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In this  lecture,  we take  an  example  of  solving  slightly complicated  problem of  heat

radiation transfer between two plates; surface one and surface two. This is emissivity,

epsilon one; this is epsilon two  and this is the gray absorbing and scattering medium in

between  Let  us consider a situation where the heat generation  is S dot and the depth of

the plate is D. 

 We want to get the full temperature distribution in this medium and to keep the problem

simple;  we will  use a diffusion approximation.  We will  treat  radiation as a diffusion

process, which we have discussed earlier in our lectures where, we said that in the thick

limit we can treat radiation as the diffusion process and if you recall, we showed that q R

equal to minus 4 by 3 K d sigma T to the power of 4 by d Z.

Now this is the extinction coefficient, which is the sum of absorption and scattering. This

is absorption coefficient; this is the scattering coefficient.  These two are combined to

give you the extinction coefficient. Note that in the diffusion limit, the single scattering



albedo  omega  plays  no  role.  So,  scattering  behaves  similar  to  absorption  we  have

extinction. 

 The role of scattering really is to remove the photon from the path and, it does not play

any other role. But, this we remember in view of the approximation we have made. Now,

we also know that the first law of Thermodynamics states that d q R d Z has to be equal

to S dot; heat generation per unit volume. From that equation we have here; it is minus 4

by 3 K d square sigma T to the power of four by d Z square. That is your differential

equation. Solving this part is easy, because the method is straight forward. The challenge

comes in when you want to apply the boundary condition. We integrate the equation; that

is, easy integration.

(Refer Slide Time: 04:10)

 We will get sigma T to the power of four function of Z. The variation of sigma T to the

power of four as a function of Z will come out as minus 3 by 8 K into S dot. This is what

shown in meter cube; this meter per Watts meter square. This is same as this unit into Z

square because you have done two integrations; and into C one Z plus C 2. This is a

complete solution to the problem. But, the key as part of the problem is to apply the

boundary condition correctly we recall that in the diffusion problem, it is very important

to recognize that there is a jump in temperature at the wall. 

 Let us take an example take the temperature of the wall. This will not be equal to the

temperature of the gas adjacent to the wall; note that T of zero is not equal to T one and T



of D, at the upper wall, is not equal to T two that is the key issue. We must appreciate

that in radiation heat transfer problems, continuity of temperature is not guaranteed. It

may happen in a real problem, if conduction plays an important role. In this problem, we

have neglected conduction. 

But if conduction is there, it will ensure that the discontinuity near the wall is removed

by the conduction process. But, in the absence of conduction you have to allow for the

jump to occur.  When  we look at the value of this, as that equal to zero, this is equal C

two, but not equal to T one to the power of four. Then, we ask what the value of sigma T

to the power of four at the top surface is; spacing was D, if you recall.  This will come

out as minus 3 K by 8 S dot D square plus C 1 D plus C 2.  We   have got two results

now. We know what C 2 is; we need to find C one.  Now C 2 can be substituted here as

sigma; so, here in fact C one also. 

But,  in  order  to  relate  this  finally,  remember  that  these  two quantities  are  unknown

quantities. These are not known. Just to remind you that this is T two; this is T one. And,

so there is a temperature jump here; temperature goes like this and there is a temperature

jump here. We must recognize it is of two jumps here; one at the top wall and one at the

bottom wall. This temperature is T of D and that is not equal to T two. Here we have T of

0; that is not equal to T 1. We have to relate the T of 0 and T of 2. 

 We have  to  use  what  we  have  derived  earlier  called  the  jump  condition;  that  is

essentially  applying the concept  of flux continuity. This is  always  guaranteed in  any

problem. So, although the temperature is not continuous, the flux has to be continuous.

From the continuity of the flux we have two conditions which we have derived earlier.
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If we recall, which is that sigma T to the power of four at the top surface minus sigma,

wall temperature, has to be equal to one minus the emissivity of that top wall minus half

and q R at the top wall minus one by two K square d square sigma T to the power of four

d Z square. This we recalled was derived by expanding series and retaining the leading

terms till valid at the top surface. 

Similarly at the bottom surface, the wall temperature minus the gas temperature at the

wall, they are not equal; recall;  This is equal to now one by epsilon 1 minus half q R at 0

plus 1 by 2 K square d square T to the power of 4 d Z square at Z equal to 0.  We have to

use this flux condition in conjunction with the solution to the equation that we have just

obtained to eliminate these two unknowns. That is, the temperature of the gas near the

bottom wall and temperature of the gas near the top wall are unknown quantities.

