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In the last lecture,  we looked at  Radiative Equilibrium in the presence of a gas which is

absorbing.  We solved  this  problems  within  two  parallel  plates.  We first  looked  at  the

exponential kernel approximation and ensured that this gives fairly accurate results for both

radiative flux as well  as the temperature distribution.  Then we look at  the optically thick

limit, and along with that we applied the radiation slip conditions. And again we obtained

results which were consistent with the kernel approximation and the accurate solution. And

the result we got was that radiative flux was equal to 1 plus 3-4.

This result is a very useful result. This is between black plates and this result shows that

where K 0 is the absorption coefficient times the length of the gap between two plates.  This

show that in the optically thick limit, this quantity becomes very large and the flux tends to 0.

In the optical thin limit is quantity is 0, so we  are back to original result we had obtained

earlier, for heat transfer between two plates without any absorbing gas in between. Now,

today we want to extend the result between two parallel plates which are not black.
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So, let us see how we extend it. If we call the result for heat transfer between two plates

which is not black is that q of R is B 1 minus B 2. This is a general result obtained already in

kernel  approximation.  We want  to  now  write  explicitly  in  terms  of  T  1,  T  2  the  two

temperatures  and  the  emissivity  of  the  surfaces.  To do  that  we  recognize  the  following

radiative heat flux at the bottom wall is radiosity minus emission from the bottom surface

minus two-third.  Similarly at the top wall; these are from the flux condition.

  In radiate heat transfer we cannot assert that the temperature of the gas, next to the wall will

be same as the wall temperature. That is we must permit the fact that, there is a slip between

the gas temperature and the wall temperature. This is not normally invoked in conduction or

convection heat transfer studies. In radiation we have to invoke it, because unless it is in the

optical thick region, generally there is temperature difference between the gas layers next to

the wall and the wall temperature.

Although,  the  temperature  is  not  continuous  between  the  gas  and  the  wall,  fluxes  are

continuous. Fluxes are continuous, because at discontinuous flux implies a violation of the

first law thermo dynamics. Because if the flux is discontinuous then the divergence of the

flux,  will  become  infinity.  So,  for  example  in  our  case,  it  will  be  infinity  if,  F  is  not

continuous. Therefore, we always invoke the continuity of flux and this result here is from

this condition. Now, we also know that under radiative equilibrium this quantity is related to

the radiative flux.
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We can rewrite this above expression as, q R. There for we get this result that radiative flux 1

plus three-fourth. This is already obtained by correct approximation we are re deriving it for

the thick limit. Question is what is B 1 B 2. Now this if it you call from the radiative trans

enclosures flux on the K surfaces, epsilon K by 1 minus epsilon K.

This is derived as a general relationship in flux radiosity and the wall temperature. You use

this result for the two walls. We can write this as B K equal to sigma T K 2 to the power of 4,

minus 1 minus epsilon K epsilon K q K. This you applied to the two walls. This we have

written as q of bottom wall to wall and if we recall the fact in relation to these two results

which we have in front.
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We now calculate, what is B 1 minus B 2 from this equation. And this comes out as, plus 1 by

epsilon 2 minus 1. Now, here we use a fact at under radiative equilibrium, q of 0 is q of kappa

0. Now if you use the result that B 1 minus B 2 is nothing but q R into or q 0 into one plus

three-fourth kappa 0 is equal to sigma minus q 0. Now we take all the q 0 to one side and

again see that one 1 will disappear another 1 will remain.  We will have q 0 into 1 plus

epsilon 1, plus 1 plus epsilon 2 minus 1, from these terms plus kappa 0 equals. We get the

final result which is q 0 or q R general, because q is the constant.

So, q R finally, which is same as q of 0 equal to q of kappa 0 is sigma. Now, this result is a

general result and notice that when kappa 0 goes to 0, that is a thin limit. We recover old

result for radiative heat transfer between parallel plates. And notice that in the limits is kappa

0 is  become very large.  If,  we neglect  these  terms  then  the  emissivity  of  the  two walls

becomes irrelevant.  In the optically thick limit the gas hardly sees the two walls and hence

the emissivity of two walls is totally irrelevant.

This  result  is  a  nice  result  clearly  showing,  when  should  we  include  gas  radiation.  For

example, if you look at the insulation use commonly, made by large reflective layers, 100s of

them. The emissivity of this surface may be 0.01. We can see that this will add up to 200.

Unless the radiation optical depth of the gases between the reflecting layers is very large; this

term is not important. The gas radiation becomes important only if, the two walls of black

and so. This from is one and this quantity, let us say is as highest ten or so. Otherwise, the gas



between two parallel plates is not important if the emissivity in the two walls is very, very

small and this is best understood in terms of an electrical analogy.
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We can see clearly that there are two surface We can call this now a gas resistance is also has

geometrical  this is surfaces resistance; this is also a surface resistance. We see that if the

optical thickness of the layer is very, very large, then this terminate this two not important.

