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Lecture - 2
Blackbody radiation

In the last lecture, we had looked at the Planck's blackbody radiation.
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We saw that the Planck's blackbody formula for emissive power was 2  hνԓ 3 divided by c2 e

into ( hν by kT) minus 1, where 'h' is the Planck’s constant, 'k' is the Boltzmann’s constant and

'C' is the speed of light in the medium. This formula for the emissive power can be derived

using principles in statistical mechanics and quantum mechanics. We went through another

approach, proposed by Einstein which was easier and simpler to understand. 
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We saw that the molecules in upper level i going to lower lever level j and we wrote down

three expressions, dni by dt equal to minus Aij ni for spontaneous emission. Then, we looked at

dni change in a number of molecules in time due to induced emission, which was the new

idea that Einstein proposed. He said that there can also be emission of photons due to photons

coming into the system. Finally, there is absorption, which has to be positive and which is

from lower level j to upper level i.  It depends on number of molecules in the lower level and

the number of photons in the system. Einstein assumed that the incoming radiation from

blackbody is isotropic in all directions He wrote down integral of i'ν  dν  as nothing but

integral i'νB into 4 . This is because the radiation that is coming, is isotropic in all directionsԓ

In equilibrium the sum of these three terms has to be equal to 0. 
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We are  going to  ascertain  that  dni  by dt  (spontaneous emission)  plus  dni  by dt  (induced

emission) plus dni by dt (absorption) is equal to 0. In steady state the number of molecules in

the level does not change. When we simplify and calculate the formula  n i  into Aij plus i'νb

into  4  into  Bԓ ij is  equal  to  nj  Bji  4  i'νԓ b.  From the  arguments  related to  symmetry and

reciprocity, Einstein assumed that Bij must be equal to Bji. The process of emission on plot

have to be symmetric and reciprocal. Then, we assume that the number of molecules at the

upper level to that in the lower level has to go as e-δe/kT. 

This is equal to e-hν/kT.  We are assuming that the molecules have a distribution following the

well  known theory that  comes  from statistical  mechanics,  that  the  distribution  of  energy

among the molecules has to decrease exponentially with height.  If you put all these together

we will get i'νb as Aij/Bij divided by 4 [eԓ  hν/kT-1]. To get the similar result as Planck's formula,

we know that eνb=  i'νԓ b. 



(Refer Slide Time: 08:00)

Therefore, we can write eνb from Einstein's derivation as Aij/Bij divided by 4[e hν/kT-1]. If we

compare this result with the derivation done by Rayleigh jeans in the classical limit, one can

show that Aij/Bij is nothing but 8 hԓ ν
3/C2.  We get back the result that is obtained by Planck,

thereby showing that  1 comes from induced emission, which was not accorded for the either

Rayleigh jeans  or by ν in any derivation. 

 This  term,  is  introduced  by  Planck,  in  somewhat  adhoc  fashion,  while  in  Einstein's

derivation, this comes out very naturally as a contribution of induced emission to the result.

This derivation can be rewritten  in terms of the other. This shows that, the term coming from

the distribution molecules, shows a decline with the energy levels., Both these are clearly

accounted for in this  derivation.  Now, this  derivation done Both Einstein and Planck use

frequency to calculate emission power . We also would like to know what are the value per

unit wavelength obtained from these  equations. Once  we convert  νB  and dν in terms of

wavelength from frequency, we can find the value in terms of wavelength also. We know that

νλ is C, and that dν will be λs-C/λ2. 
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eλb becomes 2 hCԓ 2/λ5[ehC/λkT-1].  This is an expression that is used very often. This expression

has interesting properties, one is that if we divide eλb/T5, the right hand side will be only a

function of the product λT. This is very useful and later we will see  how to exploit this

particular feature of the function to advantage. 

The next important issue is to know where the maxima of the Planck's blackbody function

lies.  You can obtain that by differentiating the above equation. We will get a transcendental

equation, which we have to solve numerically to get the following result. The wavelength, at

which it is the maximum, will come out as 2898 by T, where T is in degrees Kelvin. The

result  value   is  in  microns  (μ).  This   shows that  at  the  peak of  the  Planck's  blackbody

emission curve, the emission power per unit wavelength occurs at the maximum  wavelength.

On the other hand, if we look at the previous derivation with respect to maximum frequency,

we derive the maximum wavelength given by 5077 by T micron This means that the maxima

of the  eλb function occurs on a different wavelength when eνb function is at its maximum. This

is because the eλb function is 1/λ5 and eνb is ν3.
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  These are different kinds of functional dependence, so the maxima of these two functions

will not occur at the same wavelength. When we coat the maxima of any blackbody function,

it is important to mention which coordinate system we are working  with, but most books

coat the value that is given by eνb function. This is called the Wien’s displacement law and

this is very useful information as to where exactly the peak of the blackbody function lies. 

