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In the last we lecture, we looked at radiative transfer in enclosures and our primary focus was

on the radiosity method and this  involved essentially, inverting a matrix.  Today with the

availability high speed computers, inverting matrix is very easy job and done quite easily. So,

most of the problems involving radiative transfer enclosures, is solved by this method, but

today we will talk about a method somewhat older one, which has been used and is called the

integral equation approach. 

This method is not so popular now because it is somewhat more tedious than the matrix

method, but we would like to introduce this method because when we later go on  to study

gas radiation, we have to solve integral equations. It  is good to get an exposure to the way of

solving integral equation through a simpler example. In  this example, we will first set up the

problem.
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The  idea is that if you have a surface on that surface, you have a location and that we will

call as r vector k everything is varying continuously here. The heat flux at that location, we

will use the symbol qk  ,  it is nothing but radiosity at that location minus the radiation. This

formulation is not different from what we did earlier, except that everything is continuous

variable not a discreet number. 

 We can also write the radiosity at that location  as the function of the emission for a gray

surface, everything function of the location rk   and of course, reflection. So, as far as the

problem is  concerned it  is  identical  to  what  we did earlier  except,  everything is  varying

continuously. Though the important difference is the irradiation, the radiation is coming into

this location. 

Now, it will be integral over surface j of the radiosity of surface j. The shape factor F d A j

and d A k times d A j. This is the radiation link surface A j, this fraction of the surface  k We

sum  over also surface   j equals 1 to n. This integration within that single surface. And all of

us know by now that this differential shape factor is the basic quantity, which we know as cos

theta k, cos theta j by pi S A j whole square d A j.   This also is known.

This is the formal statement of the problem and as in the previous examples we have done,

the aim is to know how the radiosity is varying with distance at the each of the surfaces.

Previously, we solve this problem by dividing the surface into discreet surfaces. Then we use

Matrix   version  and as  pointed  out,  that  is  the  preferred  approach today because  matrix



inversion is  very fast  and efficient with the use of computers,  but imagine that  we were

solving this problem more than 50 year, 60 year, or more than 100 years ago.

When we had no access to computers then you would have look for some analytical way of

solving this problem, and people managed to solve it without using a computer. We just take

a walk through history and look at how people solve this problem, in the pre-computer era.

This will give us an insight into a method of solving integral equations analytically. Now, this

is best done if we take simple example.
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We will take a very simple example of a tube, which is electrically heated from outside. We

will come across  this problem in many situations, in which you have to heat a tube. So,

certain amount of electrical  energy is  a supplied here.  There is  a constant heat flux here

applied by the electrical heating, We  want to know the temperature variation in the tube. As a

functional  distance  and  more  specifically,  you  would  like  to  know  where  a  maximum

temperature of the tube is and what upper limit of the temperature so that  we can choose

suitable material for this tube. 

This is the simple problem we are  going to do now, we will treat this ambient as 0 degree

Kelvin this really for simplicity.  Later, we can easily extend this problem when the ambient

is not at 0 degrees temperature. Now, let us say that tube diameter is D, length is L and for

convenience we will call this surface as 1, the other opening as 3 and the inner surface of the

tube as 2. It  is a 3 surface enclosure containing the inside the tube and the 2 side openings.



We can say that the heat flux to be supplied to the tube, has to be equal to the radiosity of the

tube.

 We have measured all the distances as x from the end of  tube, we  take a element here that

element  is  between  y  and  y  plus  d  y.  For  convenience,  we  will  non-dimensionalize

everything. Psi φ is x by diameter of the tube and non dimensional y is y by again D. These

are non dimensional quantities, which makes our life easier. The  length by diameter ratio of

the tube is small non dimensional number. So, with that you can see that the radiosity of the,

this tube will vary with psi and minus irradiation will be radiation leaving other parts of the

tube, and arriving here times the shape factor between d psi and d eta. 

Once we know this shape factor F d psi d eta and q 2 is given specified electrical heating. So,

given q 2 and F d psi d eta, we solve for B 2 of psi that is the proper statement, we  can see

that this is in integral equation because the unknown function is inside the integral. This is

not commonly taught in most colleges. You are taught how to solve differential equations,

you are taught to solve algebraic equation, very rarely you are taught how to solve integral

equation, where the unknown function is inside the integral. 

