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In the last lecture, we looked at gray gas in radiative equilibrium. In one dimensional problem

in radiative equilibrium, the radiative flux is a constant. We need to find the temperature

distribution  in  the  gas  under  this  condition.  We started  with  the  general  radiative  flux

equation,  which  in  this  case  was  the  following  which  we  had  already  discussed.  The

challenge we faced in this kind of problem was the unknown gas temperature was inside the

integral, and hence pose this special difficulty in the solution. The third and the fourth terms

in this equation are terms, in which the unknown occurs inside the integral. 

Today, we can solve this problem numerically, We can start with some initial gas of the gas

temperature variation, and then integrate this, get the value of q r if the value of q r is not

what is not a constant, in radiative equilibrium then you alter the assumed profile and We can

do this iteratively, very easily on the computer until you get the answer you want. Now, the

purpose of these lectures is not to teach you how to solve the numerically, but to come up

with some simple solutions to these equations which provide some insight in to the nature of

the solution. 



What we did was,  we look at  this  equation and since our great  difficulty was these two

integrals here, we went about the task of finding a way to eliminate these terms We realize

that if you replace this exponential integral functions by exponentials, then we know then

exponential on differentiation repeats itself. If you differentiate this twice, the exponential

will repeat itself and then you subtract the equation that is obtained on differentiation from

this equation, then we can eliminate these two terms. 
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So, briefly if you recall we replaced E 2 of x as 3 by 4 e to minus 3 by 2 x and E 3 of x by

half  e  to  minus 3 by 2 x.  We pointed out  that  purpose of this  kind of  approximation is

primarily to ensure that the terms, which like E 3, which are outside the interval they should

have a correct value at x equal to 0 at x equals 0 E 3 is half. This is correct and this slope

there is chosen such that, the area under curve is approximately right and this can be shown.
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This  is  the  example  showing,  how  good  the  approximation  of  the  exponential  integral

function, when you replace it exponentially is. We can see that in the case of E 3, we are able

to fit the complex function quite well, for values of this case t here 0 to 1.5. In the case of E 2

function we are not doing so well at the origin and not so well in these regions. But remember

E 2 appears inside the integral. What is important is not the getting of the E 2 correctly, but

the integral of E 2 correctly and notice here that E 2 has been so approximated that from 0 to

around 0.25, E 2 is under estimated and from 0.25 to around 1 is over estimated. 

We take the area under curve between 0 and 1.5 it will be same of both these functions. These

function have been chosen very carefully after many trial and errors such that the function E

3, which appears outside the integration is represented quite well over the entire region. In the

case of function E 2 your only ensuring that the integral of the function is accurate. So, with

those approximations, that is given here we got this expression for q star.
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If we recall q star is of the non dimensional radiative flux. We also had a non dimensional

temperature for the gas, which was the temperature of the gas minus radiosity surface two by

1 minus  2.  So,  with  these non number  representation and with these  approximation,  our

expressions for q star was e to the power of minus 3 by 2 kappa plus 3 by 2, 0 to kappa phi of

kappa star e to the power minus 3 by 2, kappa minus kappa star d kappa, star minus 3 by 2

kappa  to  kappa  0,  non  dimensional  temperature  kappa  minus  kappa.  Notice  that  this

arguments here are always positive so that this always represents the d k term. 

This is the equation now we are going to solve the approximate equation after replacing the,

exponential integral function by exponentials. This expression was differentiated twice and

since  we  are  dealing  with  radiative  equilibrium,  quantity  q  star  is  a  constant  so  on

differentiation goes to 0. So after two differentiation you will get the following expression. 
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We will get 0 equal to minus plus 9 by 4 e to the power minus 3 by 2 kappa, this is after two

differentiation.  This  is  from Leibnitz’s  rule  because  the  limits  of  the  integral  are  not  a

constant, but functions of kappa, then we have 27 by 8, 0 to kappa term and minus 27 by 8

kappa to kappa 0 term. These two integrals are there, but they are identical to these two

integrals except for the constants in front. 

