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In the last lecture, we looked at the optically thin and thick limits. These limits provide a

good insight as regards, what happens during radiation, when the photon mean free path is

very small or very large. If you recall the total optical depth, is much less than 1, that is the

photon mean free path is very large compared to the spatial scale of the system. Then we saw

that the divergence of the radiative flux was equal to radiation absorbed from surface 1, from

surface 2 and what is emitted by the surface. 

 In the thin limit we find that the interaction is between the gas and the two walls, that is

absorption term and what the gas emits in both above and below the interface. In the thick

limit we have derived and we got a result for flux, as a simple differential equation. These

two look very different. Let us just also write a radical flux for the thin limit for comparison

here. In the thin limit, if we recall the q R lambda is very simple, but difference in radiosity

between the  two walls.

In the thin limit the flux through the medium then depend on the gas, it merely depended on

the radiosity of the two sides while in thick limit we have a differential equation, here we



have a  algebraic  equations.  The basic  nature of the radiative flux expression has change

dramatically. In one case the flux depends on the local gradient of the emissive power of the

gas radiation while in the thin limit gas plays no role. The radioactive flux is merely the

difference  in  radiosity of  the  two walls.  So,  it  is  important  to  understand this  important

difference in the two limits.

In the thin limit the gas plays no role, gas does not play any role at all. It allows the photons

from one wall to go to the other wall and vice versa, the photons of the other wall go back to

this wall. The medium is completely passive, it does not do anything. This is because the

photon mean free path is so large that the photon is essentially untouched as it goes from one

wall to another wall. So the gas plays almost no role in the flux, but if we look at the thick

limit the radiative flux does not depend on what is happening in the wall. 

Wall  play no role  in here,  everything depends upon the local  gradient  of the black body

emissive power of the gas emission. The thick limit at any point inside the gas the radiative

flux depends upon only the local  gradients of the black body emissive power at  the gas

temperature and has nothing to do with two walls. This is because the photon mean free path,

in this case so small that photon which are emitted little far away from the interface you are

interested in will not reach your location. 

The photons emitted by the wall will not reach the gas. So, at any location the gas only sees

the adjacent layers from where the photons come. If the layers are little far away, the photon

cannot reach this layer. This is completely local control. 
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We want to appreciate the fact that this kind of phenomena where everything depends on

local gradient is happening because the photon mean free path is very small compared to the

length scale of interest which in this case is L, which in this case is 1 over a lambda. So, 1

over a lambda is very small compared to length scale of interest that is the distance between

the plates then everything is control locally and we saw q R lambda is equal to minus four-

third d e lambda b by d x.

We have to realize the same logic is applied to conduction heat transfer. In conduction heat

transfer  the molecular  mean free path not  photon,  molecular  mean free path.  That  is  the

distance travelled by molecule in a gas, this is a gas conduction. Conduction gases is small

compared to the length scale of interest.  Then you, all of you know that q conduction is

minus K delta T. We want to see the parallel between these two basic situations. In radiation

where the photon mean free path is small compared to the length scale of interest to us.
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Then everything is locally controlled and hence the radiative flux depends only on the local

gradients of the black body emissive power. For the same reason in gas conduction heat

transfer when the molecular mean free path is small compared to the length scale of interest

to us then the conduction heat transfer is proportional to temperature gradient. These two

expressions for fluxes are not really same. This one is Watts per meter square per micron and

this is Watts per meter square. 

We may be having some difficulty comparing these two. So, next what we will do is we will

integrate this thing over all wavelengths to get the total paths so that comparison is more

easy. So, q R is nothing but 0 to infinity of spectral flux into d lambda. This will be 4 by 3, 0

to infinity 1 over a lambda d e lambda b by d x. There is minus at reserved here, d lambda.

So, to do this integration in easy way, we divide and multiply by e b.  Remember e b is

nothing but sigma T to the power of 4. 

