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In the last class, we are looking at  interaction between radiation and convection.  We

considered  a  very simple  problem of  a  flow over  a  flat  plate.  We looked at  a  very

elementary example,  where the flow was inviscid that is effect of viscosity were not

important and the gas was gray.

This of course a very ideal example, not related to a real world, but it illustrates clearly

the role that radiation plays in convective heat transfer. The radiative flux is varying in

the y direction and the flow is going in the x direction. The radiative flux variation in the

y direction was written in terms of tau, the optical thickness. This is nothing but a into y;

where a is the absorption coefficient. If T wall is the wall temperature,   we consider a

black plate, then the radiative flux, will be two sigma T to the power of four E 3 of tau E

3 of the exponential integration function represented by the angle of integration plus the

radiation from the gas below a given layer and radiative flux from above the given layer,

we go to infinitely thick region there. 



This is the radiative transfer equation. The corresponding energy balance equation that

we are trying to solve, of which the q R expression is right here. But in order to work in a

non-dimensional  frame we transform both the  x coordinate,  the  y coordinate  of  non

dimensional  form  y  coordinate  is  already  non  dimensionalize  by  the  absorption

coefficient. The x coordinate, we non dimensionalize it as follows: two sigma a T infinity

cube x by rho C p infinity, where we have linearized equation because we remember that

convection depends linearly on temperature. Well, radiation depends on a temperature to

the power of four. If we want to get a simple analytical solution, we need to linearize the

rate transfer equation.
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 Once we linearize  it,  we get  the  following expression for  the  energy balance.  This

expression was obtained by linearizing the radiative transfer equation and differentiating

it,  and if  you look at  the expression,  we will  find that  the important  parameters  that

comes into play here is the relative role played by radiation versus convection.

 We will now solve the equation now, now solve the equation. Before that, we will also

mention the wall  flux.  The wall  flux is a very important  expression that we need to

obtain.  That  can  be  written  as  the  ratio  of  the  wall  flux  without  radiation,  without

convection. Once we have solved for theta, we substitute here to get the wall flux. 

Now, the standard way to solve this problem is what we had already discussed earlier; is

the “Exponential  Kernel approximation”.  In this case we will take a slightly different



form than what we used earlier. E one of t is assumed to two e to the power of minus two

t and E two of t is e to the minus two t. Now, the way this approximation is done that E

two of t is a good approximation at t equal to zero here; because it is one. But E one of t,

at t goes to infinity, but only we have taken only value two. Now, this is still a good

approximation because this goes into the good interval.  When we integrate E 1 to give E

two, then we will find that it will not really affect the answer too much. 
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 Once we have done this, the expression for temperature becomes the expression that we

have  for  variation  of  temperature  after  it  is  linearized.  We  have  done  the  kernel

approximation. In order to solve the equation, we apply the Laplace transform. Many of

us would have used Laplace transform in transient conduction or convection problem. 

The transient  term here really  is  psi  here because it  involves  psi  is  related  to  x and

infinity and it is essentially a virtual time coordinate. Now, Laplace transforms of theta;

it becomes theta bar in a function of s and tau.  By the definition of Laplace transform by

zero to infinity theta of psi; the time like coordinate. This is how we transform theta of

psi  and  tau  to  theta  bar  of  s  n  tau.   Then,  we  apply  the  standard  rules  of  Laplace

transform for differentials and so on. We get this expression. This is the one definition,

which gives you one at a time equal to zero.

The  right hand side becomes theta eight e to the power of minus two tau zero to tau theta

bar zero to two t plus eight e to the power of two tau to infinity theta bar e to the power



of minus two t d t.  If we now apply the Kernel approximation; that is differentiate twice

and eliminate the integral terms.
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We will get the following differential equation for theta. This is the final expression we

get after Laplace transform and Kernel approximation and eliminating the integral terms.

