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In  the  last  lecture  we started  our  discussion  on radiative  transfer  in  gases.  We saw that

because  gases  absorb  radiation,  they  can  also  scatter  radiation.  The  directional  spectral

intensity in a gas is not a constant, it changes. We saw that a simple expression relates the

change to the incoming intensity, the thickness of the layer and are constant of proportionality

called the extinction coefficient. 

The extinction coefficient has two parts, absorption coefficient and the scattering coefficient.

What this equation says is that the number of photons going in a given direction is reduced by

either absorption or scattering.  In the additional lectures we will focus only on absorption.

We will  look  at  a  non  scattering  medium to  simplify  the  discussion  and  we  will  have

scattering later. 
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In a non-scattering medium, you see that the rate of change of intensity with x is nothing but

minus a lambda i prime lambda. This is a simple first order differential equation. Although

we can solve it and the solution will say that i prime lambda at any x is equal to i prime

lambda at the origin into e to the power of minus a lambda x, if a lambda is a constant, a

lambda is not varying along the x. We can see that a lambda has to have the units of 1 over

length, and 1 over a lambda can be thought of as the photon mean free path. 

That  is,  it  is  the  average  distance  that  a  photon  travels  at  that  wavelength,  before  it  is

absorbed. It has lot of similarities to the concept of molecular mean free path, which most of

you are aware from kinetic theory. This is important quantity and you can also imagine, if we

have a gas layer of dimension l, a lambda l if it is much, much greater than 1. We call it a

thick, optically thick medium that is it is highly absorbing because you can see that you can

put a lambda l here, this quantity will become very small. It is a very rapid attenuation of the

radiation. On the other hand a lambda is much; much less than 1 we call it optically thin.

There is hardly any attenuation of the radiation. 
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We can also look upon this as a lambda l much greater the 1 is equal to saying that length of

the medium compared to the photon mean free path is much, much greater than 1. That is the

medium is much larger than the typical mean free path of the photon. In the optically thin,

limit  the  length  is  small  compared  to  photon  mean  free  path.  We can  see  that  the  way

radiation behaves in the thick limit and in the thin limit will be very, very different. 

Let us take again this gas of length l, so the photon which is emitted by this surface 1 will not

reach 2 at all. If it is the thick limit, because the photon is very quickly absorbed right here,

gas may emit another photon here, which is to travel again a short distance. So, the surface 2

here will not actually see radiation emitted by surface 1, but really we will be only looking at

those photons, which are within a distance l p of this layer. We can imagine that the situation

the radiative heat flux arriving at the surface is controlled by what is happening in this region

and is independent of that region. 

On the other hand in the thin limit than the photon will travel from almost 1 to 2 without

much attenuation. So, 1 and 2 will see each other and this is a case that really covered earlier,

when we neglected absorption by the medium between two surfaces. We assume that the

radiant leaving the surface is equal to that arriving at the surface. That is valid in the limit

when this quantity is very small. Now, the very unusual differences of behavior, in the thick

and thin limit are very important to understand the problem in real world situations. Now this



is also complicated to the fact that a lambda varies strongly with lambda. So, as you vary

wavelength this a lambda will fluctuate in a wild way.
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Let me give you as that of a quality picture, suppose you plot a lambda with lambda for a

typical gas, it will have wild variations. It will go from very high value to very low value, for

a very short distance. So, the same gas can have a lambda l much greater than 1 at 1 lambda,

a lambda l much lesser 1 at another nearby lambda.  The gas behavior is very different at two

adjacent locations like this and this here it is optically thin, it is optically thick. 

This  is  a  real  challenge;  we face  in  radiation  heat  transfer. The  fact  that  the  absorption

coefficient in most gasses, is a very complex function of lambda rapidly varying with lambda.

If we want to make any approximation such as the thick or the thin limit, you got to be very,

very careful because in examples in engineering there are very few situations in which, you

can really apply one of the two limits. These limits are useful as a pedantic tool to understand

the behavior of gases. 