First multiply that so that you write q R. We have to multiply up and down by e b, you get d e

b d x, we get d e lambda b by d e b. Here mainly multiply and divided by this quantity d

lambda. Now, since this quantity is independent of wave length we can take it out and we are

left  with  quantities  which  depend  on  wave  length  which  we  need  to  integrate  may  be

numerically. 

This quantity is a number to be calculated, once we know the variation of the absorption

coefficient a lambda with wave length. There is a complex function and we will spend quite



some time in later part of the course explaining how this task is achieved, but right now let us

say we can do it  and this  is  called the Rosseland mean absorption coefficient.  This,  this

integration is known as Rosseland mean absorption coefficient and this by definition is 0 to

infinity 1 over a lambda d e lambda d by d e b d lambda. 

This quantity can be calculated once given the temperature the gas and the spectral properties

of that gas. Today tools we have computers, we can calculate this and keep it for future use.

This is the number which is function of temperature which can be calculated a priory.  
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 With this definition we can write down q R, which is minus 4 by 3 d e by d x into 1 over a R

by definition. Now, e b all of you know is sigma T to the power of 4. We can write it in a

most simplified form as minus 16 by 3, this becomes sigma T cube; 4 sigma T, 4 has been

absorbed here, 1 over a R delta T /dx.

  Now, we need to compare this with the Fourier conduction law. So, conduction heat transfer

we saw was minus K delta T delta Z. We compare these equation with this equation, we can

define a new quantity in the thick limit and it is this quantity, this is K R which is not a

constant depends on x is called radiation conductivity and these are units of Watts per meter

degree Kelvin.
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The conduction that you know already from a transfer background is also Watts per meter

degree Kelvin.  It is possible for us to estimate the radiative conductivity of a gas given the

Rosseland mean absorption coefficient. Now, most of us should be aware that for a typical

gas the conductivity, conduction heat transfer, conductivity is pretty low. We take air it will be

around 0.025 Watts per meter square, Watts per meter degree Kelvin. 

Let us see what kind of numbers you can get for the radiative conductivity. If we define

radiative conductivity as 16 by 3 sigma T cube by a R. Now, let us take a simple example. Let

us say gas is at furnace situation at 1000 degrees Kelvin. Let us say we know that from our

black body formula this is universal constant. We just have to estimate a R. Let me take just

for as an example, let a R be 10 meter minus 1, that the photon mean free path is about 0.1

meter. In this case let us calculate K R. K R will come out around 16 by 3 into 5.67.

 Then 10 to the power minus 8 and this will be into 10 to the power of 9 by 10. So, all this

will  cancel  out.  This  will  be  approximately around 30 Watt  per  meter  Kelvin.  We must

recognize that in a gas this is fairly high heat transfer rate because typical gas conductivity

not radiative, but molecular conduction is of the order of 0.03. What it shows is that if there is

a  gas  or  high  temperature  like  1000 degrees  Kelvin  and the  Rosseland mean absorption

coefficient is of the order of 10 meter minus 1 then the heat transfer by radiation is about

1000 times more effective than molecular conduction. 



 Clearly at high temperature we need to worry about the radiative heat transfer in this limit.

Now, suppose instead of 1000 degrees Kelvin we assumed 300 degrees Kelvin that is one-

third approximately.   One-third cube will be around 27. This will come to around 1 Watt per

meter  degree  Kelvin  still  it  will  be  much  larger  than  gas  conductivity.  What  must  be

remembered is that if you are in the thick limit then the heat transfer by radiation its most

often much stronger than heat transfer by molecular conduction and must be accounted for in

any given situation. 

We have to be sure that we are in the optically thick limit to apply this equation. This limit is

also called diffusion approximation because in the thick limit radiation heat transfer behaves

like a diffusion process.  Photon is being absorbed at a very short distance and it is similar to

what  is  happening in  molecular  conduction where  the  molecules  undergo collisions  very

often so, diffusion model is valid.
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There are examples we will see in later lectures where this diffusion model can be used and

you can imagine that especially in situations where you are looking at combined conduction

radiation  problems.  It  is  convenient  if  we  can  treat  both  radiation  and  conduction  as  a

diffusion process. Imagine heat transfer in glass. A hot glass in glass processing, then you

have both conduction and radiation. Let us assume that the photon mean free path is quite

short, so they can apply the thick limit. 



