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In the last lecture we looked at a Plain Parallel Model for radiation. This is essentially a one-

dimensional model, but remember that in radiation even in one-dimensional model it  has

account of all the rays travelling in all the different directions. We recall that we started with

the basic equation for radiative transfer, which was for non scattering medium which says

that the change of intensity with distance is  proportional to the emission by the gas and

reduce by the absorption by the gas; second term absorption first term is emission. This is

absorption coefficient which has units of beta minus 1. This can be integrated, so that along a

given direction we get the intensity, but we are interested in fluxes not intensity.

We took a parallel plane parallel model, and we defined a normal and we looked at angle

theta, we assumed everything is symmetry with respect to phi the azimuth angle. And from

here  we  related  the  intensity  to  flux  by  the  following  relation.  This  equation  has  to  be

integrated and integration done in  two parts.  In this  part  upward going rays  that  is  theta

between 0 and pi by two or all rays which are moving upwards.



We solved this  equation for theta between 0 and pi by 2 and that one we called as high

lambda plus rays moving upwards and for the rays moving downwards from the top, that is

theta greater than pi by 2 and up to pi, we call it i lambda minus. We have to distinguish

between the rays going up and rays going down, because the lower surface 1 here will only

emit rays going upwards and the upper surface 2 will only emit rays going downwards.

 When integrating this equation for upward going rays we start from the bottom surface and

go up, and when we look at  the downward going rays we start  from the top look at  the

emission of the upper surface.
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We saw that the four terms in the equation. Two terms involved emission by the surface and

attenuation  the  gas  and  other  two  term  involved  emission  by  the  gas  upwards  and

downwards. We will write the flux expression. The  flux expression had four terms. The  q r

lambda the net radiative flux between lambda and lambda plus d lambda consists of radiation

leaving surface one and it is attenuated in all direction, minus radiation leaving surface two,

minus because it is downwards, going rays and the difference between the total optical depth.

This is 0 and this is kappa lambda 0 and any location here is kappa lambda. The distance

traveled here for the second one is kappa lambda, 0 minus kappa lambda while for the rays

going  up;  this  is  kappa  lambda.  This  are  the  two  terms  which  represents  the  boundary

contribution, contribution from emission and deflection by the boundary which then moves

through the gas.



Then there are two more terms involving gas emission first is from upward 1. It is equal to 0

to from here to here all the upward emission. It involves the black body emissive power of a

gas, times a function which of science angular integration. The last term is again minus the

downward emission by the gas between this point at the top and that involves the contribution

from the surface 1. 

This contribution from all gas elements between this surface and kappa lambda, this is where

we calculated flux. This is the downward emission surface 2; this is downward emission by

all gas elements between kappa lambda and kappa lambda 0. Now you should look at the

argument here. We can  see that we have written this, such that it is always positive. This is

by convention that the argument here has to always be positive. In the region between 0 and

kappa lambda, kappa lambda tilde has to be less than kappa lambda we write it this way. In

the second term kappa lambda where is between kappa at kappa lambda 0 that for it has to be

reversed, kappa lambda remain kappa lambda. This is a next question which we are going to

use a lot.

In this expression, there are two terms called the exponential integral function and the general

definition is E n affects is equal to 0 to 1, mu to the power of n, n minus 2 e to the power of

minus x by mu d mu. This accounts for all the angular integration that one has already done

and these tabulated functions  available  in  books on heat  radiation transfer  usually in  the

appendix. We can look it up in any time and in today’s world this can be computed, fairly

easily by any software.

So, what we have done essentially is in problems related to heat transfer, there are three

levels of integration involved. You have to integrate over a angle; you have to integrate over

wave length and you have to integrate over space. We have essentially separated this three

actions  the  angular  integration  is  built  into  this  function  E n of  x.  Spatial  integration  is

involved in this equation here and we need to do somewhat later the wavelength integration.

The major challenge we face, in not the angular integration. The problem is straight forward

and can be done by any computer very easily. A major challenge we face in solving the

equation  is  a  fact  that,  if  you want  to  know the  temperature  distribution  of  a  gas  in  an

enclosure, then the unknown temperature variation is inside the integral.

This is a peculiarity in radiative heat transfer. In both conduction and convection heat transfer

you encounter  differential  equations.  There is  a large arbitrary of techniques available  to



solve  differential  equations  of  many kinds.  That  whole  methodology has  been used very

effectively, in solving large number of problems in conduction an convection heat transfer. In

radiated  heat  transfer  in  gases  the  problem  has  been  more  difficult,  because  unknown

temperature does not appear as of the part of differential equation, but is a unknown as a part

of an  integral, this is an integral equation.

