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In the last lecture we were talking about concept of band absorptance. We  defined band

absorptance A B as integral over the band of the absorptivity within the band and this has to

be integral over the band. We  pointed out, that the band absorptance is a function of the

partial pressure of the absorbing gas times the, length scale, line section parameter and the

gas temperature. This is called the pressure path length. This is the line width by line spacing,

this is called the line structure parameter and is gas temperature.

This quantity the band absorptance data is available for many important gases of relevance to

engineering like carbon dioxide, water vapor, carbon monoxide and so on.  The information

for this, as value over each band of a gas, if we take carbon dioxide, we will have data for the

4.3 micron band the 2.7 micron band and so on.
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In the last class, in the last lecture we had shown how we can evaluate emissivity in absorbed

gas based on the absorption, we define emissivity, the traditional definition which we were

already used for solid surfaces. We said that we integrate over all the bands, of the gas and, so

this will be nothing but, the value of the black body emissive power, at the center of the band,

band center divided by, the temperature, and then in the height band property depending, on

the path length of the gas, the line structure parameter or the ith band and temperature.

This quantity is what is available for gases like carbon dioxide, water vapor and so on. We

also argued that for absorptivity the same definition would valid, but the different between

absorptivity and emissivity will  be really, in how do you weighting.  We weight with the

bands  center  again,  but  we  weight  with  the  temperature  of  the  source  from where  the

radiation is coming for example, the source is sun, we will have to look at suns black body

temperature and then, this part is same this part is a gas property.

The  key point  we  made  was  that,  emissivity  was  a  function  of  path  length,  beta  i  and

temperature,  while  absorptivity  was  a  function  of  path  length,  lines  as  a  parameter,  gas

temperature and the source temperature. It is similar to what we discussed in the case of solid

surfaces, that the emissivity depends on the temperature surface, well absorbed depends both

on  the  surface  temperature  and  the  temperature  of  radiation  from where,  the  source  of

radiation coming.



The same thing is valid for gases, flexible gases are two additional parameter defined the gas,

one is the amount gas along the path and the nature of the structure of this quantity, called the

lines structure parameter whether, the lines in the where the been rotation band of the gas, are

very, very closely spaced and there are overlapping so that it doesn't play any role or the lines

are very far apart and they can be treated independently. Now, it will be good to know how,

we deal with this situation, in limiting cases to understand the nature of the band absorptance.
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For example, we defined the band absorptance, as integral over the band or 1 minus e to the

power of minus a omega l d omega.  Let us consider simple case, where a omega l is much,

much less than 1 what we would call as, optically thin because there is very little gas and the

absorption is very small. We approximate e to the power of minus omega l as 1 minus a

omega l because, the value is small.

This becomes nothing, but delta omega a omega d omega into l and normally, the way this

has written down in terms of length scale, the gas but, now practices to define an absorption

coefficient. This quantity omega l d omega can be written in terms of integral a omega by

rho, the density of the absorbing gas into rho a L into d omega. This is the  mass absorption

coefficient which define earlier, this is called the path length. Now, this path length will have

units of kg per square meter.

The amount of matter along a path called u. We can be either rho a L or sometimes this also

terms of path length p a L and related through the ideal gas law. Finally, we write A B has rho



l we call it has u, take it out it's not a function omega and then we write integral over of a

omega d omega This is strength, we can call it as the band intensity called S. In the simple

limit, in the linear limit, we can see that the band absorptance is nothing, but band intensity

multiplied by the path length and, so this is the useful result.
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The next thing we can will take an example, in which for simplicity let's assume the band

consists of one line for time being and we know that, the absorption coefficient of that line

can be written in terms of intensity of jth line, times the b which is the line with. This is the

Lorentz line. So, imagine we have single, Lorentz line we  want to integral find out what is

the absorptance single Lorentz line.

Then A B for a single Lorentz line, we call it a write down this is not the band.  This is only a

line, absorbed in single line it will be nothing, but this over omega 1 minus e to the power of

minus s for time being because, pi b omega minus omega 0 square plus b square into u where

we use the path length. Now, suppose line width is very small, the line width of this line

happens to be very, very small that is in the most of the integration, we believe that this must

be greater than b square.

Then we neglect this term, it does not contribute much then this integration can be performed

very easily. We  get a following result which is A is equal to 2 square root of b u. This is

known as the, square root limit. The single line in the band and the line which is very, very



small, then we get a result, which shows that, so the condition for this is s u by b pi b is much,

much greater than 1.