One can show that easily that the solution to this equation o d really; ordinary differential

is one over s plus C e to the power of minus two tau rou of s by s plus eight. Where, the

constant  C can  be  shown to  be  one  over  s;  this  simple  o  d  and so  this  is  the  non

emergence term, where theta is taken as one over s, not a function of tau. This term drops

out. We get this equal to that and, this is the solution of the homogenous equation. We

need to transform this result in to the psi coordinate. We apply inverse transform.
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After applying the inverse transform of the Laplace expression, which is available in

many text books, you got the following result for theta. This is the Bessel function or

more correctly a modified Bessel function.  This is well known and available in both text

books. 

 Once we got that, we substitute it back in the equation for flux we get the flux at the

wall, which is what we want in terms of two modified Bessel functions. We can see that

we are able to obtain an analytical  solution for the radiative flux at the wall and the

temperature distribution in terms of exponentials and the Bessel function. Now, if you

want  to  understand  what  this  psi;  psi  can  be  rewritten  in  terms  of  the  conduction

radiation parameter, which we discussed earlier the length scale and what is known as

Peclet number in heat transfer. 

 It is an expression where N we already defined as a into k by four sigma T infinity

cubed, which came up in the conduction radiation problem; T as the conductivity. .The

number is nothing but u infinity x by alpha. So, finally the functional dependence of

temperature and flux depends upon the conduction radiation parameter here; in terms of

absorption  coefficient  and  in  terms  of  the  conductivity  of  the  gas  constant  and

temperature of the gas in the infinity the Peclet number. 

 As we can see in the limit of a very large Peclet number, this constant is going to be very

small.  We can think of simple results for the convection transfer.  We will be able to



recover some other solutions we obtained last time for radiation and convection based on

series approximation. 

The series approximation is valid, when size is very small.  When the size is very small,

that is, the N is very large or spectrum is very large, then this becomes very small. Then,

we can expand this i zero, i one and e to the power of minus four psi in terms of linear

terms.  Then,  we will  get  the  result,  which  we had obtained  earlier  using  this  series

approximation. 

This is more generalized result valid for psi. We can look upon the result, which we got

in  the  last  class  are  the  special  case  of  the  result.,  which  is  a  joint  solution  which

combines Laplace transform  and the  Kernel approximation to get the solution valid for

all psi.  Only because of this solution if you look at it, is the gray gas approximation

which will limit its use for any practical application; but, still if we want to get a quick

idea about how strongly the convection influences the radiation, this is the starting point

to decide whether we want to do a more accurate or a more elaborate  calculation of

interaction between the radiation and convection.
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Now, just to give a flavor of the kind of effect this result has, we will look at Nusselt

number. All of us have heard of the Nusselt number; which is a non dimensional measure

of the heat transfer coefficient. In this case, the Nusselt number will be defined by h x by

k;  where  h  is  the  transfer  coefficient  and  x  is  the  horizontal  scale,  and  k  is  the



conductivity of the gas. And, many of you would be aware that for the normal flow over

flat plate this typically comes out as 0.332; when there is no radiation. 

If there is radiation, this is going to be modified. If you plug those numbers in to the

expression we are given just now, you will see that when size is very small, we start at

0.332 because that is in the limit as radiation being unimportant.  As we go to larger and

larger psi, it goes on increasing and when you reach psi around one, we can reach value

around 0.6. So, what the radiation does is it modifies the temperature distribution such

that, the gradient of the temperature near the wall increases for almost a factor of two,

when the psi increases from a very low value to one. 

This is a good way to a get a rough idea about impact radiation on convection.  In a

given problem if  you  want  to  decide whether  you  have to  account  for  radiation,  we

should be able to estimate the value of psi for the given situation. And, if the psi value is

indeed of the order of one, then we should realize that the Nusselt number or the heat

transfer coefficient by convection increases to almost factor of two in the presence of

radiation transfer. This can be simple analysis which is useful in dealing with problems

in which there is some interaction between radiation and convection.
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Now, in all the problems you have done so far, we have neglected scattering. We have

always considered only a non scattering medium. That is a serious limitation because

there are many examples both in Engineering and in atmosphere where the presence of



particles, liquid or solid tend to scatter the photon. That is, photons change the direction.