 There we replaced by these quantities. When we do that, we will get the following. We

have  to  solve  for  solve   for  C;  obtain  constant  C  1  and  C  2  in  terms  of  the  wall

temperatures. Everything has to be related to the wall temperature.  C 2 was the quantity

because C 2 was equal to this.  C two will be related to C one also.   First we solve for C

1, and the solution we will get is one by epsilon one, one by epsilon two minus half into

S dot into D minus sigma T one to the power of four minus sigma T to the power of four

plus three K S dot D square divided by eight. 



 This has come from here.  This is obtained from that derivative divided by D plus 4 by 3

K into  one by epsilon one  plus  one by epsilon  two minus  one.  So,  although this  is

somewhat tedious in long derivation, it is important to understand the implications here.

Let us make sure that in the process of derivation, we did not make any errors. The best

way to check errors in this complex algebra is to look at limiting cases. Suppose there

was no heat generation, this problem had been solved earlier in one of the lectures. We

did for black walls. But, it can also it is not black walls. We can see that internal heat

generation; this term drops out, this term drops out and you are left with these terms and

suppose you took epsilon one as one epsilon two as one, so even this becomes simple;

so, D plus 4 by 3 K. 

  This can be related to the problem we did earlier  for the case where there was no

internal heat generation. That is the radiative equilibrium problem. This is the extension

of that result  to the case, where radiative equilibrium does not exist  because there is

internal heat generation.    
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The C two will be related to C one and C two will come out as sigma T one to the power

of four plus one by epsilon two minus one,     , minus half, that is the boundary condition

requirement, into 4 C one by 3 K plus 3 G by 8 K; where K is the extinct coefficient, not

conductivity. We put all these into the final result, so that we get a feel for the final result.

That will come out as sigma T to the power of four, a function of Z; this is equal to 3 S



dot by 8 K one minus K Z the whole square plus one by epsilon two minus half plus 3 K

D by 8 into S dot D minus sigma T one to the power of four minus sigma T two to the

power of four.  This is not easily completed here. 

 We write it below, so that we can easily see the result; so, plus one by epsilon two minus

half plus 3 K D by 8 into S dot D minus sigma T one to the power of four minus T two to

the power of four into 3 K Z by four one by epsilon one minus half, the entire thing is

divided by three K D by 4 plus 1 by 1 by epsilon one plus one by epsilon two minus one.

 This is a fairly complicated and long derivation. It is important to check whether we

have done all the things correctly. It is always good to look at limiting cases. We can

show that we get the correct limiting solution. One thing which we know well from our

previous result is limiting cases.
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 We will see limiting cases here, so to verify that result.   One limiting case is of course,

no heat generation.   This is the case we had really done earlier  in our lectures when

looking at how to use the diffusion approximation.  Let us see how simple the following

result is. We can easily verify that this standard non-emission temperature.  Problems

come over that 3 K Z by 4 one by epsilon one minus half divided by 3 K D by eight by

one by epsilon one plus one by epsilon two minus one.  This is important, if there is heat

generation.  This  is  your  standard  radiative  equilibrium  solution  for  the  case  of  the

optically thick limit, which have been derived earlier. 



 We can simplify this further. Suppose, further we assume that the two walls are black;

that case of how we looked at.  This becomes half.  We have; this is your half.  We have

half plus 3 K Z by four divided by one zero one plus 3 K D by 8. This must look familiar

to  because  we  had  solved  similar  problem earlier.  Wherein  we  had  shown that;  for

example, if I take Z as zero, we have shown that the radiation slip at the bottom wall was

equal to half by one plus 3 by 8 kappa naught. We have used it; we called it as the kappa

naught; K into D is non dimensional optical depth.

We have shown that there is a temperature slip at both walls at both Z equal to zero, Z

equal to d, this numbers exactly match what we had obtained for the case of radiative

transfer between two black walls with the heat generation. Now, here we had covered the

case of heat generation, no heat generation and the role of wall emissivity. 

 We can see that if the wall emissivities are very low, then these terms become very

important; Let us now look at how we looked at the limiting case. At the bottom wall, we

saw it is half by 3 K D by 8 and at the top wall it is half plus 3 by K D by 4 by one plus 3

K D by 8.  In the both cases the sometimes exist. 