Another quantity of great interest was, in addition to the peak of the blackbody spectrum

there is also the total amount of radiation line.  Let us look at a typical blackbody at the

temperature of 298.8 Kelvin. We find its maximum radiation in the lambda B coordinate at 10

micron. It  means that,  if  we look at  bodies at  room temperature and if  they behave like

blackbodies, then their peak radiation occurs around 10 micron. This is true for  most objects

at room temperature. So, the  maximization occurs in the region at around 10 microns. 

On the other hand, if you look at the Sun’s emission, assuming that sun is a blackbody at

5796 Kelvin for convenience, then we find that the maximum radiation occurs at 0.5 micron.

We can say that,  there is  a huge difference as to where the maximum radiation lies.  For

bodies around room temperature, the peak is around 10 micron while for bodies such as   the

Sun, which is at high temperature, the maximum radiation occurs at around 0.5 micron. This

information will be very useful when we want to determine the amount of radiation absorbed

from the sun.   It   means that  you need to  have  a  surface,  which  absorbs  radiation  very



effectively in this region around the visible. In addition to where the maxima lies, we also

would like to know, how much energy lies in a certain wavelength range.
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 We look at the total radiation emitted a blackbody and then compare it with how much it lies

in a given wavelength range.   This tells  us what fraction of the radiation emitted by the

blackbody lies in a certain wavelength range. We integrate  eλb dλ  function or  eνb dν function

from 0  to  ∞,  we  get   the  well  known  Stefan’s Boltzmann  formula.  Let  us  do  a  quick

derivation of this.  We use the Planck’s expression 'eb' which is the total radiation frequency

of wavelength . 
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We assume  η (eta), which is hν/kT and derive by integration from 0 to ∞, eb to get  . 2ԓ5/15

into K4/h3C3 into T4.  This integral is just a number. 

We are  more  interested  in  knowing  what  is  the  dependence  of  the  emissive  power  of

temperature T4. This kind of integral is studied when  dealing with complex numbers by using

MATLAB and mathematics. So, we do that you will have a simple The expression eb = 2ԓ5/15

into K4/h3C3 into T4  is called the Stefan Boltzmann constant. 

The numerical value of this quantity have been derived even before Planck had made his

derivation for the spectral quantity.  In the laboratory, one can measure eb   as well as T and

after that we obtain this quantity empirical.  The Stefan Boltzmann constant comes with a

symbol sigma today. We can evaluate it from three of the universal constants in physics,

namely the Planck’s constant, the Boltzmann’s constant and the speed of light in vacuum

where black body radiation is used for calculating vacuum. 



(Refer Slide Time: 22:47)

 We take  eb  = σT4  where this quantity is  5.67x10-8 W/m2K4.   We  now need to find how

much radiation lies between the two wavelength. 

We can rewrite this quantity as a function    F(λ1 → λ2)  and integrate   eλb dλ from λ1 to λ2 by

σT4
 .  This can be further simplified and rewritten as an integral of λ1T to λ2T  . eλb / σT5 d(λT).

(Refer Slide Time: 24:21)

 We pointed out that eλb / T5 is a function f(λT).  We substitute this value in the above equation

for eλb / T5.  We need to know  λT together in order to calculate this value. We can also write

the equation, based on the simpler wave where λ1  is 0 and λ2 is λT and integrate from 0 to



λT. . This expression is useful to evaluate numerically today using math law or any other

standard integration procedure. 
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Suppose, we look  at λT value and what fraction of radiation lies between 0 and λT, then at

1448 micron Kelvin it is  0.01.  At 2898 it  is  0.25. At 4108 it is 0.5, at 6149 it is 0.75, at

23,220 it is 0.99.  It  means that most of the radiation emitted by blackbody lies between 1448

micron Kelvin and 23,220 micron Kelvin.  In evaluating proper surfaces this information is

useful because you need to know in which wavelength range the radiation primarily  lies.  Let

us take a few examples to illustrate that.
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Let us take the surface at 300 K Kelvin. So, 98 percent of the radiation lies between  1448 by

300,  which  is  nothing  but  approximately  4.81  micron,  and   23,220  by  300,  which  is

approximately 77 micron.  One can say that most of the radiation emitted by blackbody at

300 Kelvin around room temperature, is somewhere between 4 micron to 75 micron. On the

other hand, if the temperature of the object is closer to 6000 Kelvin, it  is closer to Sun’s

temperature. 