That is the purpose of this particular example, to tell you how you can solve the integral

equation. Now, before we go to that we need to look at this what is called kernel. In  integral

equations, the unknown function here multiplied by kernel. The function also appears outside

and that is a non homogenous term which is the specified the heating. What is this kernel, we

kernel can easily obtained from standard table for shape factors. 
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So,  F d psi  d  eta  will  be  equal  to  1 minus  modulus  of  square  plus  3 by 2 modulus  of

difference in distances and at the bottom we have that acting as course multiplied d eta.  This

is the typical nature of the function. We  can imagine that this will not be easy once, this is

plugged into the equation, we wrote down it is not easy to solve this equation analytically. It

can be solved numerically, there are lots of techniques available and that is not the aim of the

lecture. The aim of the lecture is to find a way to solve this analytically because that gives

more insight into the solution. We go for what is known as exponential kernel approximation.

 This kernel we want to approximate as an exponential. Now,  where you can see when eta

equals psi, you can see that F d psi d eta equal to essentially 1 into d eta. Now, as you go

further away as eta 1 as psi increases F d eta d psi tends to 0. This function has a largest value

when eta equals psi, and as eta and psi if you recall eta and psi those at we have not forgotten,

what  we wrote  in  the  last  period.   There  is  one  element  here  another  element  here  this

element, which is psi and psi this is eta. So, when these two elements are far apart, than the

shape factor between these two will be very low, when they are next each other that is when

the shape factor is maximum. We want to replace this function by an exponential and for this

case.
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The exponential approximation is that F d psi d eta is approximately, equal to e to the power

of minus two times eta minus psi. We might wonder how we arrived at this approximation.

Now, there are actually two things involved. We assumed that F d psi d eta is approximately

equal to a times e to the power of minus b mod of eta minus psi We  need to find these two

quantities. From the original function, we know that eta equals psi this function is 1, so we

want to keep a equal to 1, if possible after that we need to find b.

 The b that is chosen depends on what kind of approximation you want for this function. So, b

is chosen such that the integral of this quantity over the length, if we recall the previous

expression. We want this integral to be same both for the actual kernel and the  approximate

kernel. So, a and b are chosen so that at the origin it tends to the value 1. This quantity goes

to 1 and as the distance between the two elements goes up it tends to 0. We will now show

picture that illustrates that nicely.
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This is a tube where you looked at this is the problem example, x distance from one end and y

is distance from the same end. These are two elements starts d psi and eta plus d eta. We can

imagine the flux is going to vary somewhat like this, that is going to be realistic because , we

are not seeing much of the ambient. It  will be the hottest  and the   flux will be the highest

radiosity and as we go to edges, where we are seeing the cold background here the radiosity

will come down. These two are understood. Now, we go to the next picture.
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Here we show how we have made the approximation. The approximation that we have made

the solid is actual function, the dotted line is the approximation. We can see that by choosing

a equals 1 and b equals 2, we have ensured that this function is slightly lower than the actual

function between 1 and between 0 and 0.5 and beyond 0.75 its somewhat higher, but the area

under  curve  is  almost  same.  That  is  our  main criteria  we want  the  function  to  correctly

reproduce the behavior of the kernel at the origin.

In addition the only other constant we have which is b.  So, chosen that area under the curve

is actually more complicated function and exponential approximation should be same. We

can see that it  is a  quite good, the fit between the approximate function and the  actual

function and  we except that this will give us some useful result. Now, we go back to our

solution methodology.
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 Once we make this approximation we can write down the heat flux on the left hand side is

equal to the unknown radiosity on the right. Now, since there is a modulus function involved

it is better to split the integral 0 to l into two parts, 0 to psi then you have the unknown

radiosity due to the minus. Now, module involved  we  are dealing with psi less than eta.

This will come at what as psi minus eta into d eta,  the  second term will be minus going from

psi to l again b 2 of eta, e to the power of minus 2 eta minus psi d eta. 