We do not as have many techniques for solving integral equation analytically as we have for

differential equations. So, most of solutions that will be normally done will be numerical. But

in  subsequent  lectures  will  do  a  few  solutions  which  are  analytical,  because  analytical

solution  give  you a  great  physical  insight  with regards  to  what  is  happening in  a  given

problem. So, all though will be dealing with fairly simple and somewhat not realistic real

world situation, ideal situations. Still we believe that the simple cases are very useful to help

you understand the phenomena of radiative heat transfer. The key point to remember here is

that  because in  this  equation we have integral  equation essentially what  you see here in

radiation is something very different from either conduction or convection. 

Conduction and convection are governed by differential equations so that the temperature of a

given region is influenced only by the temperature of the surrounding regions; immediate

surrounding reasons.  That is why we are able to write everything in terms of derivatives in

differential equation. On the other hand in the case of radiation the temperature, in the middle

of a gas in enclosure may depend on what is happening at the wall. Because some of the

photons that is emitted at the wall can go right through the medium without being absorbed

and directly interact with the region you are concerned with. This could be thought of as

action at a distance.

The radiation problems are essentially are non local in character; that is, temperature of a

given  region  is  influenced  not  only  by  the  temperature  of  surrounding  regions  but  also

influenced by temperatures of surfaces or gases far away from the region of interest.  We will

see that this equation which is more general kind, can be shown to ultimately become as a

differential equation in certain limits. This formulation will be general and when it takes of

limiting case limiting condition then we will show that this equation can be become like an

equation in conduction heat transfer, but in the real world situations which we encounter in

radiation, this is in the furnaces or in the atmosphere or in metallurgy we do not always have

situation where we can convert this into a differential equation. We must know how to solve

integral equations.  



We will illustrate a few examples in the next few lectures so that you are familiar with the

techniques of solving integral equations. But you must realize these are only as teaching tools

to enable you to understand phenomena when you solve any real world problem involving

radiation, we will  solve it numerically. The entire power of high speed computing can be

brought in to solve fairly complex radiation heat transfer problems. Those are solved by large

software packages, but those will not give you any  real insight into what is going on in this

radiation phenomena. We need simple analytical solution; just so that you appreciate what is

going on in this mode of heat transfer, in contrast to either conduction or convection. We

want to compare the way in which radiation transfers heat. With that we already know what

occurs in the case of conduction or convection.

Now, before we go further to solve this equation we not only need the flux but also need the

divergence of flux. Because all of us recognize that the divergence of the flux is what is

important in solving for temperature variation in a medium. But ultimately we are applying

the first law of thermodynamics and in the first of thermodynamics on the right hand side you

have the divergence of all heat fluxes. That includes conduction convection and radiation. So,

ultimately we must know how does divergence of the radiative flux looks like and we derived

expression, but differentiating this expression  for the divergence of the radiative flux.
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  For convenience we write as minus. We write a minus because minus divergence represents

the energy added to the system. So, each term are right hand side, that we want to write now,



can be thought of as the term representing energy deposition or energy removal from this

system. The first term is the radiation leaving surface one and absorbed by the gas. So this is

heat addition to the gas, heat absorption.

The second term is energy leaving the top surface and reaching the level kappa lambda and

being  absorbed.  So  these  two  terms  represent  the  gain  by  the  medium  on  account  of

absorption of solar radiation. Then you have a term representing the gain from all other gas

elements below kappa lambda. These are emissions by layers below the level kappa lambda

which  are  absorbed  at  that  level  and  similarly  we  have  terms  which  represents  all  the

emission by gas elements, above these layers radiating downwards and absorbed by the layer.

 We must be able to do this from the previous equation by q r lambda, but differentiating by

applying the Leibnitz rule for differentiation of an integral which was discussed in the last

class. We have all do it and look at the first half representing the absorbed radiation on the top

surface, second term absorbed radiation from the foreign surface, third term absorbed emitted

by all gas space below this layer and the last term radiation absorbed by the layer of all the

emission downwards so they will above kappa lambda.  Finally, we have the emission term.

This is a important term this represents in four five directions, how the radiation is emitted in

all  directions by the gas.  This is  a  expression for radiative heat flux.  Now this is  in the

spectral domain. We want the total radiation.
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We know that the total radiation flux is 0 to infinity q r lambda d lambda and therefore, one

can write as this quantity and declare it over all wavelength. So, ultimately the quantity of

radiative flux is this term minus that represents the energies total energy added to the system

by radiation.