Then  the  total  conductivity  will  be  just  sum  of  molecular  conductivity  plus  radiative

conductivity. This we are talking about temperature very much and so in the manufacture of

glass you need to know suppose this is glass being molded or processed. In order to ensure

that during the process of molding glass sheets for example in making the television. 
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The television, the front screen it is made of glass and we want that glass to be bold such that

it is completely defect free. Then we have to ensure that there are no stresses in the glass

during the process of freezing when the molten glass is frozen to get, give the given shape of

the TV glass. It has to be stress free. To be stress free you have to keep the glass close to

isothermal that is heat on the glass should be close to isothermal. We have to predict the

temperature profile across this thickness and there you have to account both for molecular

conduction  and  radiative  conductivity.  In  this  cases  as  you  will  have  guessed  this  will

dominate the heat transfer radiative conductivity. 

So this model, the diffusion model using the Rosseland approximation is quiet common. We

can  see  that  this  model  of  radiative  heat  transfer  where  radiation  is  treated  like  light

conduction heat transfer, it is quite useful provided one can make the approximation that the

photon mean path is very small compared to the length scale of interest. We are looking at the

two limits of radiation heat transfer and we are able to do this analysis at the, at the spectral

level and obtain the two limits, but in solving a full problem when we  assume that we are not

able to make the approximation of the thick or thin limit.
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This is quiet common in radiation transfer problems. Because if we look at the absorption

coefficient of any gas as a function of wavelength it has very complex behavior. So, where L

lambda is low it may be the thin limit, where L lambda is large it may be thick limit. We

cannot assume at all wavelengths the gas is in the thick or thin limit because there are regions

where the gas remain thick limit, there are regions with thin limit in between. It will not be

either thick or thin limit. 

The limiting case we just  now saw is  useful only to  get  some physical  insight in to  the

process of radiative heat transfer, but really not very useful in practice except may be in the

case of glass where the thick limit is reasonably valid. But in the case of gases where the

absorption coefficient of the function of lambda has such a complex structure, we cannot use

the thick or the thin limit. We have to deal with a full problem. So, our next task is to ask how

to solve the problem in the general case when the  thick or thin limit is valid what do we do.

Now, before we go on to that we want to just understand how the basic problem we have

looked at so far is modified when we have scattering.
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We will deal with scattering in little more detail in the later lectures, but right now it is good

for you to know what is the difference in the basic equations. So, suppose we have both

absorption and scattering.  We will write down this equation for a plane parallel model. We

have both absorption and your scattering coefficient. So, first part is the extinction that is the

decrease in the intensity on account of both absorption and scattering. 

Remember, in this case what is happing is along the path on account of either absorption, that

is the absorb photon or photon scattering, we lose the photon in that direction, either photon

absorbed or scattered into some other direction. That is the first term. The second term is gain

in photon that is happening because of emission and finally one more term may come in

which is photon which are scattered from other directions. 

    A photon coming in some other direction get scattered into this direction. It takes the

intensity  in  all  other  directions  and  we  assume,  assume  the  azimuthal  symmetry  of  our

convenience. We assume to get 2 pi and then with respect to this angle theta, we have to

integrate  the  intensity  is  all  directions.  The  basic   heat  transfer  which  in  the  absolute

scattering is the simple model we  saw earlier gets a little more complicated in two terms. 

In  the  extension  term there  is  one  more  term added  because  the  photon  is  lost  due  to

scattering. Then the photon is gained due to scattering in of photons travelling in some other

direction into this direction. We look at photons in all other direction and ask what fraction is

scattered into this direction and that is calculated using this method. We should be able to see



that  this  complicates  the  problem enormously because  when this  term was  not  there  the

directional spectral intensity was only related to itself and the direction of spectral intensity of

a black body at the gas temperature. 