 What we have done is to avoid the modulus term, we split the integral 0, l into two parts 0 to

psi and psi to l. In  a both cases the exponential is decaying, which is to be believed  and now



we have  the  full  integral  equation  in  front  of  us.  Now, one  of  the  great  advantages  of

choosing an exponential kernel approximation is that exponential function, repeats itself on

differentiation. That advantage we want to exploit, our aim is to convert the integral equation

to differential equation. That is because we know well known techniques to solve differential

equations, all of you have studied it. 

On the other hand, very few have a mastery of methods of solving integral equations. If  you

convert the integral equation to the differential equation then we can use  standard techniques,

which we learnt as well as a easily available in the literature. So, how do we get differential,

we have to eliminate these two integrals. We can see very easily that when you differentiate

this  function twice, exponential will  repeat itself.  Then we subtract the equation we have

obtained  after  two  differentiations  from the  original  equation  all  the  integral  terms  will

disappear. We will be left with a differential equation. This before you go for this  you need to

know little bit about, what is known as Leibnitz rule.
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Now, Leibnitz rule is concerned with the following issue. Suppose if we want to differentiate

an integral, where the limits of the integral are functions of the x and inside that is another

function of x, y and d y.  The Leibnitz rule states in order to differentiate a function in which

the limit of the integral or itself is not a constant, but functions of this quantity x. We have to

first differentiate this function and evaluate this function at y equals b minus differentiate this



function,  the  lower  limit  evaluate  the  function  the  lower  limit,  then  you  can  take  the

differentiation inside.

So, Leibnitz rule lays down the condition that you cannot just mearly take the differential

from outside  to  inside  the  differential  equation,  if  the  two limits  in  the  integral  are  not

constant. Many of you may have done it because you may have done it with limit, which are

independent of x, in which case these two terms drop out and we  have left with this, this all

of you are familiar with, but many of you may not familiar with the situation where the limits

of the integral are not constants, but functions of x.

Now, let us apply that to one of the example. Suppose, if we want to know what is d by d psi

of 0 to psi B 2 of eta, e to the power of minus 2 psi minus eta d eta. Here we see that there

upper limit psi is a function of this quantity. In  applying Leibnitz rule you have to say d by d

psi of psi which is 1, and calculate this function at eta equals psi that is 1. We  are left with B

2 of psi then this of course, doesn’t continue with 0, doesn’t continue with psi and not a

function of psi. Then you take the integral in psi than this differentiation comes in and gives

you minus 2. It  is minus 2 into 0 to psi B 2 of eta e to the power of minus 2 psi minus eta d

eta. We are done the differentiation similarly, we have to do the differentiation for the other

function that is there where, the lower limit is a function psi. 

Now, we do this twice, when we do this twice and we subtract it from the original integral

equation.  These  terms  will  cancel  out  because  when  we  do  two  differentiation  as  a

exponential, than in the first one if we have minus sign, you differentiate again you get a plus

sign. So, finally you are left with the function same as the function that you have seen in the

first equation. When we subtract, the twice differentiated function from the original function,

all the integral term will cancel out. We  will see how to eliminate the integral. And when

eliminate the integral finally, you are left with a very simple equation.



(Refer Slide Time: 25:58)

It is d square B 2 d psi square is equal to minus 4 q 2. The  integral equation is simplifies to a

differential equation because we have used the exponential kernel approximation, where the

kernel is repeating itself. Now, what are the bonding conditions Of course, this is differential

equation, all of you know how to solve it. And after solving it we will have two constants that

is we differentiate once d B 2 by d psi will go minus 4 q 2 psi plus C 1. Now, the problem that

we have stated is symmetric. 

So, by symmetry we know that the radiosity has to reach a maxima at the middle of the tube.

We can see that the tube is there, we plot the radiosity and right at the center of the tube at l

by 2, it will be a maxima. This slope will be 0. We take that and psi goes l by 2 is 0, you can

get c 1, c 1 becomes 2 q 2 l, put l by 2, here you get that this is where your c 1 then you

integrate once more.
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Now, integrate once more you get B 2 of psi is equal to minus 4 q 2 psi square by 2 plus 2 q 2

l psi plus c 2, one more constant.  We do not see any other boundary condition, which is

easily available. We exploited symmetry, but  we don’t have it, but although we do not have

boundary condition, original equation that we wrote down, has to be satisfied at all points.