 Then 98 percent of the radiation lies between, 0.24 micron to 4 micron.  We can say that

most of the radiation emitted by blackbody closer to Sun's temperature, lies between 0.25 and

4.  This shows  that, the two are almost non overlapping. 

They are  completely non overlapping wavelength  domains.  This  becomes  very useful  to

know when you want to evaluate properties of surfaces. The properties that are relevant to

calculating the absorption of Sun’s radiation, will be very different from the properties that

we will have to use to calculate the emission of the surface. 
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The second information is, we noticed that   eλb / dλ was 0, where λT was 2898 micron Kelvin.

We also saw that the integral from 0 to 2898 (λT), eλb dλ by σT4
 is 0.25. If we plot eλb with λ, ,

then 25 percent of the radiation, lies before maxima and 75 percent lies above the maxima.

What  this  implies  is  that  the  blackbody  function  is  not  symmetric  like  our  Gaussian

distribution, it is asymmetric. 

This is the property of a blackbody, when we are dealing with actual real surfaces and not

blackbodies itself.  We need to now look at the properties of real surfaces. Then compare this

real  surface  with  the  blackbody.   One  important  property  we  should  remember  is  that,

blackbody is the best emitter and the best absorber.  When we compare a real surface with an

ideal  surface  like  the  blackbody,  subject  to  the  same temperature,  the  emission  by real

surface will always be lower than that of the blackbody.
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 We define  what  is  called Emissivity which  talks  about  properties  of  real  surfaces.  Real

surfaces are different from ideal  surfaces. Emissivity compares the emission of a real surface

to  that  of  a  black  body  at  the  same  temperature.  For  example,  the  directional  spectral

emissivity of the surface, is the emission in a given direction, given wavelength and by the

actual surface to that of the blackbody at the same temperature. 

 These  are  very  fundamental  definitions  of  what  a   directional  spectral  emissivity  is.

Similarly,  we  can  define  directional  spectral  absorptivity.    In  this  case  we  define  the

directional spectral  absorptivity as the amount of radiation absorbed in a given direction,

given  wavelength  to  the  radiation  incident  in  the  same  direction  and  same  wavelength.

Emissivity  is  defined  as  a  ratio  of  the  actual  emission  to  blackbody  emission,  while

absorptivity  is defined a ratio of radiation absorb to the incident. 

At the microscopic level emission, absorption is called reversible. That is, if a certain object

has a certain property of absorption, then the same object will have similar property to emit

radiation, because, when there is emission molecules fall from the upper state or lower state

and emit a photon. If  we send the photon back, then there is  an equal property, that the

molecule will absorb the radiation and take the molecule from the lower state to the upper

state.
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 Kirchhoff proposed that  under  most  conditions these two quantities are  equal.  The only

requirement that he imposed, was on the equality of directional spectral  absorptivity and

directional spectral emissivity that is, the object must be in local thermodynamic equilibrium.

In  local  thermodynamic  equilibrium,  the  ability  of  an  object  to  absorb  radiation  at  one

wavelength and one angle will be same as a ability of that object to emit radiation at this

same angle and same wavelength. 

Kirchhoff’s law only relates the directional spectral quantities although this is always true.

The  hemispherical  spectral  absorptivity  is  not  always  equal  to  hemispherical  spectral.

Similarly, directional total absorptivity is not always equal to directional total emissivity or

the hemispherical total absorptivity is not equal to hemispherical total emissivity. 

 These three things one must remember because many books  claim that this Kirchhoff’s  law

is not true. Kirchhoff’s  law only connects the most basic quantity that is directional spectral

quantity between absorption and emission. It does not say anything about quantities which

are obtained by averaging. Once we average absorption and emission, then things change

substantially. For example, ά will not be equal to έ. 
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By definition, it is the directional total emission by the object at a given temperature by the

directional  total  emission by blackbody at  the same temperature.  This  can be  defined as

follows. We obtain the directional total emissivity from the directional spectrum emissivity,

by weighting the directional spectral emissivity by the black body function at the temperature

of the surface, which we study the radiation. On the other hand, we define the directional

total  absorptivity  as  the  total  radiation  absorbed at  that  angle  with  the  total  radiation  in

symmetrical time. 

We see that the directional total absorptivity does not make any reference to any blackbody

function. We rewrite this as an integral of 0 to ∞ from the definition of intensity.  When

integrating the directional spectral emissivity, the weighting function is that of the blackbody

at the temperature of  a surface by the directional spectral absorptivity.  We  integrate with the

amount of radiation incident on that object from some source, which may not be a blackbody.