On the other hand if the emissivity’s of very, very small, the surface resistance dominates.

The geometric, factor and the gas distance is not relevant.

This kind of electrical analogy is useful to understand which particular mechanism offers

maximum resistance  to  heat  transfer.   We should  be  focusing  on  the  others  or  not  that

important.  This  is  a  good  example  of  understanding  the  interaction  between  surfaces

possesses like reflection, emission, absorption. And what is happening in the gas between the

surfaces and how under certain condition surface absorption may be more important, while in

other situation in gas abortion may be very important.

So far we have dealt with radiative equilibrium. Now, radiative equilibrium is a special case

occurs if radiation the only process that is occurring another process or not important. But as

most of us realize in any real world problem, radiation occurs in conjunction with conduction

convection and other process. So, radiative equilibrium is not something we encounter very

commonly. So, we have to deal with problems were radiative equilibrium is not valid.
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 We will take of a simple example of a situation where radiation is not the equilibrium. And

this example although very simply stated has relevance to furnaces. Imagine a furnace in

which heat is released at S dot watts per milli cube by combustion. Imagine a furnace where

combustion is  occurring,  heat is released at  the rate of S dot watts  per meter cube.   For

convenience  we   will  assume  the  two  walls  are  the  heat  sinks.  They  are  at  the  same

temperature  T watt;  is  called  them T watt.  We have  two walls  at  the  same temperature

removing the heat of all the furnaces where the heat generated.

Now, this is the very simple representation of a real furnace, where heat is a removed for

combustion and the walls are the places were heat is removed by flowing water which is your

may be your boiler may be the water wall of a power plant furnace or a super heater or some

other place. This is a classic example of a standard problem in furnace or boiler design.  The

basic formulation is that the rate of change of radiative heat flux, has to be balanced by S dot

this is the formulation. This is a case where radiative equilibrium is not satisfied, because the

divergence  of  radiative  flux  is  not  0;  it  is  balanced  exactly  by  the  heat  released  by

combustion.

Now this problem can easily be solved. First you assume that we can write everything in

terms of an optical depth kappa, which in this case is 0 to x, a d x where a is the  absorption

coefficient. This can be written as d q R d x plus S dot by a is equal 0. Where a is the



absorption coefficient of the gas. This we can integrate immediately to get q R is equal to S

dot by a into kappa plus a constant.

Notice that in contrast to the previous examples where we dealt with radiative equilibrium.

Here, q R is a not a constant, but varies with the optical depth. Now, we need information

about  constant  and this  is  most  readily obtained by realizing the fact,  that  the total  heat

released in the combustion chamber has to be removed from the two walls. By symmetry the

two wall flux q R 0 and q R kappa 0 have to be equal.
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 The total heat released, S dot into L has to be released in old combustion chamber has be

equal to heat removed by the two walls. That is one requirement and by substituting values of

q R at the two ends, you get this as 2 C plus S dot a kappa 0. Kappa 0 where is nothing but 0

to L a d x. And from there we can obtain a value of c.

  Finally, we get expression for q R as nothing but S dot by a kappa minus kappa 0 by two.

We can see that at kappa equals kappa 0 by 2 q R has to 0.  This is because the heat released

from the combustion chamber has to go out to both the walls. So, at the center of the walls q

R as to be 0 and that is emerging here clearly in the expression.
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Now, we have to solve for the temperature profile.  Our expression is q R S dot by a, kappa

minus kappa 0 by 2, this be same as what we did in the previous two lectures. Right hand side

is essentially same as before, except that we will define the phi. So, phi we should recall is to

be defined this case, because the two walls are at the same temperature. We are going to

define phi as T 1 to the power of 4 minus T wall to the power of 4 divided by S dot by a. This

is the definition which will ensure that the temperature profile as a same, structure what we

did earlier. Here, the basic driving force is the heat release of the wall. 

Now, we can differentiate this equation twice like before. This will come from the Leibniz’s

rule for the limits. We realize the fact that this term and this term must similar except for the

terms. We multiply this equation   and subtract the two integral cancel out and will be left

with the very simple differential equation.
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This  simple  equation  has  some  similarities  to  the  equations  solved  for  the  radiative

equilibrium case, we integrate the equation we get, because a constant. Now, this constant is

very important, because notice that this Phi is nothing but sigma T to the power of 4 minus, T

wall to the power of the 4 divided by, S dot by a and so let me just complete this equation.