Now, in the presence of wall which is not black, we have two additional terms coming in.

They actually can increase the jumps. Now, let us look at the interesting case where the

top wall is black, but the bottom wall is highly reflective. If we look at the case where

the top wall is black, this term will drop out and the bottom wall is reflective, this term

will dominate.  This term will dominate here. 

 Indeed epsilon two is equal to one and epsilon one is much much less than one, highly

reflective bottom wall.  We will find is that this term drops out; this term dominates.  If

indeed it dominates over the term having the extinction coefficient, then the temperature,

if this is very very small epsilon one. This term dominates. This quantity will approach

one, which means the temperature everywhere will be equal to T two and the bottom

wall will play just the role because if the bottom wall becomes highly reflective and the

top  wall  is  black,  so  the  gas  is  truly  radiatively  coupled  only  to  the  top  wall.  The

temperature of the gas will approach T two. This T two; temperature of the gas will

approach T 2 here. There will be a strong decoupling at the bottom. This is not surprising

in this example; because if the heat generation is zero, the gas can only get heat from the

two walls.  If the emissivity of the bottom wall is very low, no heat transfer occurs to the



bottom wall of the gas. Gas is very radiatively coupled only to the top wall and the

temperature there will  approach T two. There will  be a  huge temperature  slip  at  the

bottom. 

 We find this interesting situation that is prevailing here; where, in the absence of heat

generation  and when the  top  wall  is  black  and bottom wall  is  highly reflective,  the

temperature  of  the  gas  will  approach  the  top  temperature.  We will  essentially  be

completely decoupled from the bottom condition. 

Now, let us go back to the previous thing we derived. Having understood that case, let us

look  at  the  full  problem here;  which  involves  heat  generation  and  it  involves  heat

generation as well as in the first, let us take the case of black walls in which this becomes

one plus 3 K D by 4. This will introduce a half here.  Here we will see that now we have

to see the relative importance of the heat generation verses the wall induced heat transfer

in the medium. 
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 We can see  clearly  that,  now there  is  a  new parameter  coming  in;  there  is  a  heat

generation  into  D by sigma.  This  will  determine  the  importance  of  this  term.   This

quantity is large; this term will dominate. We can essentially ignore this term.  In that

limit if the emissivity of the two walls is small, this will become large this term will drop

out and  it will be very simple quadratic expression here. But, on the other hand if the



heat generation is small compared to the flux difference within two walls, then this term

drops out, then we are left only with dealing with this expression here.

 In this more complicated problem where heat is added, volumetrically requires as well

as the heat is coming from the two walls, the relative importance of the internal heat

generation and surface heat transfer  non-dimensional parameter.  For example, if we are

dealing with a problem of conduction heat transfer,  problem of combustion heat transfer

in a furnace and you have an idea about rate heat generation due to combustion, then by

calculating this parameter  a priory, we will quickly get a feel for how important the heat

generation term is, which influences  the wall fluxes. 

  If we take that limit where this term is small compared to this term, then once more you

see that. Then, we have to worry about the contribution of this term, which is a constant

contribution here. Remember that, this term is small; this portion not varying with space.

So, merely adds a constant value to the variable component here. Then, the importance

depends upon one more parameter, which is not obvious here. The optical depth is KD. If

this is very large, then this term becomes small because this becomes very large. This

term becomes more important than this term.

 This becomes; this is small compared to this term. Again we have got an interesting

situation, where the temperature distribution is not that the gas temperature is essentially

uniform  in  the  bulk  except  for  the  sharp  drop  near  the  two  walls.  In  particular

consequence  is  happening  in  the  optically  thick  limit  and  when  the  internal  heat

generation dominates over the wall flux, and then we find in the optically thick limit, the

high  heat  generation  inside  the  enclosure  makes  the  temperature  distribution  almost

uniform. The effect of the wall is only seen very close to the two boundaries as jump

condition. 

 This result gives us a lot of insight about the two important non-dimensional parameters

in this case. One is the optical depth; that is, the extinct coefficient times the spacing

between the two walls.  That is  one and as we recall  because you are looking at  the

diffusion approximation. Thus, it can be useful only in this limit, ok; when K D is much

greater than one. But, the other parameter, the relative importance of the internal heat

generation to the wall heat transfer is determined by second parameter.  If that parameter

is important related to this parameter, then the linear term will play a role. While, if this



term is small, then our quadratic term created by volumetric heat generation will play a

role. 

