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In the last class, we were  talking about Kirchhoff’s law and Kirchhoff’s law relates  the ability

of  a  surface to  absorb radiation,  with its  ability to  emitted radiation.  The most  fundamental

statement  of  Kirchhoff’s  law  is  that,  the  directional  spectral  absorptivity  is  equal  to  the

directional  spectral  emissivity. And the  only condition  for  this  is  that  there  has  to  be  local

thermodynamic equilibrium.

Now, we  like  to  know  when  we  can  say  the  hemispherical  spectral  emissivity  is  equal  to

hemispherical spectral absorptivity.  Although this is not always true, it is true if the surface is a

diffuse isotropic emitter which will mean that the directional spectral emissivity is not a function

of θ and φ. So, such a surface we  will call  as a DI surface; (Diffuse Isotropic).

Here diffuse is a word used to indicate that emissivity  is not a function of θ, and φ, is used to

indicate  that  emissivity is  not  functional  azimuthal  angle φ.  So, this  one requirement  or  the

second requirement, that can be imposed that the radiation that is incident on the object; is not a



function of θ and φ. We see that in order to make sure that the hemispherical spectral absorptivity

is equal to hemispherical spectral emissivity,  we have to put a condition either on the surface or

on the incoming radiation. That is the  surface has to have a property which is independent of

angle or the  incoming radiation has to be independent of angle. 

In real world , the chances that the incoming radiation is independent of angle θ and φ is very

rare.  It  can  occur  in  a  condition  outside  the  laboratory  under  cloudy conditions,  where  the

radiation of the sun may  be roughly equal in all direction. But in most other situation that we

encounter, incoming radiation will be a function of θ and φ.  The condition, of the surface being

diffuse isotropic, although not that common can be a good approximation which we will see

later.

When we look at actual properties of surfaces under the assumption that real surface, is really not

diffuse isotropic . If we assume diffuse isotropic , we may make an error in the estimation of the

hemispherical value and that error can be of the order of 10 percent. Now, this kind of error is

usually accepted in  this subject because the data on radiative properties of surfaces is not easily

available. They are not tabulated  extensively as is the  case with thermal conductivity or other

properties of surfaces.  The accuracy of these tabulations is also not that liable and therefore, as

an engineer one may be willing to make an approximation, which causes an error which is less

than the error in the input data. 

So, in any real life problem one has to have a data from some source and if one  believes that the

data can cause an error of the order of 10 percent; then one should be unhappy about making

approximation which is the order of 10 percent.  In many engineering problems one would not

make a large error when we  assume the surface to be  a diffuse isotropic emitter, and hence

Kirchhoff’s law in this form is useful in many real life situations.
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Now let us go to the other approximations, when  we apply Kirchhoff’s law to see if we  can

apply  Kirchhoff’s  law  of  the  form  directional  total  emissivity  is  equal  to  directional  total

absorptivity. Now, we saw in the last class that, this can be assumed, if the directional spectral

emissivity of the surface was not a function of  wavelength (λ); this is called a gray surface. Gray

surface is  one whose radiative properties  are   independent  of  wave length.  This  is  not  very

common because most surfaces as we will see later; show strong variation of  emissivity with

wave  length.  So,  this  approximation  can  be  done  in  a  few  cases,  but   may  not  be  good

approximation in most situations.

 In many cases,  we cannot assume the  surface to be gray. Then the only choice we have is  to

assume that the incoming radiation is proportional to radiation from a black body at temperature

of the surface This is useful, because if we recall in the last lecture, the expression for emissivity

was an integral of spectral emissivity weighted by the black body emissivity at  the temperature

of the incoming radiation and divided by sigma ∑Ts
4/ .ԓ

 Now we will do the integral for absorptivity.  We will  rewrite this as an integral of 0 to ∞ ἰλb Ts

dλ. The primary difference between absorptivity and  emissivity calculation while integrating

over wave length is, in the case of  emissivity we are  using the  spectral radiation black body



intensity at the surface temperature as a weighting  factor while in the case of absorptivity it is

the spectral radiation of the incoming radiation.