That was non incorporated in our discussion so far. We have to assume that the gas was a

pure absorber and not the scatterer. The reason was scattering is treated at the end of this

lectures because it makes life very complicated.  So, photon which is traveling in one

direction encounters a particle, and that particle now will change the direction in which

photon is going. 

The presence of particles in a medium fundamentally alters the direction of movement of

the photons.  That  makes  this  geometry problem much more  complicated.  Remember

that, so far we have deal with the non scattering medium and we could generally treat

direction effects through some kind of Kernel approximation through the mean direction

and calculated it. We have got very good answers as we saw just now for the convection

problem. But, when the scattering is very important,  then we cannot treat directional

variations very casually. We will now look at scattering. 
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Now before getting in to the basic scattering, let us now first discuss what the scatterers

that are present are. The smallest  scatterers are molecules,  obviously.  The molecules

have dimensions of the order of ten to the power of four micron. That effect is not really

very  large,  except  at  certain  wavelength.  On  the  other  hand  there  are  things  called

aerosols, which are liquid and solid particles in the atmosphere or in the combustion

chamber; soot is one example.  Their dimensions are typically around one micron. Since



the dimension of the aerosol is about ten thousand times larger than the dimension of

molecule, it has higher scattering effect. 

Even larger types of scatterers are droplets, which can easily go to the size of ten micron,

if it is a liquid droplet; Rain droplet, for example.  Then, you come to ice particles. They

can be even larger dimensions than the ice droplets. Finally we have hail, a large rain

drop. This can easily reach of the order of thousand to ten thousand microns. 

 We find is that, the particles that are there in the gaseous medium that we encounter

either in Engineering or in the atmosphere or in the earth’s atmosphere can range from

ten to the power of minus four micron to ten to the power of plus four micron. This is

range of particle sizes.  As we will realize, their effect on the radiation are different. 
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The typical  example  that  we will  look at  now are if  we consider  ‘a’ as  the  particle

diameter and lambda is the wavelength of light which is being scattered. Then, if the

wavelength of light is much smaller than the particle diameter, the scattering is isotropic

in independent direction. 

This  is  the  easiest  case  to  deal  with  because  we  do  not  have  to  then  worry  about

directional effects. On the other hand, if the wavelength of the light is much much larger

than particle dimension, this happens in the case of molecular scattering of visible light.

Then, what we get is what you must have heard of in your Physics classes is called



Rayleigh scattering. This is something which we all learnt in our earlier courses.  Finally,

that wavelength of photon is comparable to dimensions of the object concerned; we get

what is known as Mie scattering. 

We want to appreciate the fact that, if the wavelength of light is very small compared to

the dimension of the object, then life is very easy. Scattering is pretty much isotropic. We

will show that the treatment of isotropic scattering makes the problem very very simple.

On the other hand, if the wavelength of the photon is much larger than the dimension of

the particles which are scattering like the molecules, so we will have visible light and

which is of the order of 0.7 micron and molecule of the size obtained by minus four

micron.  Obviously, lambda is much greater  than a and we get the standard Rayleigh

scattering, which we will discuss little later. But, many many cases that we encounter in

both and Engineering and our atmosphere is where the wavelength of the radiation is

comparable to the size of particle. In which case, a Mie scattering which is the most

complicated. This is most complicated case this is more difficult to calculate and until

the advent of the computer, this problem is not easily handled at all. 

 Today because of the available computers, we can handle Mie scattering quite easily and

involves a lot of calculations. But, these calculations are fairly straight forward. Now, let

us illustrate how we handle scattering in a personal simple way before we go on to more

accurate treatment of scattering.

(Refer Slide Time: 27:06)



Now, we have defined the absorption coefficient. An absorption coefficient was, if we

recall related to the fact that the intensity along a certain path for the minus a lambda i

prime  lambda.  This  is  how  we  define  the  absorption  coefficient.  Now,  when  the

absorption and scattering occur together, then the attenuation is both due to absorption

and  scattering.  We need  one  more  term  in  the  attenuation  term.  This  is  scattering

coefficient  now. This  is  absorption  coefficient  which  we have  discussed  earlier. The

combined thing is called the extinction coefficient.

