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In the last lecture, we were talking about the concept of mean beam length for the calculation

of transmittance in enclosures or in furnaces. And let us now elaborate more on this concept.

To do that we first had look at a simple geometry.
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Let  us look at hemispheric enclosures. The  gas is enclosure along with the surface, this

entire gas is emitting to its base. From the concept we discussed in the last lecture, A j F A j d

A k,  that is  the radiation from all  the gas elements to  the base here,  and we can do the

integration over  A j. The expression is like this and cos theta j is one, because the rays living

the surface j are always normal to the surface. Now, because  this is a spherical system, the

integration is always very simple in these calculations.  All these are independent of theta k,

so they come out We  can express d A j in terms of theta k. 

 Finally, we have  a result which  can be integrated very easily we get A j F d A j d A k in the

transfer  equation  which  is  what  we  want.  Using  reciprocity,  which  is  always  valid  and

knowing that all the radiance leaving d A k has to reach dAj. We conclude that the mean

transmittance is nothing but e to the power of minus a lambda R.  When a hemispherical

enclosure is radiating to the center of the base, then the expression for transmittance is very

simple is nothing but e to the power of minus a lambda R. Now for other geometries life is a

lot  more  complicated  because  in  other  geometries  the  simple  application  which  we  had

here(i.e., cos theta j is 0 and elements are simple is not there). Let us take an example of

slightly more complicated situation.
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Suppose we want to calculate the radiation from the top of cylinder to its base, we can write

down the expressions and directly see that A j F d A j d A k into top cylinder which is what

we want; We can write it in terms of d A k and all these quantities. Now this integral can be



calculated, but only numerically. The relation between tau bar, the mean transmittance of all

the rays and the  geometry of problem, that is the radius of the cylinder is not very simple. It

is very complicated. We can calculate that on the computer, but for practical engineer, this is a

little messy. It  will nice to express this as an equivalent hemispherical enclosure.

We  look at all real life geometries that we encounter cylinders, parallel plates, cuboids or

other things We  do the integration immediately, but finally we would like to provide and

expression  which  is  easy  to  use.  The  idea  is  convert  the  numerical  integration  of  these

equations to an equivalent length, which is making this equivalent to this kind of system.

That   equivalent length is called the mean beam length. The mean beam length is nothing but

the lengths scale which when use in this formula tau equal to it is minus a R; will give you

same transmittance as the actual expression, which is much more complicated.

We  are replacing the real geometry with an equivalent hemispherical geometry. The mean

beam length is radius of that, fictitious hemispherical enclosure which will give you the same

transmittance as the real geometry, which we are dealing with whether it is cylindrical or

rectangular  or  something  else.  We want  express  this  in  terms.  This  is,  of  course  ,  an

approximation; so there is bound to be some error in this approximation.
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Now one example of this is given in this case. Now we have two parallel plates; We  want to

know the gas, which is emitting from all the gas layers emitting to this base here, What is the

mean beam length? To do that, the exact expression for two parallel plates can be shown to be



1 minus 2 E 3 into a D, which is the exponential integral function which we  encountered

earlier. And here it is compared with simple expression, 1 minus E to the minus 1 point a D,

where 1 point a D is the a mean beam length We  see that this ratio is somewhere between 92

percent to 105 percent of the exact value. If  we are happy with an error of the order of 5

percent,  then we can replace the complicated expression in  terms of exponential  integral

function in terms of a simple function in terms of an exponential.

The figure shows that the mean beam length concept is quite useful for a range of optical

depths 0.04 to 8. It is within 5 percent of the exact result we can get by numerical integration.
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 Here is a table which gives you, the characteristic dimensions of various geometries that

been countered in furnaces. First hemispheric radiating base is what we have done, sphere

radiating to a surface circular cylinder radius centre of the base, then radiating to the convex

bounding surface and various examples here and infinite slab. In all these cases, they are

giving you the value of the mean beam length in the limit of optical depth being very small,

one value and for find optical depth they are not same because there is some variation. The

ratio of the finite optical depth mean beam length to the optically thin beam length The  good

news is that in most cases it is within 10 percent of the optical thin result.