These two can be equal only if either the emissivity is independent of  the wave length and

comes out as the integral, in which case this will  cancel out and we get the first condition.

Secondly, if by chance the intensity of the incoming radiation happens to be  proportional to the

black  body intensity  at  the  temperature  surface,  it  can  be equal.  In  a  real  world  where  the

radiation impinges on an object, it happens to be similar to a black body intensity at the  surface

temperature of the object.

In a laboratory, for example, if we  are doing an  experiment; we might be able to arrange a

source  which  is  proportional  to  the  intensity  of  the  black  body  radiation  at  the  surface

temperature. But, in all other real life situations, outside the laboratory, this condition will not be

met.  Therefore, the  chances that we will be able to assume that the directional total emissivity is

equal to directional total absorptivity will be very rare.  There are very few surfaces in the real

world  which  are  gray that  is   the  property  is   independent  of  wavelength.   There  are  few

situations  in  the real  world,  where the radiation that  impinges  on an object,   happens to  be

proportional to the black body intensity at the surface temperature.  This is an approximation one

has to make with great care, but  we will see many textbooks where they will state this condition

as the Kirchhoff’s law.

 We emphasize  that Kirchhoff’s law states that directional spectral emissivity equals directional

spectral  absorptivity.  Kirchhoff’s law does  not  say   about  directional  total  emissivity  equal

directional total absorptivity. These two become equal only if one of these conditions is satisfied.

There are not too many occasions that we will get to be able to make this kind of assumption.

One has to use this kind of approximation with great care. Sometimes in real life engineering

problem  one is forced  to make certain approximations,  but one should  know the consequences

and the error that may be introduced by these approximations.
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 In a more general case  one would like to assume that hemispherical total emissivity equals

hemispherical total absorptivity. There are books which  state this as  Kirchhoff’s law, but this is

not Kirchhoff’s law. This is a condition where, we are starting with Kirchhoff’s law and we have

to perform two integrations; one over wavelength and the other over angle to get at this point.  In

order  for these two to be equal we have to impose conditions on the directional property of the

surface or the incoming radiation and the  spectral properties of the surface or the incoming

radiation. Let us stipulate what  the conditions are. This follows directly from what was  already

done through wavelength or angle  integration.  When these  integrations are done together, then

we need to impose two conditions in each case. For example, one can say that the surface is gray

and diffuse isotropic emitter. 

 The condition is imposed only on the surface. This is very rare, and there are not too many real

life situations where you will find surface that  is both gray and emits in a diffuse isotropic

fashion. But if that happens then  these two are equal, ; or the second possibility is we keep the

surface gray and it so  happens that  the incoming radiation is not depending on angle. The

incoming radiation is  equal in all directions and the surface is gray. This also is of course very

rare.  The third is that the incoming radiation, is proportional to the black body intensity at the

surface temperature and the surface is diffuse isotropic.



 We have to assume that the surface has known angular dependence of emissivity and that the

incoming radiation happens to come from a black body at the surface temperature. Again these

two are very rare conditions to be met in real world. Finally one can assume that the incoming

radiation, is again proportional to black body intensity at the surface  temperature and also this

radiation is not a function of angle. It is incident uniformly on  the surface.  We can see there are

four conditions under which hemispherical total  emissivity can be equal to  hemispherical total

absorptivity but these  four  different conditions are rarely satisfied.

 In general it is important to recognize that one can rarely use this assumption, that hemispherical

total  emissivity  equals  hemispherical  total  absorptivity  in  real  world  situations.  There  are

occasions where one may be forced to be make such approximations, but when we do,  we must

carefully examine the results we get, by making such approximations. Because, it may lead to

serious errors in estimation of  radiative fluxes or some other  property and if the errors are large

then  we need to  go back and question whether this assumption is valid or not.