But real gases have such complex dependence of the absorption coefficient with wavelength,

that  they  may  simultaneously  be  in  both  thin  and  the  thick  limit,  depending  on  which

wavelength we are looking at. This issue we will keep repeating and reiterating because this

is  a fundamental problem in solving radiative heat transfer problems in gases because in

contrast  to  liquids  and  solids,  whose  emissivity  and  absorptivity  behave  in  a  somewhat



smoother fashion. In the case of gases the spectral variation of absorptive coefficient is very,

very strong. 
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Let us make this point anymore clear, which you had mentioned in last class. We will repeat

it, if we look at what is emissivity or absorptivity of the gas. If we look at the intensity, we

want the intensity at the surface minus intensity other way divided by the intensity at 0. This

is the directional spectral absorptivity of the gas, so this is the attenuation; this divided by the

initial intensity and this is absorptivity. From our earlier solution of the equation, we know

this quantity is e to the power of minus a lambda l, if a lambda is a constant along that line.

So with this we can see that the directional spectral absorptivity of gas is 1 minus e to the

power of a lambda l. It is a very important result to understand connect what we learnt for

solids and liquids to gases and we can see clearly that  in the thick limit,  the directional

spectral absorptivity approaches 1. So, when a lambda l is much greater than 1 alpha prime

lambda approaches 1 and when a lambda l is very, very small, alpha prime lambda is equal to

a lambda l. 

This  is  very  important  result  that  in  a  thick  limit  all  gases  their  directional  spectral

absorptivity, approaches immunity and at the limit it is very small equivalent to a lambda l, if

a lambda l is very small it is approx to 0. Now, notice that we have already mentioned that a

lambda is a very, very complex and rapid variation with lambda, which means alpha prime

lambda, is even more rapid variation. Let me now plot for the typical situation alpha prime



lambda is the only between 1 and 0 because of this definition here. There are many, many

gases that we encounter. It will go almost transparent of m lambda 0 to 1 over a very short

distance. 

This is the complexity that we face that this quantity will fluctuate between 1 and 0 over a

very short distance along the wavelength direction. So, most of the difficulty is that one has

faced in solving problems, with respect to radiation heat transfer has been on account of the

rapid variation of the directional spectral absorptivity, with wavelength. This is the problem,

which people have been struggling to handle for the last 100 years. Today the main advantage

we have  is  an  access  to  high  speed  computer,  which  enables  us  to  do  large  number  of

computations every second. 

So, today the complexity introduced by this large variation of directional spectral absorptivity

with wavelength is mostly handled by solving this problem on the computer. So, right now

we want to look at simpler issues in front of us so that we understand the nature of this

equation, that we have to solve and later we will talk about what are actual ways to tackle this

problem. 
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Now, in the discussion, so far we have only talked about absorption, in that radius scattering

not absorbing. Note that a gas which absorbs will also emit. So, when you are going along a

path, there is a decrease in the intensity on account of the absorption by the gas it is this



quantity, but that must also be an increase in the number of photon, due to emission of gas

along that direction. 

The gas emits radiation along the direction in which you are interested and that depends upon

the emissivity of the gas. So, from the basic definition of emissivity which we began in the

first  few lectures,  we know it  has to  be this  quantity notice the b here.   The amount  of

emission in a given layer d x is the emissivity of that layer times the black body intensity at

the temperature of the gas. This follows from the definition of emissivity. Now we involve

Kirchoff’s law and say from Kirchoff’s law alpha prime lambda equals epsilon prime lambda

which is  always  true,  as  long as  you satisfy a  condition called  the local  thermodynamic

equilibrium. These are powerful result from Kirchoff’s law. 
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We substitute that there so we get the statement that change in intensity is equal to, a decrease

on account of absorption and an increase on account of emission. We made this equal to

absorptivity, so from the previous discussion this is 1 minus e to the minus a lambda d x the

absorptivity equals emissivity. Yes, the d x will come later, so if we take the length d x to be

small d x is quantity, we have chosen we can keep it as small as possible. 

As d x tends to 0, this will become 1 plus for a small a lambda d x, this is nothing but 1 plus a

lambda d x 1 will cancel out. You have this equation. So finally, we have equation for change

in intensity, due to  both absorption and emission by the gases.  This is  a  most  important

equation  for  non  scattering  medium.  Non  scattering  gas,  which  say  that  the  change  in



intensity along the path is equal to the absorption coefficient time the difference in intensity

between the intensity of blackbody emission along the direction at the temperature of the gas

minus the incoming intensity. 

We notice the difference one of contains subscript b, which we can calculate from Planck’s

equation, the other one is whatever intensity is coming in to the gas. Let me visually portray

that for you.
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It is a surface from which this is coming and here is the layer of interest to you d x. This layer

emits radiation and that radiation emission is a lambda d x i prime lambda b at the layer

temperature while, this is nothing but i prime lambda from the surface. This intensity will

change as it goes through the gas it will decrease because of absorption and increase because

of emission. That is a main information that you get, so let me again write this as n o d e. 