 Under the this condition, we have the square root limit and, so this is the user information to

have, that it can be in the linear limit if the path length is very, very small or if the line with is

very small,  then  it  can  be  in  the  square  root  limit  and water  vapor  typically, shows the

behavior which is equivalent to a square root limit. This information is useful, to determine

how you will pick data from experimental they are available, how they can be fitted for the

actual situation. Now, the next step we want to do is to go a little more ambitious and look at

more than one line.
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This is called Elsasser band model. In Elsasser band model the aim was to ask, if there are

large number of identical lines.
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In the spectral just show an example of an. Let us go back to our basics now, we saw that

absorption gases is individual lines in the wave rotation band, by this lines can be broadened

because,  of  collusions  or  because,  of  Doppler  broadening.  Hence,  the  calculation  of

absorption in  gases is  very much in demand that  we should know the nature of the line

structure,  we need to know whether the lines are very far apart  or the lines are strongly

overlapping. These things play a very important role, in the calculation of the absorption of

the gases.
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Now, we just considered a single line which because, of the collusions, underwent broadening

and the width was here, alpha l  to nu 0, the center of the line. This with the line, depends

linearly,  linearly  on  the  pressure,  total  pressure  the  gas  which  determines,  how  many

collusions there are. It also depends on temperature because, that determines in some sense

the density of the gas also.
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It depends inversely on the square temperature. We  can see that, when you deal with gases in

very high temperature, the line width can be quite small and when we are dealing with gases

at very high total pressure, like inside the diesel engine, then we can have very large line

width.  The line width can vary a lot depending on whether we are dealing with high pressure

radiation transfer or a low pressure, high temperature, radiant transfer. 



(Refer Slide Time: 15:29)

Now, here  we  show  the  difference  in  the  line  width  and  the  structure  of  the  line,  the

difference  between  this  one,  which  is  the  Doppler  broadening  which  is  exponentially

decaying which we saw along with Lorentz broadening which is here, which goes downwards

one over one plus nu squared, V is a void function, which is a combination of Doppler and

Lorentz. void follows essentially the shape of the Doppler broadening in the centre, but as the

Doppler broadening effects go down, it takes over and follows the Lorentz broadening shape.
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  The simplest module that Elsasser proposed, is having the series of line of identical height,

identical spacing. This of course, is somewhat ideal, no real absorption band or gas show this

kind of structure, but it is very, very useful and very eliminating to do this analysis because,

there is simple and analytical experiment can be obtained.
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We will  see later, we will  look at  lines which are equally spaced, but real world will  of

course, is somewhat different real world we will have, line spacing and height varying a lot.

In  many complex gases,  like water  vapor  this  almost  looks random and,  so we will  use

random as statistical models, but the simpler model is usually one using the Elsasser idea

because, that mainly illustrates the basic features.
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We, look at the absorption coefficient, which is a function of the line intensity, line with and

here line spacing is equal, there are end lines along this one and the line width. We  are going

to vary the line spacing here, this delta is spacing in two lines.

  When we integrate this equation, over all n we get this result and the result what is seen is

that, the absorption coefficient is function of the line intensity This integrates to sin and cosh

functions, hyperbolic and hyperbolic cos and where the function beta is the line structure

parameter which is  nothing, but line,  width by line spacing and of course,  the frequency

which is now represented in terms of the line spacing. Now, we have to intricate this further,

so we will do that part now.
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We  saw that result which is right now, suppose we want to go further in the derivation We

actually want to derive the emissivity of the gas, in Elsasser band, then you have to write this

has 1 per pi minus pie to plus pi of one of these lines, e to the power of minus 2 beta x sin

hyperbolic and cosh, cos hyperbolic cosh minus cosz d z where,  x is nothing but,  s into

frequency or this case omega by 2 pi line with and beta is nothing, by 2 pi b d this is a line

structure parameter, this is a non dimensional frequency this is this is z here.