If  we have no access to these detailed calculations and we  want estimate the mean beam

length, then if you use the mean beam length for the optically thin limit; you would not have

more than 10 percent error at most. Expect this one case, which has very larger error(around



20 percent). If  the situation in which some geometry is not covered by this table We  would

like to estimate the mean beam length. Then we are forced to use this mean beam length

expression for the thin limit That we will derive now. So, what is the mean beam length in the

optically, thin limit.
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The idea is we have now arbitrary shape, maybe anything, radiating to the boundary and we

want to calculate the mean beam length in the optically thin limit.  A radiation that is emitted

from the volume to the base is the emissivity of the volume, this is your d s here and in terms

of black body intensity into d A into d A mega; is general expression. Now because we are

talking about optical thin limit this becomes a lambda d s i prime lambda b d A d omega. We

will assume that approximately d A into d s is equal to the volume of the gas element, this is

an approximation. Everything is independent of angle here so this will integrate to four pi.

Finally we get an expression which is, 4 pi i prime lambda b a lambda v integral all with it,

do also volume integration.  If we have this arbitrary shaped object; the volume v an area

surface to which it the geometric area a then the radiation emitted is a base of that is this

much.
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Now this is the exact expression obtained with, now this is being compared to an  equivalent

hemisphere. The equivalent hemisphere will have radiation to the base, based on this length L

e is the equivalent length and L e is 0 because here doing in the going doing now in the

optical thin limit into A lambda b in into A. This  will come out as a lambda L e o, e lambda b

into A for a lambda L e o much less than one, this is our assumption. We  compare this result

with the previous result, that is a lambda L e o, e lambda b into A is equal to 4 e lambda e

lambda b into V. This is canceled out. The optically thin mean beam length comes out as 4 V

by A. This   is  animportant derivation.
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In the optically thin limit, we can derive a general expression L e o as equal to 4 V by A. This

is the very useful result because any geometry that we take once you know its volume and

area to which it is emitting, then the mean beam length is 4 V by A. So this useful for any

arbitrary shaped object. Now we saw that L e by L e o, is typically in the range from 0.8 to

anywhere between 1,2.  So, for example, the mean values are 0.9. So people who use L e ,

like Hottel  has done,  use the value 3.6 v by A, because he assumed that L e is approximate

equal to 0.9 times L e o.

 We will use 3.5 but some use 3.6 depends on the particular application and situation. This is

a commonly use method, to estimate emissivity and transmissivity of gas of arbitrary volume

and shape, by which do not have readymade integral available.  It is very useful in the design

applications  and estimate of  radiative  fluxes  in  commercial  furnaces;  so this  is  a  typical

engineering treatment of the problem. We are treating the entire gas to be isothermal, which is

not always a good approximation; but we do that in order to be able to estimate fluxes in a

simple way.  After we assume the furnace to be isothermal we need to make estimate of the

emissivity and transmissivity of a gas in the furnace. For that we have a general expression

which we  discussed in the last lecture;  The  expression can be integrated for certain standard

geometry  likes  cylinders,  spheres  and parallel  plates  and so  on.  But  for  other  cases  the

integration can become quite tedious. So, for such cases, the simple expression for the thin

limit and approximation for any other optical depth is utilized in practice. Now remember

these are basically approaches which are meant for design, not for accurate estimate of fluxes.

These are useful because at the design stage, you need have rough idea about the fluxes that

will be encountered in that application.  At the stage in design we are not looking for accurate

data, it is merely initial estimates; so this kind of methods work quite well. But later on once

a furnace is designed we want a accurate estimates of fluxes in the furnace to evaluate its

performance you may want  to  do it  in  a  more  accurate  way, for  which  we have  to  use

standard radiation codes and many of the codes these days are Montecarlo codes; and so you

will use this codes which will handle all the complexities related to the  the gases that are

non-gray and may be  for non-isotropic surfaces. 

But, that kind of elaborate use of software is warranted, if an only if you need high accuracy.