We take this equation multiplied by 9 by 4 then these two will be identical to these two. We

subtract this equation that equation so when you do that you get a very simple expression,

which is minus 9 by 4 q star.  Essentially we have managed to convert integral equation to a

differential equation. This is a major achievement because all of us have learnt techniques to

solve the different equation, in our earlier courses. This is easily solved.

 The conversion of the integral differential equation is very convenient because this can be

solved very easily. It is first order ordinary equation. This becomes is equal to minus 3 by 4 q

star is of constant because we have radiative equilibrium, where that is into kappa plus a

constant.  We have got  the  final  result  for  the  temperature  distribution  the  gas,  which  is

linearly proportional to kappa they will length coordinate, and there are two constants q star

and c. 

Now, in a differential equation if we want to obtain the value of the constant you have to use

boundary  condition.  But  recall  that  we  started  with  the  integral  equation.  The  integral

equation  does  not  require  boundary  conditions,  boundary  conditions  are  built  into  the



equation. So, when we convert a integral equation to a differential equation, all we can do is

to ensure that satisfies this differential equation at two locations, in the region of interest to

you. 

For example, we can ensure that you satisfy the equation at kappa equals 0 or kappa equal to

kappa 0. This equation now we can write down at kappa equal 0,  this term drops out. So, 0 to

kappa 0 that is one expression. 
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We say when  kappa equals 0 expression of q star becomes 1 kappa at 0, 1 plus 3 by 2 minus

3 by 2 first term will go away kappa is 0. Second term is 0 to kappa 0 and phi of kappa over

then minus 3, 4 q star plus c into e to the power of minus 3 by 2 into kappa star minus kappa,

d kappa star. Kappa is 0 here so that term will also drop out minus 3 by 2 kappa star. This is

what we have to now integrate now integrating this is not very difficult; we have to integrate

by parts. 

This equation as to be integrated by parts and you get one equation, we can say at kappa

equals kappa 0 then next one, will give you q star equal to minus 3 by 2 kappa 0 plus 3 by 2,

0 2 kappa 0 minus 3, 4 kappa star q star plus c e to the power of minus 3 by 2 kappa 0 minus

kappa star d kappa star. We have two equations here two equations in two unknowns that is q

star and c, we can solve for it that is how values. We can integrate by parts and finish this

integration.



We have two equations between q star and c you solve for it and if you do it, we will get the

following result. Q star will be equal to 1 by 1 plus 3/ 4th of kappa 0. This is a number and c

will be 1 minus q star by 2. We have got the complete solution to the equation, we know what

q star is We know what the c is so the final expression for the temperature distribution of the

gas.
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The temperature distribution the gas is nothing but half plus 3, 4th kappa 0 minus kappa

divided by 1 plus 3, 4th kappa 0. This is a final expression for this temperature distribution

and we notice that there are several interesting features. One get advantage of getting such an

analytical  solution  is  we  can  prohibit  and  understand  what  it  means.  For  example,

temperature at the lower wall phi equals 0 and kappa equals 0 gives you half plus 3/ 4th

kappa 0 by 1 plus 3, 4th kappa 0. 

Now, notice two features here that kappa 0 much less than 1 thin limit, phi of 0 is equal to

half and for kappa 0 much, much greater than one the thick limit phi 0 equals 1 and what is

phi 0, if we recall the definition of phi that we can came up originally. So, phi of 0 will be

sigma T to the power of 4 minus at kappa is equal to 0 minus B 2 by B 1 minus B 2. Now, if

you look at the expression we may not see much use of it, but imagine the two plates are

black.
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The two plates at the top and bottom both have emissivity equal to 1 then phi will become

sigma T to the power of 4 minus sigma T to the power of 4. This is will enable us to interpret

the results much more easily. We will take this case for the present purpose two parallel black

plates with the gas in between and the question, we want to ask is what is the value of phi of

0. Phi of 0 was found to be equal to half for kappa 0, much, much less than 1. First we must

assume kappa was half when phi 0 is much greater than 1 we will get is equal to 1.