The  above equation is not  Kirchhoff’s law.  Kirchhoff’s laws  states that directional spectral

emissivity  is  equal  to  directional  spectral  absorptivity.  That  is  always  valid  in  engineering

situation, but if we want to make assumption that the hemispherical spectral emissivity  equals

hemispherical  spectral absorptivity  that is hemispherical total emissivity is equal hemispherical

total absorptivity, then  we have to make one of these four assumptions, which are rarely true in

real world situations..  Later  in this course we will do problems in which we may make such

assumptions.

 Even though that it is not a good approximation, it is done in the class room in a way to solve

some simple problems to illustrate some feature of radiation transfer knowing well that in the

real world this is not valid. It is more of a teaching tool rather than solving a real problem. We

have  spent  a lot of time discussing Kirchhoff’s law because in many text books in heat transfer ,

Kirchhoff’s law is stated rather casually and in rather cavalier fashion.   There are books which

state that alpha  equals epsilon is Kirchhoff’s law, there are books which state alpha lambda

equals to epsilon lambda is Kirchhoff’s law, and there are other book which state alpha prime

equals epsilon prime  as Kirchhoff’s law.   All these are not true. The only true statement is alpha

prime lambda equals epsilon prime lambda, which is the basic statement of Kirchhoff’s law.



The other assumptions  that people use are valid under certain stringent assumptions and it is

important to ask  oneself,  whether those assumptions are invalid.  There are real world situations

where one will be forced to make some assumption, but we must do that consciously and be

ready to examine the consequence of making such assumptions on the estimate of either radiative

fluxes or temperature and be ready to  evaluate the impact of assumption on the errors  in the

estimates of some values. 

 As long as  one  is fully aware of the assumption, that  has been made and its consequence,  one

can make some assumptions to see what happens. In this course we will make some of  these

assumptions because that simplifies the problem substantially. But ultimately when we compare

the results obtained with real world, we find there are large differences and we must be willing to

go  back  and  question  some  of  the   assumptions  we  have   made.  Now that  completes  the

discussion on Kirchhoff’s law which is a very important law in radiation heat  transfer and law

which has been misquoted  and  misused in many situations.

Now so far, we have  looked at absorptivity and emissivity, the two important properties of a

surface,  but these properties are not directly measured.  For example,  if we want to measure

emissivity of the surface, we should compare the emission of that surface with that of a black

body at the  same temperature.  That is not easy to perform in the laboratory, by taking a ratio of

the real emission to that of a blackbody at the  same temperature. Similarly, in order to measure

absorptivity of a surface, you must measure the amount of radiation absorbed and divided by the

radiant incident to the surface. These are quantities are not easy to measure directly.

So,  the  traditional  method  of  estimating  emissivity  and   absorptivity  is  not  through  direct

measurement of this quantity, but by indirect inference by measuring reflectivity. Reflectivity is a

property which is somewhat easy to measure. We send a ray impinging on an object and measure

how much is reflected. We will see immediately that once we measure the reflectivity of an

object, we can infer  from  that, what is the absorptivity by applying the first law of thermo

dynamics.
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Reflectivity is a quantity which is somewhat complicated. It is  because reflectivity depends on

two angles. Suppose  a surface, has a normal and it has radiation   coming in at a certain angle θ.

This is called incident angle  θi, and with respect to some reference it has azimuthal angle φi and

it is reflected in some other angle. So, that angle is θr and the azimuthal angle is φr.  We see that

problem is more complicated because the reflectivity rho 'ρ' depends on two angles and on wave

length also.

 The reflectivity is a function of θi, φi, θr, φr  and wavelength λ. The basic quantity in reflectivity is

called the bi directional spectral.  This is the bi directional spectral reflectivity.

It is defined as the intensity of the reflected radiation at angle θr and φr   divided by radiation

incident  at  a  given angle θi φi cosθi    and the incident solid  angle.   This definition is  more

complicated than that for emissivity and absorptivity. Comparing the intensity of the reflected

radiation to the total intensity of the incoming radiation.  We would like to know how much

radiation is reflected in all directions from the surface, from the energy incident on this surface.