At the design stage normally, one is quite happy to get an estimate within 10 percent of the

actual because there are going to be various adjustment at the design stage, but once the

furnace  is  constructed   we  want  to  estimate  its  performance and  then  you  need more



accurate  analyses  and  for  that  standard  more  complex  radiant  packages  are  used.  So,  in

engineering  we  adopt  both  an  approximate  as  well  as  exact  method  and  approximate

methods are normally  for the design stage and exact at the performance stage because when

you are judging the performance of an engineering device against competing products. We

need to provide fairly accurate estimates of the performance of your device. We  may not be

satisfied with 10 to 20 percent accuracy, we want more like 1 percent accuracy. For which we

will use standard complex radiation quotes to estimate that. So, with that we conclude our

discussion on radiative transfer for engineering application in furnaces.
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We will later on take of some examples illustrate this further. But now, we go on to a new

topic  called radiation pyrometry. Now one of the important applications of radiation is to

sense the temperature in furnaces remotely. In most cases in engineering practice temperature

is measured using thermometer, thermocouples or other devices which contact the surface

whose  temperature  we  want  to  measure.  But  there  are  situations  especially  at  high

temperature conditions, where  it is not possible to actually touch the surface. We would like

to measure temperature remotely. That is you measure the radiation emitted by the surface

and using that you want to infer, what the temperature of that surface is. 

This  is  getting  quite  common  now  and  infrared  thermometers  are  available  for  many

applications where you will estimate the temperature of any hot object, by merely directing

the thermometer towards it measuring the radiation coming in and from that inferring the



temperature. In that context various quantities defined and some of them are called radiation

temperature or brightness temperature or color temperature. In this lecture we will elaborate

on  that so that, it can be used in practice. When  we  measure quantity of radiation coming

from the surface; what we are measuring is emissive  power of that surface and, the black

body  emission.  If   we  equated  it  to  black  body,  then  this  temperature  is  an  effective

temperature and is called as radiative temperature.

So, what are flux coming from that source we assume is the black body. We write it as equal

to sigma T two power of four and estimate the T r, but T r will not be equal to T s unless

epsilon s is 1. The emissivity surface whose temperature we are measuring is unity then it is

very simple we  can estimate by saying the radiative temperature equal to actual temperature.

Now this  is  quite  true  for  a  water  body. A typical  water  body like  a  lake  or  ocean has

emissivity very close to one. So we can assume it be equal to 1 This  method will work quite

well. But we will like to know what is the error in measurement.  Any time we make any

measurement, we want to know what is the error. In this case error is nothing but the actual

temperature of the object minus what you are measuring (i.e., radiative temperature) by actual

temperature and from that equation we can see which is equal to 1 minus fourth root of

epsilon.

Let  us estimate what this error what this error is if we suppose that the emissivity of the

surface is somewhat low let say 0.656 for convenience. We substitute that here you will find,

it is 0.9. We  can see that the error in temperature  is 10 percent when the emissivity as low as

0.656, but many surfaces that we deal with have emissivity is closed to 0.8, 0.9, 0.95 and so

on. For all those cases the errors will be much lower.

If   you are satisfied with measuring temperature with accuracies in the range of 5 to 10

percent  then  measuring  radiative  temperature  and  assuming  the  surface  to  be  blackbody

should work quite well. We assume 10 percent accuracies may be adequate in some cases, but

if you are measuring the temperature  of a surface which is has 800 degree Kelvin and error

of  10 percent will be 80 degree Kelvin  that  may not be adequate for some applications. If

we  want higher accuracies then you have to do something else either you have know the

emissivity surface that is always difficult as we saw earlier, that emissivity of any especially a

metallic surface at high temperature depends on the level of oxidation which can change a lot

with time. It is difficult to presume that you will know the emissivity of the surface whose

temperature you are trying to measure that you will know it in advance.  If  the emissivity



surface is unknown and is not high then you have to use some other tactics. Now the method

we discussed  is based on measure of total radiation of  the surface.
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Now we can go little differently, we can measure spectral radiation. We use a radiometer with

a filter to measure the radiation emitted by a  surface at a particular wave length. That is, we

equate the emissive power of a surface to that from a blackbody at the same temperature and

wavelength. This  quantity is called brightness temperature. So, brightness temperature by

definition is the temperature of an object assuming that all the radiation emitted by object is

from a black body. It  is a equivalent black body temperature, which gives the same flux as

what you are measuring and once more if the  the emissivity of the surface at that wave

length, is quite close to 1, then your accuracy is not too bad.

