2 B 3 B 4. The transmittance of the layer is nothing but B 1, because B 1 is the radiation

leaving the surface 1 actual really, but we have taken H 1 as 1.

So, transmittance comes out as nothing but tau into 1 minus rho square of the transmittance

becomes of the transmittance nothing but B 4 H 1, so that will come out as this one. So, this

result is not surprising, if reflectivity of layer is 1 of course, there is no transmittance or the

transmittance of the layer is 0, then also otherwise things will be simple.

Then what is the absorption of the layer or reflection of layer will come out as equal to B 1,

that is the expression.  There also can see that if the transmittance of the layer becomes very,

very small this term drops out, this one drops out.  We get only the first interface reflection

that is not surprising. Second interface, so this interface plays no role, if the tau is very, very

small that is not much radiation comes to this point to reflect here, so that is the message

from that figure.
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Now finally, we look at absorption, and that will be nothing but whatever radiation is there

inside 2 and 3 and or this much is absorbed this is 1 minus rho into 1 minus tau divided by 1

minus rho tau.  Again we see that the layer absorptance is 0 reflectivity is 1 or so if rho is 1 or

tau is equal to 1, absorptance of the layer is 0, so perfect reflection at the top interface or

almost perfect transmittance implies there is no absorption in the medium.

 We show that although the same results are obtain from ray racing, and physically they do

provide more insight, but the more elegant way of deriving the layer property is from the

application  of  the  radiosity-irradiation  methodology, we  developed  earlier  in  the  lecture,

because that is very easy to apply, and it involves no book-keeping for photons where you

keep track of the photons little harder. So, generally one would recommend for new complex

system, we adopt the i radiosity approach rather than actual ray tracing.

Of course, for verification of a result you might verify the answer is correct. Now, these

results  that  we  have  derived  in  this  lecture  are  very  relevant  for  solar  collectors,  solar

collectors are  typically have two interfaces here.   The net  absorptance transmittance The

reflect layers is pertinent, and if the example the reflectivity of the solar collector is very

large, one can add a thin coating to reduce the reflectance in both layers.
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  These are now routinely done in many devices, a thin coating does not fundamentally alter

the  transmission  of  the  medium,  but  at  same  time  reduce  the  reflectance,  Hence  more

radiation gets in through the glass plate into the absorber. So, this calculation will help us to

calculate to how much additional energy you will get in a solar collector, because doing thin

coating and economic analyses to determine whether the cost of coating can be balanced by

additional solar energy collection.

We   can demonstrate that by using this coating here increasing the solar energy absorbed the

collector by 5 or 10 percent, then one can easily estimate what is payback period for that

coating that you are using. Now, this a coating idea they are also used  in the camera of

course to increasing the amount of photons that get into the your camera, into the film or your

sensor.

In the case of camera this  thin coating is  very important,  because if  you want to do the

photography in low light conditions, you will need every photon that is coming from the

scene in to your camera to be used or not will lose by reflection or absorption.   Most cameras

use coating to reduce the reflection the reduction in coating depends on this fact which we

had seen earlier. If  the refractive index of the glass 1.5, this can be quite large and so if it is

replace 1 to 1.5 to one transition, to let say 1.5 to 1.25, 1.25 to 1 thin layer with the depends

in between glass and air then we do you reduce the reflectivity of that layer.



This   logic can be extended There are coating switch will continuously decrease the n value

from 1.5 to 1 in this coating, so this is coating when they can reduce the refractive index,

gradually by producing series of deposits of refractive index. So, this is routinely used in

many industries like camera and collectors and so on, where loss of photons by reflecting is

avoided.

Now, in the next lecture we will proceed to look at Monte Carlo methods, which are the

methods we will use if you want to deal with complex system. What we have  discussed so

far have been very simple systems, wherein simple methods were used now we are going to

look at complex systems for which we have go to Monte  Carlo methods..