This result  we got this now, what is the meaning of that because now phi represents the

temperatures. This is how kappa is measured so this is kappa equals 0 and this  is kappa

equals kappa 0. Let us now write this experiment more clearly here the kappa is measured

from the lower plate here. This is kappa 0 this is kappa this is kappa of 0 here and kappa

equals kappa 0 there and so when kappa equals 0 very small value of the optical depth, you

find that T 4 of 0 this is equal to half. 

It was T 1 to the power of 4 plus T to the power of 4 by 2. The temperature of the gas at the

wall  here is not equal to the wall temperature. That is what is known as slip. There is a

temperature discontinuity. This we had briefly mentioned last time let us again point out.
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So, kappa 0 is much, much less than 1 the temperature distribution of the gas between the two

plates here this is T 2 this is T 1 let us say so it is more like this. This value is T 1 to the

power of 4 plus T 2 to the power of 4 by 2. The gas is isothermal and the temperature of the

gas is not equal to the wall temperature at either on the top, or at the bottom. There are large

temperature discontinuity in both plates and this discontinuity or slip is a very important

feature  of  radiative  transferring  gasses.  This  is  not  seen  that  frequently,  in  the  case  of

conduction heat transfer in gasses, because we are there dealing with situations, where the

molecular mean free path is small compared to length scale. That this kind of slip is not seen,

but as we as we recall in the thermal flask problem, we know thermal flask between the two

wall the air is almost evacuated. 

The mean free path of the molecules between the two walls is quite large. The molecules do

not collide to each other they more often collide with the two walls. In that case also we will

find a slip and the two walls.  But  in a normal situation encountered when the air  is  not

evacuated, when we are dealing with atmospheric conditions in this room where the mean

free path is very small. 

In that situation where the optical depth of the photon is very large, the photon mean free path

is very small compared to the length scale of interest and in such a case if you recall phi of 0,

for large kappa 0 is equal to 1 and phi of kappa 0 is equal to 0 for kappa 0 much greater than

1. What is happening in this case is if we now draw temperature distribution, in this limit here

is temperature T 2 here is temperature T 1, it will be varying linearly and there will be no slip,

no discontinuity because in this case the photon mean free path is so small, compared to the



length scale that the phenomenon is similar to conduction heat transfer, that you encounter it

normally in engineering. 

We see a continuous temperature profile. What we saw was that the temperature profile due

to radiation heat transfer in the radiative equilibrium, does very linearly with the distance

there if you already look at T to the power of 4, and not T and in the third limit, there is large

discontinuities on either side those are slip and in the thick limit there is no discontinuity. So,

to make this point even more clear we will draw it  once more.
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So, here is the top wall and the bottom wall here it is T 2 here it is T 1. We want to draw 3

sketches, one is in the optically thin limit, other is in the optically think limit and the next one

is in the intermediate conditions like this. This is thin, this is thick for very small kappa 0, this

is for very large kappa 0 and this is kappa 0 of the order 1.

We clearly see that the shape of the functions depends very much upon the thickness, the

absorption coefficient of the gas and whether, the mean free path of the photon is very small a

very large compared to the distance between the plates, but they key point to remember is that

there is always a slip accept at the thick limit. We have to redraw the, this sketch for the

intermediate case it will be always a slip here and it will go like this and there will be a slip

here. There will be slip in these two cases only times no slip is when we had the thick limit.

In normal situations in the radiative heat transfers slip is always there.