The extinction coefficient is sum of absorption and scattering. The photon can disappear

from the given direction, either because it is absorbed, it is gone or it has been scattered

and hence does not appear along the given direction. Extinction coefficient is both due to

absorption or scattering. Now, the units of absorption coefficient all of you know are

meter minus one. That is the same unit for the scattering coefficient. 
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But, the scattering coefficient also has got other standard way as refining, in terms of

cross section. This is scattering cross section defined in terms of scattering coefficient,

which has units of meter minus one and volume which has units of meter cubed. This

gives you meter squared. The cross section is a very popular term used both in Nuclear

Engineering as well as in radiation.  It has a physical meaning. It is the effective area that

the object offers to the incoming radiation of a T obstruction in some sense. 



So, many people prefer to use cross section, but we prefer to use absorption coefficient

and scattering coefficient; because both absorption coefficient and scattering coefficient,

when you take the inverse ratio you get the typical  photon mean free path.   That  is

convenient way to understand the role of photon.
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Now, we will give a simple example of the Rayleigh scattering, which all of you have

heard about in your  Physics courses. Rayleigh scattering occurs when visible light is

scattered by molecules. The scattering coefficient there and can be written in terms of a

volume of the scattered and the refractive index of the particle. 

 This is a fairly well known expression for the Rayleigh scattering,  showing that the

Rayleigh scattering goes as one over lambda to the power of four. Many of you have

heard that this is what makes the sky blue in color because the molecules of atmosphere

which scatter the sun light which is in visible photon points of micron tend to scatter. If

you look at VIBGYOR of sun light, there is more scattering of violet light than red light.

More from the white light, lot of violet is removed and what is remaining is red.

 That partly will explain, during sun set why you see a red sun because during sun set the

amount of particle, molecules between you and the sun is much larger and many of the

photons in the Violet, Indigo, Blue, up to Green are removed the  sun tends to look more

orange or red in color. So, Rayleigh scattering is a very simple example. But, remember



this Rayleigh scattering works only if the diameter of the object is much smaller than the

wavelength of the light.

It only applies to scattering of light by molecules. But, if we look at all of the particles

we  discussed  like  the  scattering  by  soot  particles  in  a  furnace,  scattering  by  liquid

droplets in the atmosphere,  scattering by ice particles,  there this equation will  not be

valid. This is because we cannot satisfy this condition that the radius of the particle is

much smaller than the wavelength of the light. In such a case we have to deal with Mie

scattering.
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  In Mie scattering we expand; the problem is that the radius of the object is comparable

to  the  wavelength  of  light.  Our  Rayleigh  scattering  value  is  a  leading  term  and

expansion. Then we have many more terms which we have to deal with.  The series

expansion terms, many many terms and higher the value of pi lambda, we have to take

more  terms  in  to  account.  This  is  the  fairly  difficult  expression  to  calculate  slowly

converging infinite series. So this calculation normally is very time consuming.  We will

not find simple results for a Mie scattering in any text book because it is much more

complicated equation that we have to deal with. 

Now, another problem that comes in scattering which we do not normally consider is,

whether your scattering is by a single particle or multiple particles. As we can imagine

this carrying a single particle, it is very easily to a take care of; only one particle and the



photon  are  influenced  by that  particle.  If  there  are  many  many  particles  in  a  given

volume and if they are very close to each other, then there can be interaction between the

particles,  scattering  with  the  other.   The  expression  we give  here  for  both  Rayleigh

scattering  and  Mie  scattering  is  for  a  single  particle,  completely  isolated.  Then  this

expression is easy. But, if there are many many particles, then the photon scattering from

one particle will come and interact with another particle.  The problem is much more

complicated. We will not have an occasion to look at such complicated cases, but we can

mostly show that,  today because of  the  availability  of the computer  we can actually

tackle this problem in computational or proper software that is used for computation of

these complicated scattering case. Now, let us look at how the basic equation of transfer

is fundamentally altered by the presence of radiation.
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We started with our basic equation of transfer for radiation. If we recall, this expression

was as follows for a non scattering medium to begin with. This is the expression we use

for  a  non  scattering  medium.  If  we  have  scattering  medium,  this  expression  is