When we introduce scattering this last term here links the intensity in all other direction to

this  direction.  That  means  you  have  to  solve  the  problem of  intensity  in  all  directions

simultaneously because intensity in some other direction theta prime is linked to i  prime

lambda. This is what makes scattering such a complex problem and so we will not be able to

spend a lot of time in this course to look at this term, but we will touch upon it briefly, so that

you have some idea about how come this scattering are tackled. 

But at this point we want to develop appreciation that if we deduce scattering into radiation

heat transfer problem, the problem because one magnitude more complicated because we

cannot solve for the intensity in one direction in terms of just  these three terms. But we

introduce the term which connects the intensity in one direction to the intensity in all other

directions.  We will get back to this problem later, but let us now look at much simpler cases.

We looked at a thin and thick limit and we pointed out that it is not always a possible to look

at these limits for gases where the  absorption coefficient is strong function of wavelength.
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We will look at a very simple case. It is called gray gas. Gray gas the definition one where the

absorption coefficient is not a function of wavelength. This rarely occurs in the real word,

most gases have a strong dependence of the absorption coefficient on the wavelength, but we



are going to use the gray gas merely as a teaching tool to tell you how the general equation

for  radiative  heat  transfer  is  solved.  This  is  more a  way to explain  to  you the technical

solution. 

If  the real  problem involves  a non gray gas then the entire  thing has  to be solved on a

computer and we have nothing to really show in the class room very easily how the problem

is  actually  solved,  but  an  appreciation  of  how the  equation  is  solved  in  your  computer

program is useful for the purpose of understanding the solution provided by the computer. We

will  go  through  the  gray  gas  model  although  we  are  fully  aware  that  gray  gas  is  an

approximation which is not normally applicable in real situation. The only time gray gas

model may work is when the gas is ionized.

 The gas is ionized then it can absorb a photon and take the gas from the bound state and

comes out and gas gets ionized and the electron with those originally bound, it reaches a free

state. Such a electron can absorb any frequency because the kinetic energy of the electron can

have any value between 0 and Infinity. When the photons are energetic enough to knock an

electron  out  of  the  gas  and  it  goes  freely  then  such  a  gas  can  absorb  radiation  at  all

frequencies above a certain frequency. 

This is delta E and it is continuous absorption spectrum. So, as you can realize in the case of

astrophysics where they deal with stars which are at high temperatures. Most of the gases are

ionized.  In astrophysics  the gray gas approximation is  very useful,  but  in furnaces or  in

atmospheric science  radiation gray gas is not a very good approximation, but still we are

going to spend some time showing how equations are solved for gray gas, really as way to

teach you how these problems are tackled. 

When the gray gas is not valid we need to extend the methodology to allow for the complex

function of a lambda but that is merely a more computation and that can easily be done today

on the computer. So, our aim is that you understand a basic method of solution using gray gas

as a as a useful a example, but it is not a practical example. In the case of gray gas the

substitute lambda goes away, everything is substituted by lambda. We can write down the

basic radiative transfer equation as follows. 

The first term is the radiosity and the attenuation through the gas, integrated to all, all angles,

angle is a built in to this  exponential integral function, then you have second term which is

the distance between the top plate at the given level. Then you have the emission from the gas



below the level of interest to you and finally, a gas above the layer of interest to you. Of

course you need d kappa. This is an equation with all the lambda subscript removed is the

basic equation.  
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Now, before we  solve the equation we  can see, want to solve this equation to solve for some

value B 1 and B 2 and will be nice if we can remove this B 1 and B 2 from this equation by a

suitable scaling.  We will define a q star, a non dimensional cube as q R by B 1 minus B 2.

Throughout that in the absence of a gas q R equals B 1 and B 2 this is equal to 1. This is good

thing to remember that q star is so defined that in the absence of gas it is equal to 1 to define a

non dimensional temperature as sigma of the gas or the gas minus radii of surface 2. 