We notice that at phi of 0 otherwise phi of kappa 0, extract phi 0 first. This will be sigma T

four at the gas of the wall minus of all temperature. Now, notice that this not equal to 0,

because this  is  slip.  Because,  the temperature of the gas at  the wall  is  not equal to  wall

temperature. This slip has to be calculated. Now, the accurate we have doing this should be

substitute this back, in the integral equation and satisfied at one locations C kappa equals 0

we can calculate C. We will do a different way; we will use a radiation slip condition.



(Refer Slide Time: 29:06)

This is a short cut easy to do and this we recall from the last lecture. This is what we obtained

by Taylor series expansion for radiation slip. In our case we know these two quantities. We

can calculate the radiation slip as being equal to one-fourth kappa 0 plus 3 by 8. If we deduce

the kernel approximation and substitute this is almost one-third.
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The final expression for radiative heat transfer gas will be. This result the general result you

got here and that is our interesting features which we want to recognize. We can see that both

at kappa call 0 in kappa 0 that is a slip, which is can be quiet large and notice that in this case



this slip never goes to 0. This slip is always that it is very small when you are in thin limit,

but as you go to thick limit this quantity does not go to 0. So, whenever there is radiation heat

transfer this slip exists always. This is first important thing we see.

 The other condition is in the optically thick limit this quantity dominates over this quantity

and again there slip can be quite large.  This results defers from the earlier result we got for

the radiative equilibrium in which case we got, the condition that radiative flux was there

were kappa 0. We saw that kappa is very large heat flux goes 0; heat cannot go to 0, because

heat is being continuously generated inside the system and this heat has to transferred out. So,

at no time even the thick limit, flux cannot go to 0. We can easily see that S dot by L is the

heat is generated and so half of it has to go this way, half of it has to go from the bottom

plate.

This is a requirement and because of that there has to be a temperature gradient between the

center and the wall and this temperature gradient will go on increasing as you go to higher

optical thickness. That is why the, this slip we can see is proportional to this one as a  we can

take the case where k 0 is half.
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T is center line and this will come out as, this K 0 by 2. We get K 0 square by 2. This is all

can retain in a more useful way, as one-forth k 0 square, 3 k 0 is square it will be 3 by 4 plus

k 0 3 by 8.  This what shows clearly that a center temperature goes on increasing, as the

optical techniques is increases, because the gas must get it off the heat generated inside the



furnace  continuously;  whatever  the  optical  thickness.   Hence  the  temperature  reference

between the center  line and the wall  has go on increasing.  Other interesting limit  is  k 0

tending  to  0  the  thin  limit.  That  we  see  that  this  center  line  temperature  minus  wall

temperature becomes nothing but 3 by 2 here.

This is the in a sense the minimum temperature difference that, has to be maintained between

the center of the furnace and the wall even in the thin limit. This result is rather interesting,

because the temperature being proportion to 3 by 8 into S dot by a; and of course has limit a

goes to 0 the different temperature becomes quite large.  Again one says that the temperature

difference between the center and the wall is proportional to the heat released which is not

surprising and inversely promotional to the absorption coefficient, which might look a bit the

surprising except that once you realize a fact that the efficiency of radiative heat transfer from

the center line to the wall is partly determined by the absorption coefficient.

This absorption coefficient is quiet small then the efficiency of transfer becomes quite poor.

Hence we need what are the difference between the center line and the wall. So, from these

exercises we have understood the role of internal heating as in this case or the role of wall

emissivity which we saw earlier in the lecture. We have done two problems in this simple as

gray gas case.

One involving radiative equilibrium and the other involving heat release in enclosure which

has to be removed from the gas by radiative heat transfer to the wall.  In both them we saw

the simple analytical solution provided useful information, about the nature of interaction

between radiation and the boundary condition.

Now, we took up the gray gas case first, because that is a case most convenient in terms of

solving  a  problem.  We realize  a  fact  that  the  gray  gas  approximation  is  not  a  useful

approximation for radiative transfer and gases in many real life situations, because most gases

which absorb and emit radiation not gray gas. In most gases the absorption coefficient vary

substantially with wave length.
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This character of the absorption coefficient; very strong variation, with that is a certain wave

length the gas can completely be absorbing and in  certain other  wave lengths  the gas is

strongly absorbed. So, for such a situation in rather difficult to define an appropriate mean

absorption coefficient to solve the problem.  It is better to recognize how to solve problem

which are not gray.

 Now we look up what we would call as a simple non gray model. The simplest non gray

model involves x would be fact that a lambda is not a constant. We take a very simple case a

lambda is different from 0 in narrow range of wave length, lambda 1 to lambda 2.  Essentially

what we say is a lambda is 0, for lambda below lambda 1, a lambda is 0 also for lambda

greater  than  lambda 2 and is  equal  to  constant  value for  lambda between lambda 1 and

lambda 2.