In other words, of the total radiation impinging  on an object,  we would like to know how much

radiation is absorbed and how much is reflected. We do not really care in what directions it is

reflected.  We would like to integrate over  all out going angles.
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We will define now, the quantity called directional hemispherical reflectivity. The symbols for

this is one  prime , it will be a function of only of incoming radiation,  because we are integrating

over all out going angles. We are not concerned about where the radiation is reflected.   We want

to know what is the total radiant reflected over all angles or an entire hemisphere about the

surface. The reason why this quantity is very important is that, this follows from first law of

thermo dynamics.  Suppose we have a direct  spectral  absorptivity for  radiation coming in at

angles θi, φi. This plus energy reflected in all directions, is equal to 1. So, this  follows from the

first law of thermo dynamics of total radiation impinging on an object.  Let us call that as dQ'λ i.,

Certain radiation is absorbed and certain radiation is reflected in all directions. 

 We can see that this quantity άλ  is  nothing but ratio of the energy absorbed to the energy

incident. The directional spectral reflectivity or directional hemispherical reflectivity is nothing

but ratio of the energy reflected in all directions to that incident energy. This follows from the

first law of thermo dynamics for an opaque surface.  If the surface is not opaque, then we will

extend this. Now let suppose surface is not opaque, let us imagine here a glass. A glass can

absorb radiation , reflect radiation, and can transmit radiation.
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 In such a case we must extend this to a total radiation incident,  that can either be absorbed or

reflected or transmitted. Now we divide by this quantity we get 1. By definition this is ά λ , ρ'λ,

and this by definition is τ'λ. We are saying that the fraction of radiation absorbed, the fraction of

radiation reflected in all directions and the fraction  of radiation transmitted has to be equal to

one. For an opaque surface, we have τ'λ = 0.  Therefore, άλ + ρ'λ = 1. 

This is a very useful equation because it is difficult to measure absorptivity directly by measuring

these two quantities. It is easier to measure reflectivity. So, by a measure reflectivity, one can

infer what is the absorptivity from this equation.
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Now we apply Kirchhoff’s law to the above equation for opaque surface.  We get 'ϵ λ  = άλ.  We

can see that, we can infer the emissivity of a surface or the directional spectral emissivity, by

measuring the directional hemispherical reflectivity. This equation is used frequently to infer the

absorptivity  and  emissivity  of  surfaces  without  directly  measuring  them,  but  by  indirectly

inferring them by measuring reflectivity This is quite common because instrument for measuring

reflectivity  are  available  and  we  measure  those  values  and   from there  one  can  infer  the

emissivity and absorptivity of the surfaces. But reflectivity which is a complex quantity, but here

we are dealing only with directional hemispherical quantity, which is similar to absorptivity and

emissivity.

But the real surfaces for example, can reflect like a mirror. These are called specular surfaces.

They follow the Snell’s law which  we have learnt in our schools.   They are surfaces which

reflect equally in all directions called diffuse reflector. But all real surfaces are in between that is

they are neither purely specular, nor purely diffuse. In a real surface part of the reflection will be

similar to a mirror. The remaining part will be varying with direction.

 The real challenge is to characterize such a surface.  We find the average over all outgoing

angles and get the directional hemispherical value. Later in this course we will see, that there are

some situations  wherein  it  becomes  important  to  know the  direction  in  which   radiation  is



reflected. For example, suppose we have two walls adjacent to  each other and radiation  coming

from the sun  impinges on this wall. We want to know how much radiation hits this wall.. If

radiation coming from the sun hits wall1 then we would like to know how much is reflected

inside the house.

 For that we must have a detailed account of how the energy is reflected by the pavement in front

of the house. Depending on that directional  reflectivity, one can estimate how much of the

reflected radiation enters the house. For such a situation one needs a detailed account of how

much energy is reflected in one direction by such a surface.

On the other hand we are only interested in understanding the temperature of wall  one. The

temperature of wall one does not depend on how much energy is  reflected in  which direction. It

mainly depends on how much radiation is absorbed from the sun and how much radiation is

reflected in all directions. For estimating the temperature of wall one, we do not need detailed

information about in which direction radiance is reflected. But to estimate the temperature of

wall two, we need to know what fraction of  radiance of the sun is reflected in  which direction. 