For example we know the black body emission and  we  are equating this to the brightness

temperature of the object which is assuming that it is as a black body. We  want again to

estimate what is the error.  We  want to rewrite this as follows we can rewrite c 2 by lambda T

s is equal to log of 1 plus epsilon lambda into e to the power of c 2 by lambda T B minus 1. If

emissivity is 1 of course, T s equals T B that is by definition. Now the question is what is the

error in assuming T B equals T s when emissivity is not equal to 1.
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Now to do that, we will take a simple case. Now there are many applications where this

quantity will be much greater than 1, most application that we deal with in engineering this is

valid. In that case T s becomes approximately T B by lambda T B by c 2 log epsilon lambda

plus 1. If  epsilon of the one of the term goes 0, you are back to this design. Now can see that,

this very close each other if this quantity is much more less than 1 then we have very close.

For example if this 0.01 then you are making only in error of 1 percent it is 0.05 may be error

of the 0.5 percent. So, I want to highlight the fact that, this quantity typically is around 0.1.

 Even epsilon was not 1 let us say was 0.6 or something, this quantity will be quite small. And

so that is the great merit of this concept of brightness temperature and has been used widely

in satellite applications. Satellite from the space you are measuring the let us say temperature

of the ocean and we are measuring not totally, but in a certain region, certain wavelength

range where the atmosphere is transparent. We  are inferring the brightness temperature and

since the emissivity of the ocean is quite close to 1 this quantity is very small. The  estimate

of the surface temperature can be quite accurate.

Today satellite derived estimates of sea surface temperature can be as accurate as 0.5 degree

centigrade accuracy. The inaccuracies that coming that you nothing do with this approach

which is suggestion is more due to absorption by water vapor in the atmosphere and others

from the clouds and so on. But otherwise, measurement of brightness temperature from space

has in a very useful technique to estimate the surface temperature of both land and ocean



from satellite. In the case of  land the  situation little more complicated in the case of ocean

emissivity is close to one.  This  is very accurate, but in the case of land desert regions can

have a emissivity as close to 0.7. Inaccuracies can creep up in such a situation.

We  can see that the measurement of brightness temperature, will give you a more accurate

estimate then the measurement of total radiation; that we saw in the definitional of radiative

temperature.  That is because in the case of radiative temperature the error went as 1 minus

fourth root of epsilon.  Here the error depends on logarithm of epsilon which reduces the

problem. Further there is a quantity in different which makes it a very low estimate of this

quantity. This quantity is already 0.1.  The emissivity can be quite low. Even if the emissivity

is around 0.6 or 0.5, we saw the errors can be of the order of 10 percent here we much lower

because  the  quantity  multiplying  in  front  is  much  lower  than  unity.  Now  suppose  we

encounter a situation, where in emissivity is quite low and the  accuracy that we can obtain by

measuring the brightness is not good enough; then one can adopt a more elaborate method,

this  method uses two wavelengths.
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The idea of using two wavelengths is the hope that for a given surface emissivity may vary a

lot  and  it  may  be  quite  low,  but  if  you  choose  two  adjacent  wavelengths,  nearby  the

assumption is, epsilon lambda does not very much. If we take a small change difference in

lambda we 0.1 micron and 0.2 micro; the emissivity is not going to stay low. If that happens

that so offer the case for most surfaces even the emissivity not equal to 1. The variation



absolutely lambda around a certain a region may not be large.  This idea is exploited by

looking at the ratio of the emission at 1 wavelength, to an adjacent wavelength; and compares

it  with  the  ratio  of  the  black  bodies  at  those  two  wavelengths.  This  is  called  a  color

temperature.

A color temperature of an object is that temperature at which the ratio of the emissive power

at  the two wavelengths is  same as that of black body at  the temperature T c.  So,  at  the

temperature  T c,  the  ratio  of  emissive  power  of  black  body  these  two  wavelengths,  is

equivalent to that in the actual object. Now one might wonder how this is different from

brightness temperature. In the brightness temperature, you are equating the actual radiation

received at a given wavelength to that of black body and ask what a black body temperature

is.  Because  the  color  temperature  you  are  not  saying  that  emission  from  that  body  is

equivalent to black body we are looking at the ratio of the two emissions, so which is a more

complicated assumption.

 Again if you assume that, C 2 by lambda T s is much greater than 1; which is again normally

the  case.  Then  we  can  show the  difference  between  a  color  temperature  and  the  actual

temperature of the surface, is approximately equal to C 2 1 by lambda 2 minus 1 by lambda 1

log epsilon lambda 1 by epsilon lambda 2. So epsilon lambda at lambda equal lambda 1, to

epsilon lambda at lambda to lambda 2.