We  have to integrate over frequency. This integration can be done. One can show that from

the integration that the, emissivity of the Elsasser band and that is error function, times root pi

by 2 s by d. Let me go back this is x  this is the path length, this is the line structure, the

frequency integration his already done. This in terms of the, length x and in terms of Bessel

functions I  0 x and I  1  x.  Now, this  result  is  very useful  because,  we can we can now,

although this expression really very complicated and all though this is in many books, it is to

look at limiting cases and let us look at what limiting case of the Elsasser.
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The so called weak line that is when the line absorption's path length is very small, than we

show that mean emissivity of the gas is 1 minus is minus s x by d or more. This is very

simple result very, very close to what you might get for a gray gas. So, they must have 1

minus epsilon d and in the case of strong lines, that is when x is much, much greater than 1

essentially, similar to the optical  method we had discussed earlier, this will be simplified to

the other function square root of line spacing into and finally, if you have non over lapping

line.

These things we can see them in this limit, in thin limit, weak line limit, notice is that, line

structure plays no role, but in the strong line limit line structure is very much there, cause we

can see b by d is playing role. This can be compared with the result we obtained earlier, the

square root function involved here, but has some similarities to square root limit.

Now, if we look at more general analysis, this is the similar analysis in which we use the

simple  Elsasser  band  model,  but  we  do  a  more  complicated  analyses  we  look  at  the

conditions of various, situation let us now look at empirical expressions.
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So, empirical expressions for absorptance. Lot of laboratory measures have taken place for

gases and band absorptance has been measured in various situations. In the limit when the

line width by line spacing, is much greater than 1 and nu is small, as we can expect band

absorptance because, linearly as the path length. This is the weak limit for obtain thin limit.

On the other hand line with the line spacing so, over lapping lines and path length is much

greater than 1 then A by B goes as log u.

These are the two very important limits that are available, in the literature based on actual

measurements of band absorption from various gases. In thin limit they behave like, to be

product in a graph of A B with u we will find a linear variation at low and  are logarithmical.

But the main issue is what is happening here, when the u is neither too large or too small. and

so,  the  condition  that  has  been  arrived  if  we  define  data,  as  pi  b  d  lines  structure  per

parameter.

Than if u is in a certain limit, between greater than beta and less than 1 over beta, than lot of

books suggested that A or B then should vary as the radius 2 root u beta minus beta, this is

square root limit, that would typically be somewhere in this region, u is not too small and u is

not too large and that is condition by this condition that is given here, where in u is greater

than beta, but less than 1 over beta. U is some value that is too large and then the square root

limit operates in this case.



 Generally people fit the band absorptance with this limit. This is can be widely used and an

example now, suppose we want an expression for absorptance which combines both linear

and the log.
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Combining linear log limit, we can write A B is equal to A 0 to log 1 plus u. Advantage of this

expression is for small u, it  will go as this and for large u, will go has log u. This quite

convenient expression that has been used, but note that line structure parameter plays no role.

This may not be that useful in situations where, the line structure is important.

We  want to examine cases where, the line structure is important. Then we need to look at

examples where, we have to fit the effect of line structure into expression and one example of

that, can be provided is there are various complicated models available, but let us just give

simple expression for A of B which will take into account the, lines parameter. We saw one

example of that already, which is A B. Actually A B is equal to A 0 into this is different from

these, there beta play no role. Essentially one must assume that beta is very, very large so that

the lines are so over lapping, that the line structure gets smeared out.

But, if we counter gases in line structure is important, than you have to look at expression of

this  kind  and  we  will  consider  what  are  these  examples  in  our  attempt  to  use  band

absorptance of gases and examples here in this situation. Now, how do we use this concept of

band absorptance in real examples. We will take an example now, of radiative equilibrium in

which, we consider a gas, which as single vibration rotation band and then, we would like to



be able to, rewrite the radiative heat transfer equation that, we had obtained.  We will take an

example, that is relevant to combustion application and, so let us see how we rewrite our

expression, for radiative flux.
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The basic philosophy of this model is that if A is delta integral over all omega e to the power

of a omega L d omega 1 minus e to the power of q r. We can see that d A d u is nothing, but

delta omega a omega e minus a omega u d u. If  we look at our equation for q r integrate over

the entire band, we will have, e b 1 minus e b 2 black body emissive power that is standard.

Then we have used Kernel approximation like we did,  in the example for Gaussian gray

model same law, but we use, integration 0 to some distance y and we have e to the power of b

omega and e to the power of b 1 omega, this is the gas radiation and the radiation of the wall

and then integral over the wave number, a omega e to the power of minus 3 by 2 a omega into

y minus and by beta 30 by  tilde the d by delta can come out here and d omega can be there.