Now, this is a step which is most difficult step in this whole procedure, because a lambda is a

very complex function of lambda. This is what makes life very hard to integrate this, because

the typical absorption band of a gas. That it is a millions of lines and you have to account for

absorption at each line and the lack of absorption between lines. All those said, should be

accounted for and this is no mean task and people have been at it for the last almost 100

years. This problem was first looked at by astronomers. In astronomy absorption coefficient

is not a strong question of lambda. In astronomy they are willing to adopt a gray gas model

that is assuming a lambda is not a function of lambda. This does remove one complication

that is the integral of wave length, but still have to deal with angular integration and spatial

integration

We go back to the divergence of radiative flux and recognize the 4 absorption terms the

absorption from the bottom surface, emission of the top surface, absorption emission by all

gas that remains below a level kappa lambda and absorption of radiation emitted downwards

by all gas elements towards kappa lambda and minus is for e lambda emission.

Now, this equation is quite complicated and they primary complicate that arises that highly

pointed out we want to, repeat that so that it is understood. The main problem is unknown is

inside the equation and then makes it very hard. Now before we set out to give example the

how to solve this equation, we want to look at two limiting cases.
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Limiting cases are always good to look at because they provide some insight regarding the

behavior of the system. Because if we understand the behavior of the system in certain limits

we better appreciate what the system does when not in the limit. The first thing we look at

what is known as optically thin limit that is the total optical depth. Now, this does occur in

real  world  because  we  take  the  atmosphere  in  which  below. It  most  contains  Nitrogen,

Oxygen and Argon. All these three gases hardly absorbed any radiation.  All the radiations

absorbed in the atmosphere by minor gases like water paper Methane and Carbon dioxide.

These are in such small amounts on Earth's atmosphere that we can  treat them to be in the

optically thin domain. There are examples in real world where the medium is an optically thin

domain and we can almost avoid the integration in this case.

Now we take the three limits if the following conditions are satisfying. One can show that for

small value is of kappa lambda which is going to happen because this total value is less than

1, now that will imply that E 2 will be approximately 1. This useful approximation in the thin

limit. Essentially it is saying that there is no absorption by the gas. Gas absorption is so weak

and the dimensional of the enclosure are so small, because you remember kappa lambda 0 by

definition is 0 to l A lambda d l.

 Therefore, kappa lambda 0 can be 0 l is very small a l lambda is very small. In this situation,

in most places in the enclosure we can  assume a 2 is equal to 1 and if you do all that we can

show that q r lambda becomes minus.



In the thin limit, both the expression for radiative flux and the expression for the divergence

of radiative flux are very simple. In the case radiative flux you see no impact of the gas. The

fluxes are being exchanged between surfaces a l lambda 2 without measurable deviation. The

second expression shows that, even after we take the thick limit that there is some absorption.

This expression is the expression for absorption by the gas of the radiation leaving surface 1.

The second one is absorption of the gas of radiation leaving surface 2.  What it shows in the

both cases little absorption there is in the gas, that the intensity of radiation that comes to the

layer kappa lambda is not affected by the passage to the medium, because medium is very

weekly observing.

We  have the absorption term and the emission term. Now, optical thin limit  is  not very

common which is  understandable,  because we pointed earlier, one of  the  features  of  the

absorption coefficient is that it varies very strongly as function of wave length. We have one

wave length it will very strongly absorbing and just the adjacent wave length we go to it is

absorbed top.

In dealing with these minor gases, that are there both in furnaces and in atmosphere, we have

to recognize the fact  that  thin limit  is  rather  rare.  Still  it  is  a very useful  approximation

because you all dealing with essentially algebraic equation. We do not have either analytical

equation. This is something which we can solve very easily.
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Now to illustrate how this can be solved we take the thin limit and ask ourselves what is d q

R  by  d  x.  We have  to  integrate  the  previous  expression  over  lambda  to  get  this.  This

expression becomes fairly simple. We are integrating over wavelength.  This is the first term.

This is the second term and this is the third term. What we have done here is integration of

wave length and ultimately this will be performed on the computer.

Suppose let us assume that, we had access to computer and it did all this calculations for gas

typical  of  fondness  containing some carbon dioxide,  some water  paper  and knowing the

property has affected all this. Even if we do that it will be useful to write this equation in a

more understandable form. This simple expression shows there are three terms called the

plank mean absorption coefficient. 
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The first expression is for a p 1. Similarly a p two. So, each of this functions is weighted by

the wave length variation of the radiosity or the corresponding surface and finally, for the gas.

The  purpose of defining these three absorption coefficient one for radiative surface 1, one for

the radiative surface two and the third for the gas is that in some situations, these can be

calculated a prior before we solve the problem. So, once you have tabulated the values of a p

1 a p 2 and a p g, as function of temperature we can solve most problem that one encounters

in this optical thin limit.