 This study shows that the absorptivity obtained for any substance depends very much upon

what is incident on that surface.  If Sun light is incident on a surface, its absorptivity will be

of a certain value, while if radiation from some other source is incident on the surface, it will

have  a  different  value.  ά  will  differ  substantially  from one  situation  to  another  because

incident radiation is different.  We compare these two and see when we can apply Kirchoff’s

law for this kind of situation. 
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We will first write  έ as an integral of0 to ∞ έλ  ἰλb dλ / integral of  0 to ∞ ἰλb dλ. Then using

Kirchhoff’s law, we write ά as an integral of 0 to ∞ έλ ἰλbi dλ / integral of  0 to ∞ ἰλbi dλ. Though

the above two equations look somewhat similar,  they are not the same because, in the case of

emissivity,  we are varying it with the blackbody intensity at the temperature of the surface.

If  by  chance  the  incoming  radiation  does  happens  to  be  proportional  to  the  blackbody

intensity at the surface temperature, then we can say these two are equal.   But in real world,

this is very rare when the radiation that is sent on a surface, has a wavelength distribution

proportional to that of the black body of surface temperature. 

If the quantity έλ is not a function of λ,  then both  έ and ά are equal. This is  called as gray

surface. We can assume that the directional total absorptive rate is equal to the directional

total emissivity. 
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This is equal if the surface is gray or  the incoming radiation is proportional to blackbody

radiation at the temperature of the surface both these occur very rarely. Most surfaces that we

encountered  have  strong  wavelength  dependence  of  absorptivity  or  emissivity.   The

assumption over gray surfaces is not very accurate. Secondly it is a rare occasion, when the

radiation  coming  on  object  happens  to  be  having  a  wavelength   dependent  on  surface

temperature. ,  Kirchhoff’s law only depicts the relation between absorptivity and emissivity

for directional spectral quantities and not for directional total quantity.  The validity of this is

specified at the gray surface or the incoming radiation proportional to the blackbody intensity

at the temperature of the surface.  Neither  conditions are met in the real world and hence

these two are not equal. Suppose instead of integrating the wavelength, we integrate the angle

to  find out  when the  hemispherical  spectral  emissivity is  equal  to  hemispherical  spectral

absorptivity.



(Refer Slide Time: 48:02)

To do that, we define ϵλ eλ (TS) / eλb (TS) as an integral of Ω έλ ẻλb dΩ / integral Ω ẻλb dΩ.  . We

obtain  a emissive quantity by averaging over angle. 

Ultimately we will get , which is the total hemispherical emissivity. Now, remembering theϵ

fact that  ẻλbis nothing but ἰλb cosθ, on basic definition of intensive emissivity and the fact that

ἰλb is not a function of θ and φ we rewrite the above equation for  ϵλ.
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We write ϵλ as an integral over Ω as έλ ἰλb cosθ dΩ / integral Ω ἰλb cosθ dΩ . The definition of

intensity is such that, the directional spectral emissivity of blackbody is not a function of

angle that, was built into the definition. 

Solving the integration  the result will come out as φ.  The final expression for  ϵλ is, 1/ԓ

integral  of Ω έλ  cosθ dΩ.  .  We do not  obtain hemispherical  value by merely taking the

directional value and averaging it over arithmetically. We have to weight  it with cosθ where

weight age is given to emission closer to the normal. 

 The region where emission occurs will have higher weight age than normal. The directional

quantity when integrated, .  the cosθ term ensures that more weight age is given to radiations

appearing at lower values of data. 
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Moving on to absorptivity, the hemispherical spectral absorptivity is defined as the integral Ω

άλ ἰλbi cosθ dΩ / integral Ω ἰλbi cosθ dΩ ,  This comes from the basic definition of absorptivity,

which is the radiation incident in the solid angle and the fraction that is absorbed  due to

radiation.  If you assume  Kirchhoff’s law, which is always valid, then we have αλ is equal to

ϵλ.  
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Now, let us compare the two expressions called emissivity and absorptivity. We saw that ϵλ is

1/  integral of Ω έԓ λ cosθ dΩ. αλ is somewhat different.  We can see that in general these two

are equal, if  έλ  is not a function of angle that is the emissivity. The  surface emits diffusely

and is symmetric. The other possibility is that the incoming radiation is not a function of θ

and φ. So, any incoming radiation is emitted equally in all directions. In this lecture, we have

focused on properties of blackbody radiation and the properties of real surfaces. We define

emissivity and absorptivity at its most basic level. Then we involved  Kirchhoff’s law, which

says that the directional spectral emissivity equals directional spectral absorptivity. And we

went  on to  show under  what  conditions  one can assume equality between hemispherical

spectral emissivity and hemispherical absorptivity. We saw that there are only equal under

very special  conditions.  We will  continue this discussion further because there is a lot of

misunderstanding about, how to invoke  Kirchhoff’s law. So, we will spend some more time

highlighting the misuse of  Kirchhoff’s law.