We can clearly see that  depending on the problem and situation  certain information  is  very

necessary or in some other situation, it may be not necessary at all. In certain situations we do

not need details about where  radiation is  reflected. But in certain other situations, we have to

worry about where the radiation is reflected. Now before we get into these applications, we need

to now have an understanding about emissivity and absorptivity.  For that  we take an example

which illustrates the difference between absorptivity and emissivity.
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We take as an example  such as a metal.  Metals which are both pure and  has a  smooth finishing

is taken. One can show that, for such metals the directional spectral emissivity can be written as

some constant 'B' which is the property of the metal, times the square root of temperature T s of

the  surface  and  inversely  proportional  to  the  square  root  of  the  wavelength  λ.  It  is  an

approximation that is not always valid.  Let us assume that this is valid for a surface. One wants

to know if this is given what is the value of the directional total emissivity and what is the value

of directional total absorptivity.

If we recall, the directional total emissivity can be written as  an integral from 0 to ∞ ϵ '
λ eλb dλ /

σTs
4.  This is the basic definition of directional total emissivity. We can take the B out  as B is the

constant. We can rewrite this as  Ts is not a function of wavelength. We write this as an integral of

0 to ∞ 1 / √λ (eλb dλ) / Ts
4.   We also take the σ out.

If we recall from the previous lectures, one of the interesting properties of eλb/ Ts
5   is a function

only of λT.  This was the useful result you can infer from the basic  Planck's black body formula .

Using that we will rewrite down ' as B √Tϵ s / σ. Now we want this to be a function of lambda T

only. So, we multiply  numerator and denominator by  √Ts.  We get integral 0 to ∞  1 / √λ Ts (eλb/

Ts
5 ) d (λ Ts).



We notice that this thing which is circled here is the function of λT only. This quantity will be

some number. 
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 ' in this case is BTϵ s / σ [ 0ʃ∞ 1 / √λ Ts f(λ Ts) d(λ Ts)].   This quantity is some number,  let us say

is a constant  'C'.  We can integrate this function as we know this function this is a blackbody

function.  Let  us  assume  that  this  C  into  B  is  some  B
B

.  So,  we  define   B
B

 as  BBBBBBBBBBB

into  C for  convenience.  This  quantity becomes  B
B

TBBBBB s.   .  BC /  σ  is  B
B

.   Finally, we will  getBBBBB

a simple result that for metals under certain approximation,  the directional total emissivity is

linearly proportional  to  this  surface  temperature.  We will  see  later  that  this  is  shown to  be

reasonably  accurate  based  on experimental  observation.  When  you  plot  the  directional  total

emissivity of a metal with temperature in many cases, it falls in a linear assumption which is

quite valid. 
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The ά is little more complicated than ' because as you recall the definition ά is integral 0 to ∞ άϵ λ

i'λi dλ   divided by both entire total radiation coming on the entire wavelength. We cannot perform

this integration on this equation, unless someone gives us this spectral variation of the incoming

radiation. In real life this can be quite complicated, depending upon the environment in which

this surface is present and the incoming radiation,  which can vary with wavelength in a variety

of  ways. 

Let us take a simple case, where the incoming radiation happens to be let us say some constant

A times a black body radiation intensity at some temperature Ti. . In general Ti   is not equal to

surface temperature. So,  the equation for ά is equal to for the metals we are considering; then we

write 0ʃ∞ B √Ts/λ i'λb (Ti)dλ / 0ʃ∞i'λb (Ti
') dλ. .

What we have here now is the expression,  which is the directional  total absorptivity and is a

function of both, surface temperature and the temperature of the incoming radiation.  If it is a

black body radiation, this is different from directional total emissivity, which is only a function

of surface temperature.

Emissivity is a property of a surface, once we know the type of surface that is metal, non-metal

or  something  else  and  that  the  nature  surface  smooth,  rough  or  other  information  and  its



temperature. We can estimate emissivity, irrespective of what radiation is impinging on it. For

example,   we have a surface  of temperature let  us say 1000C inside the room subjective to

radiation from the lamps, the emissivity from that surface would be same when taken out to sun

light.  By keeping the surface temperature same, emissivity will be same whether you are inside

the room or outside.