This quantity should be recognize nothing, but d A d u or d A d y in this case. So, with these

definition and defining a non dimensional length scale as y by l and non dimensional path a

nu  s  into  p  maximum  path  of  this  s  into  the  length  scale  by  the  band  with  and  non

dimensional, when absorb this, if use this three definition.
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Than we can rewrite our expression for q R as e b 1 minus e b 2 plus 3 by 2 A 0 u 0 and to if

we put bracket 0 to psi e b omega of psi tilde minus e b 1 omega, than the derivative of the

band absorptance prime 3 by 2 u by psi d psi tilde minus derivative from psi to 1 of e b

omega of pi tilde minus e b 2 which is a constant and the function of scale and derivative of

the band absorptance of psi tilde minus psi is as tilde, which standard integral equation, that

we obtain in this case. Now, let us see how this equation can be solved. Now, if we want to

solve this equation, let us take it very, very simple example just to illustrate. Suppose, we

have a heat source which we have done earlier.
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So minus d q R d y plus the heat source have to be 0. This is heat released by combustion.

Then we can rewrite this whole equation, in the last part of that is for u 0 much, much greater

than 1 pi minus half if 0 to 1 phi of psi tilde d psi tilde psi minus psi tilde where phi is a non

dimensional temperature coefficient. This is very increasing limit for the different large parts

of limits, where in we do not see any line structure parameter in your expression. We are

merely only seeing the role of the logarithmic log limit because, in the limit as this we know

that, the band of the absorbent coefficient as A to the power of 0 log u. So, derivative of the

band format is 1 over u and that is what we are essentially getting hear and the solution to this

equation, in this limit is a very elegant one which is the only solution which we have which is

an analytical.
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For non dimensional temperature profile will come out has, 1 upon pi psi into 1 minus psi

into  square  root  of  that.  This  is  the  unusual  result,  the  result  where  in  you  got  and  an

analytical solution, to the temperature profile in a gas, having a vibrate rotation band and the

limit where the path length is very large, but it is important recognize the large path length

limit is not similar to optically thick limit.

Now, this is because, in a non gray gas, even if the path length is very, very large there will

always be wave length regions, in which the gas is not going to absorb much radiation. So,

radiation will just get through the gas. To illustrate this point we will take one example here,



which  is  that,  in  this  large  path  length  limit,  the  gas  will  not  completely absorb  all  the

radiation. 
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From the example we had last class in which we looked at the emissivity and absorptivity

carbon dioxide and the good example of the gas, with the total pressure of 1 bar typical of 1

band situation, that is 20 percent carbon dioxide, 80 percent nitrogen, length scale of the

order of 5 meters, gas temperature of 1500 Kelvin and the wall temperature of 600 Kelvin

and when we did it at the last time, we saw that the absorptivity of the gas was around 0.41

while the emissivity was 0.18.

We  can see that, in spite of fairly high temperature and fairly larger scale alpha g epsilon g

do not approach one, there are quite small. Hence, neither of this can be thought of us the

optical  thick  limit,  in  which  we saw that  in  case  of  gray gas,  it  implied  essentially, the

emissivity and absorptivity approaching one. For example if we take gray gas, the emissivity

of a gray gas will be 1 minus e to the power of minus a l.

In the thick limit, both alpha g and epsilon g will approach 1. But in real gases, that does not

happen  and,  so  that  is  an  example  that  is,  worth  remembering.  Real  gases  behave

substantially different, from gray gas which is a notion which is, used in our example, but it is

worth remembering that, this is not good in the thick limit because, thick limit the grey gas

behavior,  will  not  be  same  as  real  gases  because,  real  gases  to  allow  variation  to  be



transmitted. Now, in all the examples done, so far we had relied on  empirical data, for band

absorptance.
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Now to illustrate that, let us go and look at the problem here. Here we have shown the typical

variation of the absorption coefficient in the range 150 to 1510 to 1520 centimeter to the

power minus 1 and if highly high pressure, for a carbon dioxide band here we  can see that,

there are large number of lines here. This is a logarithmic scale. That the absorb coefficient

vary anywhere from around 10 to the power of minus 3.001 to 100.

We  have huge variation from 0.001 to 100 almost 100,000 is ration between this point and

this point. Hence we can see, then when we do those integrals, for radiant calculation, one

each extremely high resolutions in the wave number axis, to able to really capture this peak

because, we use a very cruder step size here, you will not capture these peaks.