This o d is somewhat more complicated than the one we looked at earlier. We have now a non

homogenous term. This is not a function of this but is an independent parameter, which can

determine once the temperature of the gas is known. This kind of problem you must have

solved in your first course in differential equation. We know that the answer will come out as

i prime lambda x. It will be the first term which involves this which involves attenuation and

the second term, which involves the non homogeneous term.  This is a dummy variable, here

with this solution to that equation. Now, this is a very important equation, which we will keep

coming again and again. It is important that you fully understand, what this equation implies. 
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Let me then again draw a schematic to get you to, so this is the layer at a distance x and x

plus d x. There is another layer also you have to worry about x delta and x delta plus dx delta.

So, the radiation coming here is radiation coming from this surface e to the power of minus a

lambda x. So radiation emitted from this surface is i prime lambda 0 reaches the plane x after

attenuation to the gas plus emission by all these gas elements. 

The gas elements will emit radiation in this direction reach here, so those gas elements will

emit this much radiation and this layer is d x delta. We have to integrate for all gas elements

from 0 to x and take care of their attenuation. This is the attenuation term and this is the

emission term. The emission term is an integral.  The attenuation term, is the decrease in

intensity due to the absorption of the gas. The next term is emission by all gas elements

between 0 and x, which reach x. 

This  is  the blackbody emission,  this  is  emissivity of  that  layer  this  layer  and this  is  the

attenuation which depends on the distance between this point and this point. We are able to

express the intensity at location x in terms of what started from a surface 0 after attenuation

through the gas and arrived at x. The next one is summation of all emissions from all layers

between 0  and x,  and  their  attenuation  depending  on the  location  of  the  gas  layer  with

reference to this plane x. 

This is a very important result, which we will see many times and one must clearly recognize

the general formal equation, but there are a few approximation which will help us. Suppose,



we had a cold gas, gas temperature is very, very low. Then this quantity will be very small

emission  by  the  gas,  so  we  neglect  the  second  term.  Then  we  have  a  very  simple

approximation  for  attenuation  where  emission  is  small.  This  may be  irrelevant  in  some

situation where the gas temperature is very small compared to the temperature of the solid

surface here. 

We imagine there is a hot ball or furnace emitting into a cold gas in which case the emission

term is small, only the absorption term plays the role. The other extreme is suppose, we have

an interior of a very large medium extremely large medium, so that the surface 0 and surface l

are very far away, then the intensity that you see will be dominated by the emission term. In

the interior far away from the walls, you might be able to only represent the intensity by this

kind provided, a lambda is large. Now we want to make this result little more general.  This

result was obtained assuming a lambda as constant independent of space.

(Refer Slide Time: 27:43)

Now, it is not true. The absorption coefficient a lambda is the function of space. We can from

basic physical background that this coefficient depends upon the concentration of the gas of

the i species, depends on temperature depend on also total pressure. If along a certain path the

temperature is varying pressure is varying the concentration of the gas are varying then this

will not be a constant.  So a lambda is a function of x and not a constant, we have to redo the

calculation to allow for the fact that the absorbed coefficient varies along the path, in which

your ray is travelling.



When that is happening, it is good to define another quantity called Kappa lambda, which is 0

to x a lambda the dummy variable. Now, this is a non dimensional quantity and is normally

called the optical depth. It is a very convenient parameter or actually in this case variable

whether it will be function of x note. We can redo your integration and easily derive that the

intensity of the gas or certain location Kappa lambda is equal to i prime lambda 0 e to the

power of minus Kappa lambda plus 0 to Kappa lambda i prime lambda b of Kappa lambda

tilde at  dummy variable  e to the power of minus Kappa lambda minus Kappa lambda d

Kappa lambda tilde. 

This is the general equation when the absorption coefficient of the gas is a function of the

path along which you are travelling. We define a quantity in terms of the non dimensional

optical  depth.  We  are  implicitly  accounted  for  the  variation  absorb  coefficient  with

temperature pressure and concentration. This is the result, which is the basis of all our future

discussions. The advantage of this generalized equation is that we can take care of variations

of a lambda with path because it is built into the definition here, so this will be the basis for

our calculation. Now, this equation gives you the directional spectral intensity in a given

direction.
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Just to give you example. Now, let us take two parallel planes. So this is a useful tool to

understand in any given direction how intensity is changing. But finally, what we want is not

i prime, but flux. The flux is obtained after averaging the intensity over all angles theta and



phi. If we recall our definition of radiative flux it was nothing but integral omega of i prime

lambda cos theta d omega. We look at the definition of i prime lambda and we will see that

cos theta is built into the definition. 