On the other hand for the same surface, the absorptivity of the surface will be different inside the

room and outside. Inside the room the absorptivity will depend on the nature of the incoming

radiation,  the radiation of the lamp or from the wall.   While  on the  outside that  surface is

subjected to solar radiation and hence its  absorptivity  will be different.  Hence absorptivity is

very much dependent upon the environment in which that surface is placed. While  emissivity

depends only on the surface temperature, the nature’s surface metal or non-metal and the surface

finish. So, this is a point to  remember and to make this  clear we have taken this example, but

one may wonder  as to why absorptivity and emissivity are so fundamentally different; while one

depends only on the surface condition and temperature where the other depends on incoming

radiation.

The Kirchhoff’s law states that the directional spectral absorptivity equals directional spectral

emissivity. Now you must remember Kirchhoff’s law is applicable at the most basic level, that is

the direction  spectral level and it is postulated  by Kirchhoff that  the two are equal at that level,

because at the microscopic level absorption and emission are equally probable events. If there is

a surface which has a high absorptivity in a given direction in a given wave length, that  surface

should also have a high emissivity in the same direction in the same wave length. But when we

ask questions related to hemispherical quantity or quantity average of all  wavelengths at the

total quantity, than that quantity will depend upon the nature of the incoming radiation. 

So,  one  must  recognize  that  the  directional  spectral  quantity  is  connected  directly  to  the

microscopic processes that operate in any surface; while the hemispherical and total quantities

depend  upon the environment and as to where the surface  is placed. So, Kirchhoff’s law is

rigorously valid only for directional spectral quantity. It is not applicable without approximation

to hemispherical quantities or spectral average quantities. Now let us proceed further on this

derivation.
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We find that ά, which is now function of Ts and Ti is equal to constant B. We can bring √ Ts by σ

out. Now we will have to multiply by  √Ti  which is necessary because the black body function is

a  function of   Ti here.  We have  0ʃ∞1/√λ Ti eλb (Ti)  /  Ti
5 d(λTi).  We compare  this  particular

expression with what we use for emissivity,  that is Ts.   Ti is a function only of λ Ti. So, the entire

quantity is a number.  This number is same as the number obtained earlier  'C'.  Because this

integral does not depend on Ti or Ts here because we  integrate from 0 to ∞ . If  we evaluate this

quantity numerically, we will get constant 'C' same as before. So, this can be written as  (BC / σ)

√Ti Ts  .

This we have already defined as B
B

 so we will show now that ά is B
B

√ TBBBBBBBBBB i Ts , while earlier we

showed ' is B
B

TϵBBBBB s. . So, this is the fundamental difference between directional total emissivity and

total absorptivity. Emissivity is linearly propositional to the surface temperature.  The directional

total  absorptivity in this case is d propositional to square root of surface  temperature and the

temperature of the incoming radiation, if it is a black body. This is a very important result as we

can see that the ratio of absorptivity to emissivity of this surface is equal to √ T i / Ts.  So, this is a

very important distinction we must make.

This is a very important result because it is showing that the directional  total absorptivity is not

equal to the emissivity;  and the ratio depends upon the surface temperature and the incident



radiation. Also we can see, that if Ti = Ts, then '=ά. But in general they are not equal. This is theϵ

reason why the derivation was done, to illustrate and to convince one that in general the total

absorptivity of a surface is not equal to total emissivity. It only occurs in rare situation like a gray

surface, that is surface whose radiative properties are independent of wave length.. Where the

radiation is coming in is such that it is similar to that of a black body at the surface temperature

that is Ti = Ts. . In this lecture we discussed in detail the Kirchhoff’s law and we showed clearly

that the equality of  absorptivity and  emissivity in general can only be obtained under the very

special conditions and we set out those conditions clearly. In the next class we will illustrate the

importance of the Kirchhoff’s law in practical applications like solar collectors. Thank you.