This is a major challenge we face in calculating absorption coefficient of gases, which is that

there are large number of lines 100 of them and they go from almost 0 absorption to very

high large absorption, varying apart 100,000 in a very short example short scale here and, so

in order really capture the absorption lines here, we need extremely high resolution. This is

what makes the computation of absorption coefficient or computations in radiative transfer,

very complicated because, of this very large fluctuation in absorption coefficient.



One way to get around this complexity, is to recognize the fact, that although there is very

large  fluctuation  in  absorption  coefficient  with,  frequency  of  wave  number,  the  actual

frequency in which, that line lies is not that critical.
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In order to understand why let us now, go back and illustrate this with our example. We saw

that epsilon g it is integral over the frequency of 1 minus e to the power of minus a omega l d

omega This a omega is fluctuating by factors of 100,000 and it is multiplied by e b omega at

the gas temperature. So, the key thing to understand is, this is slowly varying as function of

omega, when compare to this, this function is varying, so we are going to take this, at the

center of the line, out of the band and do only the integration and, some over all the band.

We will write this as ith band i equals to 1 n, N band of the gas, if we doing this integration

now, it does not matter, where your absorption band is because, this is not varying much we

have taken it out therefore, in this integration, the exact location of omega in a wave number

place is irrelevant.
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We  can go back this one and rearrange this graph.
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This is the expression we want to calculate and  integrate it in the frequency domain, and

integrate over the absorption co efficient domain. 
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In present we take one in line and here, ask all this locations where after 10 was round 100

around  10.  Then  locate  bearing  is  around  1  find  the  probability  in  this  band,  that  the

absorption coefficient was 20 or 50 or 1 or 10 and once you know that probability.
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That is the f of k probability. f of k probability that, absorbed 1 is equal to k and use the path

length.



(Refer Slide Time: 52:15)

We will show how it looks like this is now, the same data that we saw earlier, written not in

the frequency space,  but in the probability of accuracy of that frequency with absorption

coefficient  equation.  In  absorption  all  the  wave  from  0.001  to  100  years  is  taken  and

determined what is the probability that is occurring. What we must notice clearly that, the

highest probability is for very low absorption co efficient. So, there are the lot of transparent

region in the gas between the lines, and then gradually it comes down to high absorption, but

low probability. Notice that this result is very different from this graph.
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This graph was very, noisy things going up and down.
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 On the other  hand, this integration is very simple to do because, this quantity is very, very

smooth except for little thing there.
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But, we can make it look better, if we plot the absorption coefficient as a function of the

cumulative probability which is defined.
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We can think, but 0 to k f of k d k this is the probability that absorption coefficient lies

between 0 and k g of k cumulatively probability.
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So, ultimately what we see is that, all though the real absorption coefficient is very, very

complex and, but weighting function of the frequency of wave number, if we do not integrate

in the a n number of space, but desirability in the absorption coefficient space which we can

do because, in the calculation the emissivity the absorptivity the black body function does not



very  much  in  the  within  the  absorption  band,  in  comparison  to  the  way the  absorption

coefficient varies.
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If we take out the black body function out of the integral, the remaining integration can be

performed in the space of absorption coefficient and even better in terms of the cumulative

coefficient. This is the very smooth function. This smooth function is so on for two different

pressures low pressure and high pressure. We can see at high pressure absorption is larger to

be to be expected.
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 Now  this  integration  is  very  trivial  to  do  and  that  what  it  is  finally  done  to  get  the

transmittance, you merely integrated the countdown in the space of cumulative absorption

coefficient function rather than frequency. This is called the correlated k method.
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This shows, how the real function ultimately is made to look both are low pressure and high

pressure, as a very smooth function. This is what has made the computation of absorptivity

emissivity very simple and today most of the calculations are done by this method. 
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This method is called the correlated k method. So, the correlated k essentially indicates you

that, we are collecting to their observation co efficient same value together and re mapping,

the  absorption  coefficient  which  was  originally  a  function  frequency.  Now,  it  is  better

function absorb coefficient itself and that functions much, much smoother and much easy to

calculate and accuracy of this  calculation has been compared, with the best calculated in

detail line by line, which is very expensive in tedious and they have shown that this method is

quite accurate.

So, most of the data available today is in terms of correlated k method. That method is much

easy to compute than line by line. But line by line is still reference data because, that is the

exact accurate method that we have, but most of the time we are going to use that data obtain

to the correlated k method and, so most of the data available to us will be from the correlated

k method. We will continue this discussion in the next lecture.