 We see that this kind of interpretation of the solution would be very difficult,  if this

problem was  solved  numerically.  For  example,  suppose  we wanted  to  solve  the  full

problem without making the diffusion approximation, which limits it to the high optical

depth, then we have to solve the full integral differential equation, involving essentially

four parameters.
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  Let us highlight that. The four parameters are emissivity of wall one, emissivity of wall

two,  the  optical  depth  and  the  relative  importance  of  internal  heat  generation.  The

problem  would  be  quite  tedious  solving  for  all  this  four  parameters;  not  about

parameters,  but  remember  that  finally  to  interpret  the  solution  which  are  appearing

would be much more difficult than that is possible in this simple  case. That is why, when

solving such complex problems, you do look at the two limits first. Then, when we call

two intermediate limit, then we go to full numerical solution of the interpreted limit; this

at that point. But, this solution can will better interpreted if we understood the limiting

case because of the complex interaction between the relative importance of the internal

heat source upon the wall flux, the optical depth of the medium and the wall emissivities.

This   has to be kept in mind when looking at such problems.



 We want  to  indicate  to  you  the  kind  of  solution  that  we have  got  earlier  for  pure

radiative equilibrium, in which case the solution was not given this form. But, somewhat

modified  at  form.  There we had;  in the case radiative  equilibrium,  the problem was

somewhat simpler because of wall flux was a constant so that, it did not pose any special

condition. 

(Refer Slide Time: 37:50)

 If we have radiative equilibrium and diffusion approximation and black walls, which is

what we covered in the earlier lectures the result we got was q R.  This is result we recall

and which we had. Then, we also solved the problem where the wall was not black; this

is for black walls. For non-black walls, we extend this result using the wall condition. 

 We see that it gives us some similarity between the solution where we got today with the

earlier solution. The key point to remember is that the term three-fourth K D or three-

fourth kappa naught; as we had called it earlier was the term which was the contribution

of  the  gas,  which  are  the contribution  of  this  surface.  We have similar  result  today;

identical  result  today;  as  far  as  the  denominator  of  the  temperature  distribution  is

concerned. We can actually also compare the heat fluxes; the heat flux if we recall and it

is  only that the difference between this  solution;  the one we got today is  that in the

radiative equilibrium problem, this is the constant. We can easily write out. 
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In the case of the present problem, radiative flux is not a constant. We   can write this

radiative flux as minus 3 by 4 K S dot Z plus C one, which we already highlighted.  In

this case because of the internal heat generation, heat flux is not a constant; it is varying

linearly with Z. It   is  not so easy to  compare the previous result.  But,  for example,

suppose if we take q R Z is equal to zero; which could be a simple example. That is equal

to C one and that we have readily available. 

  Let us put that down for comparison and let us take also black walls for time being. If

we do that, we will get the following result which could be compared with what we got

earlier. This  is  the result  we will  get  for  our  black  walls  in  the  present  case.  If  we

compare with what we wrote down in the last slide, you will see that again we will get

one by three-fourth; like that we will get. But, we see that in the numerator much more

important role played by heat source system with the flux system. 

 In the previous problem, the flux term did not play; the heat source term was not there.

The source was not  clearly highlighted.  But,  in  this  problem we can see clearly the

internal heat source term here can become quite important.  We completely alter the even

the sign of the flux is; it  is so happens.  This is a complex problem highlight that in

problem involving combustion, the heat flux at the wall may be controlled more by the

internal heat generation term, instead of the term involving wall temperature difference.

That has to be kept in mind when you solve such problems. So, with this we complete;



complete this discussion about the radiative role of internal heat generation and fluxes at

the wall.
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Now, in the remaining time we need to to solve another simple problem. For all  the

problems which we have done in radiation heat transfer, involved plane-parallel model.

But, all of us should realize that this is not the only Geometry that we deal with in the

real world. In the real world, we also deal with the Geometry that concerns Cylindrical

Geometry.  The  Cylindrical  Geometry  is  encountered  frequently  in  Engineering;

especially, when you deal with internal combustion engines, where a huge amount heat is

released and the lot of radiation is transferred.  If we want deal with such situations, you

have to now extend the approach you have taken in the radiative transfer formulation to

look at the Radial Geometry. 