substantially changed. First thing we already had indicated that, the attenuation term is

enhanced by scattering function. This emission term will not change. There is one much

term what is called scattering in that is, the photons from other direction are scattered in

to a given direction of interest to you because of the presence of scattering this is written

as sigma lambda by four pi times G lambda.
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Where,  G lambda  is  defined  as  two pi  zero  to  pi.   They neglect  the  changes  in  pi

direction, so only the theta direction is concerned with. Especially, this term is going to

add photons. What is happening is, we had a photon which can be scattered off by a

particle; that is, the first expression. The photon from another direction can be scattered

in  this  direction  also.  This  is  the  term which  adds  to  your  intensity  because  photon

travelling  in  some other  direction  has  been now started  in  to  the  given direction  of

interest to you. The expression we wrote can be rewritten in terms of what is known as

single scattering albedo; which is ratio of this scattering to the scattering plus absorption.

If it is the non absorbing medium, then omega lambda is one; fully scattering medium.  If

it is a highly absorbing medium this dominates over that, then omega lambda is tending

to  zero.  This  is  a  pure  scattering  medium;  omega  lambda  is  one.   This  is  the  pure

absorbing medium, where this is much smaller than that.
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Now, with the definition of this single scattering albedo, we can rewrite our equation for

intensity; where, kappa lambda is nothing but sigma lambda plus a lambda into d s. This

is the extinction coefficient.  Now we see the expression very clearly showing the role of

the attenuation absorption. This is the emission term and this is the scattering term. 

So we say that, in a non scattering medium omega lambda is zero; this goes away, this

goes away. We are back to the original expression. But, in a medium which both scatters

and  absorbs  radiation,  we  are  now  linking  the  intensity  in  a  given  direction  of

wavelengths to not only to the incoming intensity and the  intensity of emissive black

body, we also let it to another expression called G lambda, which actually connects all

the other directions to a given direction. 

We solve the equation because in the previous approximation made by the scattering, the

photons  travelling  in  the other  direction  did not  affect  over  result.  It  will  be mainly

concerned with photon joining, going in a given direction; whether they were attenuated

by the absorption or they were enhanced by emission or by scattering in. But, now the

last term is going to bring in the effect of all the other direction on to a given direction. 

So,  when there is  scattering  taking place  in  a given situation  that  complexity of the

problem goes up many many times because now we have to worry about solving the

directions pertaining to intensity in all the other directions in order to get the answer in a

given direction correctly; because they all are coupled through this term. This term is the



most  difficult  term you  have  to  deal  with;  because  it  links  the  intensity  in  a  given

direction to the intensity in every other direction. 

 When we deal with scattering in more detail, we find that we have to pay much more

close attention to the directional nature of the radiation because the intensity in the given

direction depends upon the integral of radiations from all other direction. This linkage

was  missing  in  the  case  of  pure  absorbing  medium,  in  which  the  scattering  was

negligible.  There, the intensity in a given direction was not linked to the intensity in

other direction. 

We could treat the angular integration in radiation rather casually, but now we cannot do

that. We have to account for it very very carefully. Now, in spite of these complications

we can still argue that, in the thin limit when both the scattering and absorption is going

to be small, one can still calculate the flux as from surface one minus surface two; so,

whether it is scattering or whether it is absorption by both are very small and in optical

thin limit we can use that.
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 In the thick limit we can use aerosol diffusion model for a scattering medium. We  can

see that in very simple cases in the thin and thick limit, we are going to easily extend the

simple modules for thin, thick limit scattering by nearly modifying the a lambda to a

lambda sigma lambda. But, in all other cases we are going to be having a difficulty;



because in the cases were thin and thick limit is not valid, we have to take care of angular

nature of radiation extremely carefully. 

 This will be the part of the discussion in the subsequent lectures as to how we tackle

scattering problem, in which the effect of the other angles is felt in the given angle. Now,

we compare a more complicate expression to explain what happens in this scattering

medium. 
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The last term in which the symbol be G lambda can actually be written as sigma lambda.