So,  is  the d omega,  this  follows from the definition of  i  prime lambda in terms of pure

lambda. Now, this integration can be tedious, but if we assume gas is isotropic emitter, then

integration is somewhat simplified in the direction phi everything is same. So, you integrate

to get 2 pi, 0 to pi i prime lambda cos theta. Write this in terms of sine theta d theta. So

integration of phi gives you 2 pi and then you are integrate over all angle 0 to pi. Let us

visualize this for you, so your plane and you integrate over this and also this. 

Integration is based on 0 to pi. So it covers in this plane parallel situation all intensity going

upwards and downwards. So once we solved for the directional spectral intensity by solving

these equations we then plug it into this expression to get the flux and finally, this is what

matters q R lambda and its derivatives. Now, the question is how do you do the integration.

Now, for convenience we will divide that again in two parts the upper and the lower and this

becomes necessary, because if we look at a layer the center of the gas here the radiation going

downwards is coming from the upper wall and radiation going upwards is coming from the

lower wall.
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It makes sense to split this integration 0 to pi as 0 to pi by 2 plus pi by 2 to pi. The advantage

is in the region 0 to pi by 2 if we define mu as cos theta this is greater than 0 for theta



between 0 and pi by 2, where this quantity mu is negative for theta between pi by 2 to plus pi.

These are the definition we are assuming that the layer we draw normal here and it is 0 to pi

by 2. This is pi by 2 to pi. It will go through, all this somewhat tedious calculations.
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So our q R lambda becomes 2 pi into 0 to 1 i lambda plus upper going radiation mu d mu

minus 0 to minus 1 i plus downward radiation mu d mu. We here are considering all rays

moving upwards from the bottom plate to the top plate. The other case we are considering all

rays moving downwards from the top plate to the bottom plate. So schematically the first

direction, we draw this. 

So, i lambda plus is intensity that is emerging from this plate through this gas a lambda i

lambda minus is radiation coming through the top surface and top layer gas. This involves 0

to pi by 2, so where mu is cos theta. So, when theta has been 0 to pi by 2, this quantity is

always positive and the second one involves the theta value between pi by 2 and pi because it

will be negative. Now, we can write what is i lambda plus and i lambda minus. Let me first

write what is i lambda plus.
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All intensity going upwards is equal to all intensity going upwards from the bottom surface

and e to the power minus Kappa lambda by mu and the second term is very similar to what

we have done earlier, only some notation has changed. We have explicitly accounted, we are

measuring everything with respect to a vertical direction and this mu and this mu is coming in

because of the difference between the direct radiation and the slanted radiation. 

 All rays which are not travelling perpendicular to the 2 plates are going to travel longer

distance and hence we divide by cos theta. That is the only thing we introduced here in our in

our discussion, otherwise this is very similar to the earlier one. We plug everything in into

these equations and calculate the upward and downward radiative flux.
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We do all this integrations, then we will get the upward radiative flux will be equal to we will

write down the expression and explain what these terms are. This is an important result after

integration over all angles. Notice that there are two terms and b lambda 1 by definition is pie

times i plus lambda 0. This is the upward travelling intensity from the lower surface and

which is assumed to be diffuse isotropic. So, pie times that is radiosity. That is radiation

leaving this surface which is radiosity. The second term is the emission term which has not

really changed that much. 

That is q R lambda plus upward going ray. Then we come to downward coming radiation,

which is coming from the top. This will have the radiation from the top surface times the

distance which is the highest optical depth k lambda 0. The second equation right now here

is, the radiation leaving surface 2 at the top going downwards after attenuation through all

angles. The second term is gas radiation emitted downwards integrated over all angles taken

into account the different attenuation of the ray depending on the angle, so angle plays a very

important role here. 
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We have now list this net flux as up minus down.  The final expression for radiative flux,

which will be using quite frequently in the next few lectures, is written as follows. The net

radiative flux d lambda and lambda plus B lambda as the radiosity of the top surface of

invisible bottom surface e 2 of Kappa lambda. Let us define the functions e 3 and e 2.  First

that expression of the integral function has to be defined before we go further. We should

define the e 2 emissivity; you can define e 2 over here. 
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Now, e 2 had to be defined here, just we will define here, what is e 2 of x. It is nothing but 0 2