Now, the slip may vary with the optic thickness of the medium and only in the thick limit that

the slip tends to 0, but does not reach till very large optical thickness. The second important

result which we got from our analytical solution is a fact that the non dimensional heat flux,

goes as 1 plus 1, 3 by 4 kappa 0. This result tells you that the heat flux goes to 0 at very large

optical depth that is not surprising. The gas is highly absorbing hardly any heat is transferred

from plate 1 to plate 2, and in the limit of optical thin this term is very small. All the radiation

leaving wall one reaches wall two. We have two limits that come very clearly. Now, let us go

back and look at these results in the light.
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This is the result now showing the between two black walls, the temperature distribution for

various optical depth kappa by kappa 0 here, and various values of kappa 0 and this is called

kappa D in this paper, and this is a numerical solution then on the computer, not analytical

solution. We can see clearly that in the optically thin limit the temperature hardly varies. In

the optically thick limit it varies linearly in T to the power of 4 and in the thin limit there is a

discontinuity here, in the thick limit there is no discontinuity. So, all that is visible very nicely

in this picture or the remaining solution. 
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 The next picture shows the non dimensional heat flux, written to parallel plates which are

black as for the optical thickness kappa 0.  If we look at the optical thickness up to 3, we can

see that the heat flux goes on deceasing, but does not decrease rapidly it goes 1 over 1 plus

kappa. Now, let us see how both the results shown here on the slide, are exact numerical

solutions obtained on the computer and today, these can be done very easily with great speed.
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Now, let us compare the result that we obtain which is given below. Approximate result we

got from the exponential kernel approximation, with the exact result obtained by numerical



integration. It is approximation result given below exact result for various optical depth. We

notice that these two results are very close. Now, at optical depth of point 2, we can see that

the change difference is about point this is 0.85 this is 0.87, 0.02 and here the difference is

0.006. 

One can say with great confidence that the approximate solution is pretty accurate and the

largest  error  is  of  order  of  somewhere  3  percent.  In  many  engineering  applications  the

technique,  gives  us  the  accuracy of  3  percent.  We are  satisfied  with  errors  of  3  percent

because one of the challenges, we face in solving radiation problem is the fact that the actual

data required to calculate optical depth. For example, the absorption coefficient or the wall

emissivity are not known very accurately. 

 One of the biggest challenges in solving real world problems in engineering, in radiation heat

transfer is the fact that the data that is available to you is not that accurate. That is why very

often one is happy if an approximate method gives us the result close to the exact within an

accuracy of less than 5 percent. This example is going go example where we are quite happy

with the accuracy of the solution and this is the kernel approximation, which we discussed

little early.
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 This  is  a  comparison  between  the  exact  solution  in  continuous  lines  and  the  kernel

approximation, which is dotted line and once more we can clearly see that the approximation

using kernel approximation is very close to the numerical solution at high optical depth. But



as the optical depth decreases we can see some error is creeping in, in the case of temperature

profile.
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 If  we go further and look at the non temperature flux, we can see that it is pretty accurate.

This is the pictorial depiction of the table we just now saw and indicating that at most optical

depth, the kernel approximation slightly over estimates the exact solution, but if you go to

extreme high optical depth the results are very close to being exact. Now, let us go back to the

solution we have here.  We are solving this  problem by kernel approximation and in this

example  of  the  radiation  between  two  parallel  plates  with  gas,  this  is  a  one  dimension

problem. 

We manage to  get  the solution very easily. Now, the question we ask if  there are  many

examples in practice in which, we cannot invoke kernel approximation and get a right answer.

For example, is that of 2 parallel plates suppose, we had 2 cylinders or 2 spheres then of

course.
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The 2 cylinders with gas in between this can be a cylinder or a sphere. In such cases the

kernel approximation is not going to simplify the problem substantially. We would like to

know whether there are other ways of solving the problem, which avoid solving the full

integral equation that we encounter in radiation transfer.  One approach that can be attempted

is why not solve the equation in the thick limit. 
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In the thick limit we saw that q r minus 4 by 3 sigma d to the power of 4 by d kappa. The

question now is whether we can solve this problem in radiative equilibrium, and get result,



which are similar to what we obtain by the kernel approximation.  We integrate this equation

under radiative equilibrium. This equation is very simple and we get T to the power of 4 a

function of kappa is equal to minus 3 by 4 sigma q r the constant in radiative equilibrium,

linearly because of this kappa because the constant. 