Now  notice  that  the  difference  between  the  color  temperature  the  surface  temperature,

depends not on the emissivity of the surface, but on the ratio of the emissivity.  What we find

is that is the surface can have quite low emissivity can be 0.1 or 0.2, as long as that emissivity

does not very large between two wavelengths you are choosing then this conducive quite

close to 1 and log one is 0 then color temperature will be very close to the actual temperature.

The accuracy of measurement now is not depending on the value of emissivity, but assuring

that emissivity does not vary very much with wavelengths.

But of course there is a challenge here, you would like the adjacent wavelength to be quite

close to the one of the wavelength you have chosen, but the requirement to choose too close

is that this conductivity will go to 0. This demands that two wavelengths should not be too

close, but same time it cannot be too far, as the quantity will go up. There is a trade off in this

choice of wavelengths; If we choose wavelengths too close to each other, this quantity go to

1, but this quantity will go to 0. So, will get 0 by 0 so we do not know, but if you choose well



little far away, then this quantity may be departing from 1 may not depart much, but this

quantity will increase. So, error will be kept down.

This is the most accurate method of measuring temperature from sources, by remote method.

In the remote technique, you do not have to touch the surface. That is why it is so popular in

satellite applications. In satellite application either we consider the brightness temperature,

that is measurement at one wavelengths is used or more commonly they choose two adjacent

wavelengths;  and  choose  the  wavelengths  such  that  a  difference  between  the  color

temperature and surface temperature is very, very small.  There is a design freedom here in

choosing the two wavelengths and so in most cases,  you will  able to choose wavelength

sufficiently for a path so that   this term is not going to 0, but in that wavelength range

emissivity is not varying that much with wavelength, all though it may be low. This  may be

both be a case, but  we can imagine that it is also a more elaborate technique. This instrument

is more expensive because you are not just comparing the emission from a surface, you are

comparing the ratio of the emission from the surface of two dimensional wavelengths with

the same ratio for a black body.

The accuracy demanded for the measurement is little more demanding here because we are

talking about ratios and but still we can see this method is definitely superior, to either the

radiative temperature approach or the other temperature approach. Because we can measure

the temperature of surfaces with very low emissivity, as long as the emissivity is not strong

function of a wavelength. As long as in this kind of domain when emissivity is varying very

slowly with wavelength, nearly choose two adjacent wavelength which you make this ratio

close to one and make this ratio sufficiently large that error that is introduce is kept to a very

small value.  There is lot of design freedom because you have the freedom to choose the two

wavelength such that the error goes to that value.

 There are three ways in measuring temperature remotely, by sensing the emission from the

surface.  The simplest  approach is  the total  radiation parameter, which measures  the total

radiation for the surface assuming as a black body, estimates its radiative temperature. This

method can give accuracy of the order 10 percent; which is adequate for certain application.

If one is not satisfied with that, one can go to measurement of the given wavelength and that

method  is  called  brightness  temperature  technique,  and  is  used  widely  in  satellite

meteorology.



There in you are measuring only temperature at one wavelength and although emissivity may

be low; we saw that the quantity multiplying this emissivity term is quite small.  Then we are

dealing with logarithmic emissivity, which is a small quantity. And so the, total error that is

introduced because emissivity is not equal to 1 can be quite low, but one is not satisfied with

this also one can ultimate goes more elaborate method, which involves comparing the fluxes

from a given surfaces at two different wavelengths adjacent wavelengths;  This  method will

work very efficiently for even for low emissive surfaces because what the method demands

only that the emissivity can be low, but will not change rapidly with the wavelength. 
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We have seen various techniques of measuring temperature remotely, it is also occasion to

briefly  mention;  what  are  the  sensors  used  in  radiation  measurements  for  these kinds  of

applications. Now the sensor that we use depends on your application; so we will typically

talk about the method, talk about the wave lengths range, where we can use the method, its

sensitivity and how it depends on temperature changes linearity and selectivity. For example,

look at calorimetric method is a one most accurate; you merely observe that radiation coming

from the surface by the temperature rise using colorimetric we can use all well in ranges.