These are convenient definitions, it is done such that the final equation, the non dimensional

one now is nothing but q star equals 2 E 3 kappa plus 0 to kappa phi of kappa star E 2 of

kappa minus kappa star d kappa star minus 2 kappa to kappa 0 phi of kappa star E 2 of kappa

star  minus  kappa  d  kappa  star.   We notice  that  this  equation  is  much  cleaner  has  no

parameters; B 1 and B 2 have been absorbed in the definition of q star. This equation is

function only of kappa and kappa 0. 

 Our aim in a given situation, given all the boundary conditions and other constraints of the

problem is  to  find  how q  star  varies  with  kappa and kappa  0  and of  course,  how does

temperature vary with kappa and kappa 0. There will be one parameter kappa 0 independent

variable  kappa  which  is  the  location  space  and  non  dimensional  temperature  and  non



dimensional flux. We have brought down the problem into very simple framework in terms of

number of parameters. 

Now, today this equation can be solved on the computer, there is no difficulty. We  have to do

is unknown quantity is here and for a given radiative flux, let us say a specified radiative flux,

we can find the temperature distribution by assuming some function here, integrating it to see

if it is equal to this value, if it is not true then you adjust this continuously. In iterative fashion

one  can  solve  this  equation  fairly  rapidly on  the  computer. So,  all  you  require  is  some

approximation, may be some polynomial approximation per phi of kappa star integrated phi

equal to q star which is specified. Then you go back. On the other hand if in a given problem

the temperature distribution is given to you.
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Then you know this quantity that is very easy to integrate this to get the flux. The basic

problem here is either the flux is given and you calculate temperature distribution or the

temperature distribution is given and you calculate flux. We can calculate both. One has to be

given; the other has to be found. The more difficult problem is given the heat flux, radiative

heat flux, how to calculate the temperature distribution. That is integral equation whether the

unknown is inside the integral. 



 The only method available is iterative method. We guess on temperature, integrate, find the

flux,  the flux does not match, go back and adjust your assumed temperature distribution.

Now, our purpose here is not to discuss the numerical solution which can be done these days

quite easily.  To get an analytic solution you need to make some approximations, there is no

choice. We will adopt what is known as exponential kernel approximation. 

In  this  approximation  you  are  simplifying  the  angular  integration  part  of  the  radiation

equation and by making the angular integration simpler we are able to solve the problem

analytically and the particular kernel approximation you are going to adopt is that E 2 of x is

approximately equal to three by four e to the power of minus 3 by 2 x. And E 3 of x which is

the other one which comes in the equation is approximately equal to half. If we  look at this

approximation, actually we know E 2 0 should be  1 because in general, if we recall E n of 0

was 1 by n minus 1, so that means E 2 of 0 is 1 and E 3 of 0 is half. 

In this approximation we have ensured that the kernel approximation is exact at  0 for E 3,

but approximate for E 2. E 2 should have been 1 E 2 0, but it is three-fourth. If we look at the

equation for q star E 2 is appearing inside the integral, E 3 is appearing outside. In case of E 3

it is important that we correctly get behavior at x equal 0. Because of E 2 although one may

not get the behavior of x equal to 0 right, as long as the integral of this quantity is roughly

right then it is okay because this  appears only inside the integral. 

That is speed approximation. There are other approximation available, you can look it up in

various text books, but all them gives similar answers, answers are not very different from the

kind of approximation that others make. Now, before we proceed further we must decide

what problem we have to solve. We will now look at the problem of radiative equilibrium.

Recitative equilibrium is a case wherein you are dealing with a gas in which radiation is the

only process we are neglecting conduction, convection on any other heat transfer process that

may be occurring. 

We think the radiation is the dominant process and so we will only look at radiation as the

only as the mode of heat transfer and then we are assuming steady state. No change with

time. If you assume these two that there are no other processes occurring in the gas except

radiation  and the  gas  has  a  steady state,  then  from the  first  law of  thermodynamics  we

conclude that in steady state with radiation as the only way of transfer d q R d x has to be 0.