This is a result  we get by indicating that equation in thick limit.  We apply the boundary

conditions, but applying boundary condition is a challenge here because we know that there

is a slip. Because there is a slip at the walls the top wall is at T 2 bottom wall is at T 1 black

plates. In this case the questions is that we cannot say that this is equal to T 1, we cannot say

at the top these two are not possible because of slip. Since, we do not know the temperature

of the gas near the top wall or the temperature of the gas at the bottom wall, we cannot apply

the boundary conditions. 
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Therefore,  we need expressions for radiation slip at  each wall.  Somebody has to give an

expression of how each of these varies. These 2 slip values have to be obtained from some

other source. We will show that it is possible because what you will do is, we will look at the

radiative flux at the bottom wall, which from the basic equation of radiation heat transfer.
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This  is  the expression  which  is  similar  to  what  we started out,  when solving the kernel

approximation, but here we are not making any kernel approximity we are solving the exact

equation.  Now,  let  us  invoke  the  fact  that  you  are  in  the  thick  limit  We expand  the

temperature inside the integral, in a tailor series around the bottom wall. 

This will be nothing but derivative of this at 0 plus second derivative at 0 and kappa star

square. This can be plugged into this integral and remember these 3 quantities are not varying

only this  varying.  We can  integrate  this  equation  fairly  easily  by putting  inside.  So,  on

integration you get the following expression for radiative flux to the bottom wall.
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This the first term, which is then changed the second term and this two-third comes from the

envelope half. 
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 We are letting this limit go to infinity and so because this cover is very large you got infinity,

then this thing comes out. This kappa star one quantity of intensive is 0 to infinity kappa star

E 2 of kappa star, E kappa star this can be shown to be equal to one-third and when we

substitute this here we will get only 0 to infinity E 2 of kappa star d kappa star, this equals 3

and this will give us R. 

These are the two expressions that we will be utilizing and remember that in this case of

radiative equilibrium, this term anyway is 0, this is 0 for radiative equilibrium. That term is

not important in this example, but there are other examples where you will have to worry

about that. If we put all this in all the numbers in there we are getting what is given here as

expression for q r of 0. We also know that from the basic equation for optically thick limit. 
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We also know that q r of 0 is also minus 4 by 3 sigma d to the power of 4 by d kappa at kappa

equal, this you already know and so we combine out this is that so finally, we get expression

which is saying that the temperatures slip at the bottom wall is equal to minus two-third, this

is 0 because of radiative equilibrium. So, essentially we take this two-thirds here on this side

and that is my four-third, this is my two-third. 

Similarly, apply the same thing to the top wall, we get the following expression for the slip,

but this time it will be plus. Now, what we do is we subtract let us call this equation one and

equation two subtract 1 minus 2, and we will get minus four-third slope and this slope your

constant and minus four-third sigma is nothing but your radiative flux. 
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The final expression you are going to get for the radiative slip condition is this and from the

basic integration of the optical thick limit is also known, it is minus three-fourth q r into

kappa 0 is equal to q r. We can take this q r to other side so we will get q r radiative flux is

equal to sigma T 1 to the power of 4 minus T 2 the power of 4 by 1 plus three-fourth kappa 0.

What is amazing is that this result we are which we have obtained only for the optically thick

limit, but by using this slip conditions this result is identical to the result obtained from the

kernel approximation, which is valid both in the thick and the thin limit and also intermediate

cases.