We can measure temperature any wavelength, but some sensitivity is somewhat low because

ultimately the accuracy depends upon the ability to measure temperature change in response

to the radiation from within and so sensitivity can be quite low, but it is very linear; which

we can  appreciate,  because  the  incoming  radiation  as  a  temperature  change  are  linearly



related. So this method is particularly linear, it is no selectivity in wavelength, but that can be

overcome by putting a filter; so we want to measure only radiation in a certain wavelength

range, then we can put a filter to block out those wavelengths ranges; then this method is still

quite good.

 It is the oldest method and still used as primary standard. The second method is photoelectric

method, in which you convert the absorption of incoming photons to electrical signal. This

operates well in though lower in the up to 40 Micron, beyond 40 micron the frequency is low.

The photons may not able to dock and electrons out or do something substantial. There is

difficulty in dealing with wavelengths beyond 40 Micron. This is a very sensitivity method

that means, this is small change in incoming radiation given the last signal.

Its linearity quite good, but not as good as the calorimetric method; calorimetric method is the

best for this thing and its quite selective because the in photoelectric method you are looking

at photons absorbed by surface knocking and electron out of the ground state and take it

higher. So it will respond only certain wavelength range. The last method is photographic

method. Like in old method, but it is related only to the high wavelength, low wavelength

region is not visible. So it is works only from 0 to 1.2 Micron range, it is very highly sensitive

not linear and solution is better. Now this method is used for example, to detect fires from

space. It is important for many applications to look at, how much of the surface earth any

time is  undergoing damage due  to  fire  and we would  like  to  measure  from satellite  the

amount of area around the world which is influence by fire.

Now the amazing part is a satellite in space at a height of 1002 even higher heights, is able to

detect  very weak  signal  coming  from forest  fires.  Now this  possible  because  of  special

instrumentation, which enables 1) to amplify the signal millions of times so the signals are

amplified million times; then you get a very, very strong signal.  The technique which enables

us to do this  is called photo multiplier. These signals are use to convert  the weak signal

coming in the visible region, from forest fires to million times Then one can measure sources

with very low intensity and based on this satellites have mapped a moment of forest fires

across  the  world.  They were shown on that  in  the continent  Africa,  there  are  large  fires

accessing 1000 kilometers across. They move north-south following the season, because most

forest  were set are instigated during the dry season and so they can be tracked from the

satellite That  was possible because of photo multiplier that is available; which increase the



signal strength almost more than a million times. It gives a very accurate estimate of the

surface condition.

Now  these  achieved  in  these  photo  multipliers  in  with  essentially  you  have  a  photon,

knocking  electron  out  of  the  bound  region  and  once  the  electron  is  free,  they  can  be

accelerated by a suitable accelerating devices. 
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The total gain that you achieved in photomultiplier depends upon how much multiplication

we can achieve and the number of such devices. Since it goes as m to the power of N we can

reach fairly large values. Because if in one device, the gain is of the order 4 of 5 and there are

25 such devices one after under there, then your gain be 5 to power of 25 and can be very

large. And so this has been routinely used to detect very weak signals from the surface. The

other application of radiation measurement, other than satellite is to measure the temperature

during manufacturing process. Now, in such a case like a steel industry and other industries

when a billet  or  some other  object  is  moving continuously it  is  difficult  to  measure  the

temperature  of  those  objects  by  physically  connecting  into  the  thermocouple  or  a

thermometer. So, for such application a remote sensing is desirable and that is well followed

by radiative heat transfer.

Now the technique we discussed about reaching a high amplification,  factor of the order

million can only occur in those devices, where the electron is knocked into the conduction

band of the substance and then it is allowed accelerate by providing voltage gradient. That is



why these techniques are normally available only for visible, because the frequency available

is very high so it can actually knock out, electron to the conducting state and where in it can

be easily accelerated. If we add a photon in the far infrared it may not have adequate energy

to knock electron into the conduction band.

 This technique using photo multiplier  and detecting forest  fires is an example of use of

visible radiation in photo multiplier and reaching very high level of detection. Now this is not

impossible for infrared or microwave wave lengths. It is only a special  feature of visible

wavelength.   Today we saw essentially discussion on engineering treatment of furnaces as

well  as  a  few  practical  measurement  techniques  based  on  radiation  heat  transfer.  This

highlights  the  some  other  further  application.  Now  we  will  go  back  to  more  accurate

treatment of a radiate transfer and finally, take up the more difficult problem of scattering.