There is a narrow region in which the gas is absorbing radiation and outside this region, the

gas does not absorb radiation. This is of course very crude representation of the real world,

but  it  is  a  good  teaching  tool  to  explain,  how  we  have  taken  to  account  the  non  gray

characteristic of gas radiation.
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When we calculate the total radiative flux which involves integral over all wave length of the

spectral radiative flux. We divide it into three parts; in the first and the last part there is no

interaction with gas. We can easily write this as sigma T 1 to the power of 4 minus T 2 the

power of 4 minus integral over this wave length where radiation is very important.

Essentially we have done the work that involved the integration. This term is the term which

is always easy to calculate involves no gas radiation, but this term is very complicated the

second term, because we have to allow for the fact that radiative flux will vary in a said

narrow range in this wave length. So, now with this problem, we defined the non dependent

temperature somewhat differently, because not gray gas.

We take the temperature of the gas in the wave length range of interest to us that is lambda 1

and lambda 2. These bars are averages over the wave length in which gas absorb radiation.

So, once we have done this, we can rewrite the radiative flux divergence terms in a simplified

way. 
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We now write down the parameter called D, which represents the radiative flux in the wave

length range where the gas absorbs and emits radiation. This can be thought of as the amount

of radiation exchange in the absence of a gas, between surface 1 and surface 2 in this wave

length interval delta lambda, compared to the radiation that is transferred from 1 to 2 at all

wave  length.  This  crudely  a  measure  of  the  radiation  lying  in  the  lambda  order  range

compared to the total.

 We should recognize the fact that once we treat the gas as gray this quantity becomes 1. For a

gray gas and for no gas.  With that we write down the expression for radiative flux and as

before we define q star as q R. This is and definition between two parallel black plates and

with that we get the expression for q star as 1 minus, D plus 2 D E 3 of kappa plus D. So,

what you see here is that, when you put D equals 1 that corresponding gray gas this terms of

solved this term becomes two, one and one this is identical to the gray gas expression that we

have to use earlier.

 Extending the gray gas to non gray gas, it is fairly simple as long as you have talked about

only one absorption brand of the gas and that interval is defined through the factor D. If D

equals to 0 there is no gas. So, q star is 1; that we all know. In the absence of gas between the

two plates the ray transfer between the two black plates is nothing but sigma T 1 T 2 to the

power of 4; that is captured here.  The second thing is  this term becomes 0, this is two,  this

is one.  We get back the equation for a gray gas. This is a generalization of the gray gas



approximation and again we can make the exponential kernel approximation same way and

solve the equation differentiate twice everything is identical. 
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This expression again we want to remind you is similar to the gray gas expression. We put D

equals to 1, once more you recover the gray gas limit. So this stage we see that the gray gas

approximation is built in to the solution. 

 The general expression for phi is, we have two unknowns they are constant and they are q

star and D.  Once that relation between C and q star D is known we have the complete

solution of the problem. We can show that q star is 1 minus D.  This is quite similar to what

recovered a gray gas where D was equal to 1. There is a slight difference here which we have

to be very careful about. When D goes 0 of course q star is one we know that result. Now this

is a very important result and we would like to understand and explain result  we obtain

earlier for the gray gas and the result that we obtained can be compared in various ways.
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We will put down the temperature distribution. That is explained for temperature profile and

notice  that  this  result  is  in  depended  of  D  that  parameter  which  defines  the  fraction  of

radiation  lying  between  lambda  and  lambda  2  that  does  not  expression  will  come  this

equation. For of course the q star the radiate flux depends on D and notice that in the limit as

kappa 0 is much, much less than 1; phi of kappa becomes half and that is most is usually you

seen and the drop this term out and drop this term out. Phi equals 0, because we write this as

half minus three-fourth kappa and be here we do this here.

We can see this result is that the as kappa is going be very large; this is goes to 0, this term

drops out and as kappa 0 is very large, this goes to 0, this is half.  The gas temperature we

saw earlier is like this two slips and when kappa 0 becomes very large; we have phi of kappa,

is 1 minus kappa by kappa 0. We can see that this is linear distribution which we saw earlier

and it is more like that, but there we between two walls that is bound occur and what we do is

kappa is becomes very, very large; this terms drops out this is gone kappa, this term drops

out. This expression can be then used similar to what we had for gray gas. The temperature

distribution between the two walls does not depend on whether is gray or non gray but the

flux expression was very different. It is flux expression which gives it some unusual, features

which are different in the gray case non gray case.
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The key point is that as kappa tends to infinity q star now tends to 1 minus D. This is very

important result and we will take this up in the next lecture.