Between two parallel plates you do a derivation for the radiative flux, using either the kernel

approximation or using the thick limit and the radiative slip conditions, answer is same. Now,

that is partly an accident because this number three-fourth derivation here in this derivation

you may not always get in the case of the kernel approximation because that very much

depends, upon what is the approximation you are going to use for the exponential integral

functions. 

We have to use e to the power of minus three-fourth x and that is how we got three-fourth, if

you had used root 3 which is preferred by some other people, we will get root 3 here. We can

see  that  there  are  some variations  here,  and those  variations  really  depends  upon which

approximation we use for the exponential integral functions, but the results that is really of

relevance is that in this specific problem whether, we use the exponent kernel approximation

or take the thick limit and apply the boundary conditions, using slip conditions then we get



the expression for q r between 2 flat plates, which is identical to what you would get to the

kernel approximations.

We  are getting results in two different ways, one is already from thick limit applying the slip

condition the other case plotting kernel approximation, the answer is same and that is very,

very useful. But it is important to recognize that this result is identical only because of these

certain approximation, we made in the case of the kernel approximation. To ensure that we

realize that results are sensitive to the approximation used we want to show, how in general

we can convert the integral equation that you obtained, in the radiative that is this equation in

general.
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This is one which we started out today. We want to do is convert make a general conversion

of  this  integral  equation  to  differential  equation,  and  if  you  have  followed  the  kernel

approximation that we adopted, we can see this can be done in general. What we do here is

we assume that E 2 of x is a e to the minus b x and to be consistent, we assume that E 3 of x

is a by b of minus d x. 

We are doing that because we want to ensure that d E 3 d x is equal to minus E 2 of x that we

must at least try the mathematical identity, the relation between E 3 and E 2 must satisfy. If

we assume E 3 as a by b is minus a b x and we differentiate this x we will get this quantity. If

we use this approximation replacing the exponential integral function by exponentials, if we



do that and substitute it into the equation and differentiate twice, like before and subtract we

will get the following expressions.
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This is a very useful result, which shows that the original integral equation for q r can be

converted to a differential equation for q r. In many situations this equation is much more

easy to solve, then the original integral equation. The only point we want to make is that we

look at radiative equilibrium, in which case q r is the constant this term drops out. We will get

a expression for q r in this case, this term drops out as minus 4 a by b square d by d kappa

sigma T to the power of 4.

This is the Rosseland diffusion limit, but notice that depending on what a and b use. For

example, we had used previously a as three-fourths and b as 3 by 2. So we substitute that

there we will see here we get minus 4 into 3 by 4 by 9 by 4. We get 4 by 3. So, 4 by 3 that

you got earlier is because of the choice of a and b. If we choose different a and b then we

won’t get 4 by 3 but we get some other number. 

So, 4 by 3 is the exact limit of the thick limit, but we start from a differential approximation

and  depending  on  your  choice  of  a  and  b,  we  may get  somewhat  different  result.  This

equation for the radiative heat transfer is quite useful because notice that there is a differential

equation, we can do this in various coordinate systems other than plane parallel, we can do it

in cylindrical spherical or other coordinates.  Today with the powerful tools that are available

for solving differential equations numerically, this is a very useful tool to have. 



What we have seen is that there are two different ways solving the basic  radiative heat

transfer problem in gasses, one is taking the full integral equation and solving numerically.

The  second  is  taking  the  differential  equation  and  making  an  exponential  kernel

approximation and converting into a differential equation and then solving it. Then we saw

there is the method in which we assume thick limit.   Apply the slip conditions and get an

expression, which can be valid for a fairly wide range of optically thicknesses. 

  All these we get for a gray gas because it was a simpler to do, and because most real gasses

are not gray, we need to look at ways we have to extent this to non gray situation and that is

about will be the main topic for discussion. In the next lecture, how to extend this result for a

gray gas to a non gray gas and how the results change, while going from a gray medium to a

non gray medium.  That is the what we discuss in the next lecture and because all real gasses

are non gray and so it s important to understand how non gray limit behaves. 