You have  to  worry  about  two  direction;  zero  to  pi  and  zero  to  two  pi.  That  is  the

azimuthal angle and the other angle.  This sigma lambda by four pi, this part we all

know. We have to worry about the i prime lambda in the direction different from your

direction. The probability of scattering from theta prime pi prime to theta phi; this is the

key expression; times sin theta prime d theta prime d phi prime. 

So this is the expression, which decides how a photon traveling in a given direction theta

prime phi prime lands up in your direction because of scattering. So, scattering is linking

the radiation coming in the direction theta prime phi prime to radiation in the theta phi.

Now, this linkage is missing in the pure absorption problem. Where, in a pure absorption

problem we have merely concerned with photons in a given direction being absorbed by

gas  molecules  or  scattered  out.  There  are  slow scattering  in,  in  the  pure  absorbing

problem. In the scattering problem, this term which due to scattering change the direction



of  photon  from  theta  prime  phi  prime  to  theta  phi.  That  is  what  causes  a  lot  of

complication; because in out of five, you solve for i prime lambda theta phi. We must not

quickly want the intensity in some other direction theta prime phi prime. We have to link

the intensity of radiation at a given angle of interest to you to the intensity of radiation in

any other direction that is there.

So, all radiation problems that involves scattering demands that you solve the scattering

equation  very  carefully  because  any  simple  approximation  that  you  make  for  the

scattering  term must  be carefully  considered;  because unless it  is  isotropic scattering

which is a very rare case, in all the other cases the scattering problem is going to make

life very hard. Now, we will illustrate that issue of how scattering influences your answer

by a simple example here.

So, before we go further in to the example, let us write down the expression for radiative

flux  in  an  absorbing,  scattering  medium.  This  is  essentially  the  extension  of  the

derivation which we did earlier for pure gas radiation. We will see that in additional to

the expression we had earlier; simple expression we had. 
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We will have a now much more complicated expression, which relates q R lambda. If we

recall the first term that comes from the wall, so we will put a two here and this is from

the bottom wall zero. The top wall will be tau zero lambda.  First the radiation of the

bottom wall has to be integrated over all angles.  Taking into account attenuation; this is



same  as  what  we did  earlier. This  part  is  not  anything  new. Same  way, the  second

expression for the top term is minus two pi, again zero to one i minus lambda tau zero

lambda mu e to the power of tau zero lambda minus tau lambda by mu d mu.

These two are essentially as same as what in last time. Now, the two expression which

involve in emission will also involves scattering term. We have two in to zero to tau

lambda. We have an expression for in terms of kappa lambda by kappa lambda plus

sigma lambda. This is the absorption coefficient by the scattering coefficient. And, so

this expression will be now kappa lambda by beta lambda; where beta lambda is kappa

lambda plus sigma lambda. 

 This one involves e lambda b that is the emission term; plus, so we just write it that in a

clear way, so that all these expressions what you have seen earlier. Kappa lambda, we

will write in terms of a lambda, so that there is no confusion in the notation compared to

what we used earlier. The ratio of the absorption the scattering plus ratio of scattering to

absorption plus scattering times the G lambda, which is the expression which involves

scattering term. The entire thing is of course multiplied by E 2. 

 Finally, the last term is two tau lambda to tau zero lambda. E 2 of t minus tau lambda dt;

so, we want to see how the original expression varies with the flux. It did not have these

two terms. Now, we have two additional terms and start the integral now. What makes

this  very  complicated  as  all  of  we  will  appreciate  is  because  there  is  an  additional

unknown.  There  was  already  an  unknown  in  the  problem,  which  is  the  unknown

temperature distribution between the gas; now, this unknown distribution of intensity in

the gas.

We have to  solve  for  both.  The problem gets  an  order  of  magnitude  more  complex

because the way you treat the angular variation now is much more critical than what it

was in the case where there was no scattering. So, basically the pure absorption, emission

problems were much simpler to deal with compared to what we have now deal with,

when we look at combined absorption and scattering. There will be much more heavy

mathematical derivations to take care of that, and so problem becomes lot more complex

and much more difficult to interpret the physics of the problem. This we will take up in

the next lecture.