In steady state the divergences or a flux is 0 and the only flux of relevance we are saying is

radiative flux.  That means q R has to be a constant.
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This approximation we are going to deal with this limit. So, q R is the constant in radiative

equilibrium In our case a non dimensional q star is the constant and we are treating this as a

known. This is given to you a priori and given this q star we also calculate phi. For given q

star is a constant to find the temperature distribution. This is the standard problem in pure

radiation heat transfer in steady state, one dimension. There is no other mode of heat transfer. 

Therefore, d q x is 0, so q is a constant. We made the kernel approximation which already,

had been mentioned. So, with that we will get the equation which says q star e to the power

minus 3 by 2 kappa plus 3 by 2 0 to kappa,  unknown temperature distribution e to the minus

3 by 2 kappa minus kappa star d kappa star minus 3 by 2 kappa to kappa is 0 and 3 by 2

kappa star minus kappa d kappa star. In this equation q star is a constant, remember that

unknown function is inside the integral. 

Now, having made the  kernel  approximation  that  is  replacing  the  complex kernel  by an

exponential function, we exploit the fact that exponential function is repeatable and if it is

repeatable then you can easily differentiate this equation twice and all of you know that e to

the power of minus x when differentiated twice will give you the same answer. So that is the



feature  we want  exploit  in  this  formulation  and so we will  do that.  Let  us  now go and

differentiate this equation once and then twice.
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Remember that q star is a constant. So, d q star e kappa is 0.  We write down the left hand

side of equation is 0 because d q star d kappa is 0, then the second term, we have is 3 by 2

half e to minus 3 by 2 kappa will become minus three-fourth e to the power minus 3 by 2

kappa.  If we differentiate this twice,  and use the Leibnitz  rule. Leibnitz  rule is important

and we have discussed that earlier in the context of shape factor calculation.  
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 We differentiate twice, so that left hand side is anyway 0 because can q is also the constant

and you will get after two division 9 by 4 e to power minus 3 by 2 kappa plus 3 by 2 0 to

kappa phi of kappa star e to power minus 3 by 2 kappa minus kappa star d kappa star minus 3

by 2. Now, when we differentiate twice  it will give you 27 by 8 minus 27 by 8 because 3 by

2 into 3 by 2 twice will be 9 by 4 kappa to kappa 0. 

This has to be compared with the equation we wrote down earlier, which had q star.  What we

see is that in order eliminate these two integrals, between these two equations  you have to

multiply this equation by 9 by 4. If we multiply this equation by 9 by 4 and subtract that

equation, so this is lets us call it as equation one and this is equation two. So, equation 1

minus 9 by 4 equation 2, we will eliminate all these integrals.
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We take  this equation subtract. These terms are all will cancel out, they will all have 27 by 8

and so you are left only with these three terms. Let us write down that equation, which finally

is d phi by d kappa three by four q star. Finally, we go back and clarify what we have done.

This term will all go away and we are allowed with this term and this term, and 1 3 will

cancel out, and so we are left finally with this equation.
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We have  converted  an  integral  equation  to  a  differential  equation  by exponential  kernel

approximation.  This  approximation  has  been  very  useful  to  convert  the  original  integral

equation to a differential equation. This can be integrated very easily to get phi is equal to

minus  three-fourth  q  star  kappa  plus  a  constant.  This  non   temperature  profile  is  linear

function of kappa, but remember that does not mean that temperature is a linear function of

kappa that is because phi if you recall is defined as sigma T to the power 4 minus B 2 by B 1

minus B 2. So, phi depends as T to the power of 4, so it is T to the power of 4 which is linear

in kappa not temperature. 

We need to find the constants. To find two constant, of which, you can assume that this is

provided. This is really unknown; this can be assumed as specified. We want to get the final

answer for the heat transfer in terms of kappa. We plug these into the integral equation and

say kappa equals 0; and when you do that, the constant will come out as  shown below.
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This is the solution; once we have found the constant, q star come out as 1 minus 1 by 1 plus

four-third kappa 0, which can be simplified to q star is equal to 1 plus three-fourth kappa 0.

This we will discuss in some detail in the next lecture, because this is very important result,

which  relates  the heat  flux to  the optical  depth of  the  medium;  and we will  discuss  the

meaning of this in the next lecture.