1 mu to the power of n minus 2 e to the power x by mu d mu. This is, e n f x. This is called

the  exponential  integral  function  and  plays  a  fundamental  role  in  integrate  transfer.  It

accounts for essentially angular integration. We are getting e 3 and e 2 both here. 
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We will go to the next page, this has to be e 3 and then we will put a negative term here,

which is a 2 b 2 lambda in the top surface. Let us put this as 1 and this is 2, so the radiation

from the below goes up and radiation above comes down there is a negative flux and the

distance travelled here is where k lambda 0 is equal to 0 to l a lambda d x the full optical

depth  of  the medium.  There are  two more terms,  one all  gas  radiation  emitted from the

bottom surface,  another  from the  bottom layer.  This  is  the  radiation  emitted  by  all  gas

elements lying in this region and upward region both are there. That will emit upward, that is

positive. 

Then minus 2, this is integration from Kappa lambda to Kappa lambda 0 e lambda b e 2 of

Kappa and tilde minus Kappa lambda d Kappa lambda tilde. This expression for radiative

flux must be properly understood the first term is the emission from the photon, leaving the

surface one and on attenuation reaching the point of interest to us. This attenuation term takes

account angular distribution of photon or not all photons are coming vertically. Some of them

are coming at an angle and you are integrating all angles while upward flux. 



Then the downward flux is the radiation leaving the top surface and travelling that distance.

The distance travelled now is counted because everything is counted this is x going upwards

this is 0, this is Kappa lambda 0. So, when you come to this point your traveled distance

Kappa lambda is assumed as Kappa lambda at certain radiation. That is the downward flux

for  the  top  surface.  Then these are  emission  by the  gas  elements  between 0 and Kappa

lambda, which reach the surface, finally emission from all gas elements above this. 
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Let me show this schematically, so this is one term first term in the equation. Surface one,

surface two, second term in the equation is radiation from this surface coming here. This is 2

and this is 1. This is now element two, this is element one, and the third element is emission

from gas  layers  here,  which  comes  here  and  fourth  element  is  gas  layer  here,  emitting

radiation here. 

One must fully understand the role played by these four streams, stream one is the radiation

leaving surface 1 by either by emission of reflection and after attenuation, which is angle

dependent  integration  reaches  this  layer,  which  is  Kappa  lambda.  The  second  term  is

radiation leaving the top surface coming down to the level Kappa lambda. Hence, it travels

the distance Kappa lambda 0 minus Kappa lambda to reach here. 

The two of the terms are radiation emitted by all layers from Kappa lambda tilde to Kappa

lambda tilde plus d Kappa lambda tilde, this layer and integrate all emissions from surface to

Kappa lambda to get the third term. The fourth term is radiation emitted downwards by all



gas layer, lying above Kappa lambda.  They travel distance Kappa lambda or a Kappa lambda

tilde, which is built into the exponential integral function. These four terms contribute to the

flux in that  flux at  any layer  is  the addition of all  these four  terms and by our notation

radiation moving downwards is positive radiation moving upwards is negative. 

That is why terms two and three which are terms coming down and negative, while terms one

and three which are terms going upwards is positive. We have at last got an equation and this

geometry  we  used  is  called  the  plane  parallel  model  or  atmosphere.  This  is  simplest

formulation radiation problems it is essentially 1D model. We do not account for variations in

y and in z. We only worry about variations in x, so this is an approximation which is alright

as long as the distance between the plates is large compared to the length of the plates in

which case we can neglect, what is happening in the ends. 

We have simple plane parallel model, so this works quite well in many situations, but if we

have a for example, a cubical enclosure with gas in it, then this is that about approximation

this is a cubical enclosure with gas. Here the plane parallel model may not work well because

the gas inside this cubical box is getting radiation from all the six surface of the cube. We

have to go for the full 3D formulation for this case; that is fairly complicated and hence

cannot be easily done anything in the class. 

We will stick to simple one dimensional model of the plane parallel atmosphere to illustrate

all the basic issues in during transfer. We presume that you know that if we had to deal with

3D model, it is similar to 2D model, except that there is more complexity and computation

involved, which can be tackled in the real world, but we will be using only the 1D model for

teaching purposes. 

Thank you.