 We will  take  a  simple  case  just  to  illustrate  the  point.  In  Radial  Geometry  first

requirement from first law of Thermodynamics is that this equals to zero. We are looking

at radiative equilibrium problem.  In   under radiative equilibrium what you have decided

for is not q equals to constant. That is not going to happen here.   From here all of us

realize that q will be equal to C one by absorbing coefficient that you stay here. We can

assume what we did earlier; so, K into r. We define kappa one as a times r one and kappa

times r two. Two optical depth; that is, we have a cylinder here and another cylinder

here; this is r one this is r two.



  These are the two optical depths of interest to you. Then, again we will appeal to the

diffusion model and then we write q as minus four by third d of sigma T to the power by

d kappa optical depth.
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If we do that, we recall that the solution will be plus C two. This   is a quite well known.

If we want to get the temperature distribution, given this one, we can appeal to in that

limit we can appeal to the continuity of the temperature and we can say that at r equals to

r one, T equals to T one and r equals to r two, T equals to T two, then your result will be

very simple. We will get at temperature distribution.  But, if we want to get the heat flux

in  this  case,  you  need  to  now appeal  to  the  flux  boundary  condition  that  we  have

discussed in the earlier lectures.
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 If we recall, the mean intensity G plus two q R was equal to this at the bottom and the

mean  intensity  minus  two  q  R  was  equal  to  the  top  condition.  Under  radiative

equilibrium you know that G is any way equal to sigma T to the power of four; that also

we recalled. Hence substitution of all this into the three equations will give you three-

fourth C one log kappa one plus C two, and C one by two kappa one will be equal to

sigma T one to the power of four. In heat flux, this is the intensity. Now, in the other wall

will get minus C one by two kappa one sigma T two to the power of four. Then, we can

solve for C one and C two and calculate the radiative heat flux. 
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Now, what we see here is that, in the Cylindrical Geometry the problem does get a lot

more complex than it does in the plane parallel case. Here only case where we can expect

the two results to come close to each other is to look at; when if we recall, this is r one

this is r two.  We do realize that when there are two approaches to r one and the gap is

very small, we do expect the plane parallel model to work.   Let us see whether happens.

That  means  kappa  two  by  kappa  one  approaches  one.  When  we  invoke  that

approximation there, this equation now becomes; this becomes close to one.  That is one,

plus here what you have to do is you do exactly equal to the problem; of course, this is

not there.  There is zero, so it is approaches one. 

 We can write this as K two by K one is equal to one plus delta K; that is, K two minus K

one by kappa one.  This is a small quantity as kappa equals kappa two. This becomes one

plus.  It will be three-fourth into K two minus K one; kappa two minus kappa one by

kappa one. And, so this problem can now be; this can be the total optical depth.  We can

see this result now approaches the one result we had; which is one by one plus three-

fourth kappa zero.  We see that in the Cylindrical Geometry, this is somewhat different

result.   The heat flux is not constant under radiative equilibrium.  We want to reinforce

that it is not forgotten. 
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 We notice that heat flux is not a constant in radiative equilibrium. This   is the new

feature of Cylindrical Geometry that even under radiative equilibrium, when there is no



competing heat transfer mechanisms, competing energy sources, we cannot say d q R d z

is zero and q are the constant because q will indeed decreases as you go from the inner

wall to the outer wall.  That is reflected by this expression.  The invariant, in fact that q is

not the invariant, influences the final solution.  We get a result somewhat different from

what we got for the plane parallel case. But, we are able to show that in the limit as

kappa two by kappa one approaches one, then of course we recover that original result.

But, it  is worth remembering that there are other interesting situations that which we

could have exploded. Suppose, the radius two was much larger than the radius one, then

this term will drop out;  the half  plus three-fourth. This   effect will dominate as the

cylindrical effect.

 In those problems like if we want to deal with diffusion combustion chambers, where

there is  no r  one really, similarly r  two term is  going to zero here,  so then this  will

dominate our result. We took a very simple example of radiative transfer in the thick

limit  of  a  Cylindrical  Geometry  and  showed  that  there  are  similarities  as  well  as

differences. The similarity is a method solution, the differences emerges because of fact

that  the  radiative  flux  is  not  a  constant  at  this  case,  although  we  are  talking  about

radiative equilibrium.