Now, this limit is not that useful as pointed out, because there are very few gases which

satisfy the condition that they are optically thin at all wave lengths of interest. That is very



rare. There will be situations and the certain wave length, certain gases will absorb radiation

strongly. We  may be in position to define the plank mean coefficient and use it. We have

mention one more thing, last quantity a p g is a plank absorption co efficient weighted by the

black body function at  gas temperature,  which should be really be called plank emission

coefficient.

This is because this coefficient is weighted by the black body function at the gas temperature,

so it has all the required condition satisfied we call it an emission coefficient. But historically

this has been called absorption coefficient. These two are absorption coefficient, because they

represent the integration over wave length of the incoming radiation at one, there are two,

they  could  be  very  different  wave  lengths.  We  need  to  run  separately,  but  the  plank

absorption or emission coefficient, the last term, that depends both on the specific gas and it

is a lambda is absorption as well as the weighting function brought in by in this case as a

lambda b.

The thin limit is applied still for certain applications, because this expression is a differential

equation. This expression is plugged into the general energy equation and there will be other

terms and this will be going along with them. So, some of those cases, where people solved

this equation, they will be extremely happy that the expression for the divergence radiative

flux  is  fairly simple.  If  we know the  temperature,  a  problem becomes  even simpler, but

normally temperature is an unknown, it needs evaluated. 
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We can ask a simple example to illustrate this. Suppose the system is in radiative equilibrium.

By this we mean system for which that divergence of the radiative flux is equal to 0. This is a

useful starting point,  because if  you look at  the energy equation assume steady state and

neglect all other phenomena, like conduction convection other phenomena and focus on the

radiation.  Then you do expect that in steady state,  that is from the energy equation,  in a

steady state everything will be in equilibrium. That is the case, than one can see from first

row that the divergence of radiative flux has to go to 0.

 For  the  case  of  the  upper  thin  limit,  this  implies  that  the  temperature  of  the  gas  then

enclosure with, in which you invoke the optically thin limit, will come out as, a very simple

expression for the temperature of the gas, because the equations are algebraic.  All we have to

do is from tabular information available in most text book in radiation. We have to calculate a

plank mean absorption coefficient with a limit surface and surface two, multiply them by

corresponding  radiosity values, calculate numerator and dividing the denominator by the

accepted  monthly  mean  radiation  value.  In  principle  in  thin  medium,  we  can   estimate

temperature as function x y and z. If we have information available on the right hand side and

if not, we should be doing other kind of computation which are much more demanding.

Now, the next step is after having defined the thin limit. We notice that in the thin limit, the

equation for radiant heat transfer becomes algebraic equation.  It is easy to solve the equation

either analytical or numerically. One would, like to invoke the thin approximation so that

instead of dealing with the full integral equation we deal with a simple equation and solve

algebraically. Now, if you look at radiative equilibrium condition we can get the temperature.

So,  computing  this  is  fairly  straight  forward  and  values  of  the  plank  thin  absorption

coefficient are tabulated,  this has to be four a p g.  Once we have an estimate of a p 1 a p 2

and a p g, then based on the information of radiosity of surface one and surface two, you get

T temperature in the gas.

We will notice that in this limit T g is not a function of x. And this is the peculiarity of the

thin limit and one can easily show that is, this surface one and this surface two and surface

two has that one temperature let's say T 2 and surface one other temperature T 1. We will

find the gas will have only one temperature and there will be two jumps. These jumps are

called slips for it says is that in the optical thin limit the gas has a single temperature invariant



with  distance  x,  but  at  both of  boundaries  there is  the  change the temperature that  is,  a

temperature of the gas at the boundary is not same as the wall temperature. There is a slip.

 This is the very special future of radiation heat transfer, which is not encounter that often in

the case of conduction and convection heat transfer. In both of which it is normal practice, to

assume that the temperature of the gas next to the wall, is same as the wall temperature. But

this approximation is not valid. For now in this thin limit the problem  becomes there are

trivial, because the temperature not varying in the gas is uniform and there are two jumps

which can be evaluated.

 There are not many situations in the engineering practice where you might encounter this

kind of condition.  This may be partly true in  small  metallurgical furnaces,  where due to

furnaces that are small the ability to absorb radiation from the walls in somewhat limited. But

what we notice that, from the radiative equilibrium conditions we are able to get temperature

on the gas. But when we calculate fluxes, this is what we did, first in the case of fluxes; there

is no influence of radiation. So as for as radiative fluxes in this enclosure is concerned, they

are unaffected by the presence of the absorbing gas, but when it comes to divergence of the

flux they are promptly there and they have to be accounted for.

Now, this might puzzle some people, as to how in the flux calculation we can  neglect the role

played by the gas, but in the divergence of the flux calculation gas properties come into play

in a prominent way.  We must remember that ultimately whether you really taken account the

variation or not, depends upon the importance of variation which are ways, other modes of

energy transfer; that is conduction and convection.

When we took the thin limit and look at the derivative, those may be in small if the gas is

probably thin,  but we must  compare this  radiative flux,  with that  due to  conduction and

convection. Only then we cannot say these quantity of small and is we can neglected, we

have to compare this quantities however small with the competing quantities coming from

condition heat transfer and convention heat transfer.  Only then we can be absolutely sure that

these terms are really small.
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Now, the next limit we consider is the optically thick limit. The major feature of this limit is

this is that the total path length is much greater than one. This is the exactly opposite of the

thin limit. The thin limit quantity is very small, so we could make very simple approximation,

but now we are dealing with a case where this quantity is very large. Now, in this limit if you

want to look at the radiative transfer equation you do lot of work, because in this limit the

expression we get is derivable. But not in a way that you have done for thin limit, where the

form can very trivial, because you are able to essentially neglect gas absorption.

 Not only is the total optical depth much greater than 1. We also invoke this fact that we also

will look at only those point which are angel high optical depth, which translates to the factor

our kappa lambda we do not look at, that defense in the wall are sufficiently for if from the

wall that we can  invoke the thick limit.  So, when we get a thick limit will get a simple

equation, but remember that somehow you have get the information about the value of kappa

lambda, without that we can proceed further.

Now, once you assume this it automatically it follows that this is also true. We  have kappa

lambda 0 much greater than 1, kappa lambda much greater than 1 and also kappa lambda 0

minus kappa lambda also will be much greater than 1. Essentially what is saying, in that in

the two parallel plates  we are confined to the interior and not going to near this wall or this

wall calls again go near a wall. Then we are going to violate the condition of optical thick

limit. Once we have done that in the optical thick limit remember the photon mean free path



is very small, L that is minimum plates. So, photons are getting observing quickly or a very

short distance compare to the distance between the plates.

In that limit the gases in the interior will only see adjacent layers from there the emissions are

occurring.  They will  not  see  the  two walls,  because  they are  very far  and the  radiation

between wall is absorbed right next to the wall so the elements which are in the interior do

not normally see the two walls.

That be in the case we can expand the black body function, that we encounter in the integral

equation it is most difficult one, in terms of local value and a derivative. This expand want to

do of the emission by a gas element kappa lambda delta, in terms of the emission at kappa

lambda and the derivative of this quantity revaluated at kappa lambda.
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This information is plugged into the equation. In addition because kappa lambda 0 is very

large, we can say that E 3 3 of kappa lambda for kappa lambda 0 is approximately equal to

half. That is E three 0 half we know that. We are assume it is approximately going to half.

Because it is very large,  kappa lambda 0 is very large, this quantity tends to 0. It also tend to

0. So that means, you are for away at the two walls we the radiation of the two walls are

acknowledged so much that you do not see it.  And the approximations mentioned in the

previous slide will lead to the following expression by q r lambda.



Now, we notice that many of this, will go to 0 because that is what assumed and this two will

adopt.  this will two also get cancelled out; half and minus half. This two expression will not

be there both are gone to them because they are smart is to because they cancelling.
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We  left only with two term involving gas radiation, which is q r lambda is approximately

equal to, the two expression representing gas emission. Now in the limit which is optically

thick, this goes we 0 to infinity. This can also be re written in terms of kappa lambda 0 minus

kappa lambda to make 0 to infinity and using the fact that 0 to infinity, x E 2 of x is equal to

two-third we can simplify the expression to write the following very simple and elegant result

which is negative heat flux is equal to minus 4 by 3, d e lambda b, d kappa lambda for thick

limit.
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This is a very useful and powerful result, because we have converted to the basic complicated

expression for radiative flux which was an integral equation in to a differential equation. This

has happened because of photon mean free path is much, much problem than the length scale

of interest  to us. That means that photon hardly travels any distance and that means that

everything is controlled locally, in the local gradient plays an important role. This what is

happens also in conduction and convection which many of few of studied. We  will continue

this discussion in the next lecture and we will show how this result is a very useful result; all

though you do not encounter many situation in engineering where in either thin or thick limit

is  actually valid,  but still  these limits  provide an insight about a nature of radiation heat

transfer. 

Thank you.