So, one way to do it is to satisfy original integral equation at some psi. Here take psi to 0 for

convenience. We know that q 2 of 0 has be equal to B 2 of 0 minus 0 to l B 2 of eta, e to the

power of minus 2 eta d eta, we know that at psi equals 0. We plug this expression into this

integral, integrate and when you do that you will get a expression for B 2 of 0. That is c 2, we

will get the expression for c 2 and that concludes the problem that we need to solve.

We saw that they were two constants we applied because we have second order differential

equation,  one  constant  came for  symmetry and another  constant  came by satisfying  this

equation, integral equation at some point it can be psi equal to 0, psi equals l are in the equals

l between anywhere does not matter. Satisfied at one point, and put this function back in and

integrate it we will get c 2. We  will get the final solution for the radiosity. We can then even

estimate, the actual temperature that is obtained in this result.

Now, having solved the equation we can now ask  if we solved it correctly so that we can

check the result that we got will B 2 of psi is equal to q 2 into l plus 1 plus 2 into psi l minus

psi square. So, once we get c 2 the answer should get. We  can verify that d B 2, d psi is

indeed 0 at psi equals l by 2 that you can see easily because d B 2 by d psi is nothing but 2 l



minus 2 psi Then you put it as psi equals l by 2. We can see that l minus 2 psi l by 2 l minus l

is 0 and this becomes 0. This is the final result for the variation of radiosity with length and

once, you know radiosity and we  know the imposed heat flux, you can also calculate the

temperature.

This is the method that we have shown for solving enclosure problem, where the variation

radiosity is continues and where you are able to use the kernel approximation than you are

getting complete analytic solution for radiosity, for temperature and any other property that

what you want to derive. This is an interesting result, a very special case and these results are

very useful to us because tomorrow, when you solve this problem numerically using radiosity

method and matrix inversion. 

You would need to verify your solution against some other solution. At that time this kind of

problem will act as your test case. You may divide this tube into hundred parts, and have

hundred radiosity, inverse the matrix and ultimately plot the function, and see how close it

comes  to  this  expression  here.  These  are  very  useful  results  that  we  have  obtained

analytically, which can be used to tune a new code because when you solve the problem

numerically, you have to make judgments about accuracy. 

We have to decide if you want to divide the tube to hundred parts or thousand parts, before

you do matrix inversion. Now, that really depends upon what kind of accuracy that you want

to attain. The accuracy goal has to be stated clearly and once, you state your accuracy goal

than we can decide suppose, we want either radiosity or temperature accurate to one percent

then that will determine, how fine you want to divide tube into many, many parts.

This  analytic  solution  will  help  you  come  up  with  the  appropriate  number  of  discrete

elements, you need to have in that solution. We give the example although these examples are

somewhat simple, but it illustrate the usefulness of a few analytical solutions, which will

enable you to compare the standard numerical results with analytical solutions.  With that we

conclude for the time being our discussion on the enclosures. Now, we move on to a very

important  topic  so,  far  we   looked  at  radiative  transfer  and  surfaces,  radiative  transfer

between surfaces using the concept of shape factor and enclosures. We have given a fairly a

good survey of what is going on this area, but the most important problem that we have to

deal with now is gas radiation.
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So, far we assumed that radiation leaving a surface, and when it reaches another surface in

between there is no medium, which absorbs or scatters radiation. Now, we want to tackle the

problem, where we want to look at an absorbing scattering medium between two surfaces.

We want to know how it attenuates radiations, and how to calculate that attenuation. If we

recall the basic concept of intensity in a given direction given wave length was so defined

that when this radiation is going through a medium, where there is no absorption or scattering

this remains constant. If the medium through which it is going is non absorbing and non

scattering. 

Now, we do ask  our self what will happen to this quantity, if the medium is absorbing or

scattering.  If   the  medium is  absorbing or  scattering,  immediately, you  can  see that  this

quantity cannot be constant because we think this is a stream of photon, some of the photons

will be absorbed, some will be scattered out and some of the photon will be scattered in. We

had account  of  all  those features  to  do that  we need some basic  laws,  and definition  to

proceed further.

So, let us think of a very simple example of medium of thickness d x. The  radiation intensity

arriving at d x is that and what is going out at x plus d x is something else. The  two are not

equal. The change in the intensity between these two is obviously d i prime lambda. Now, the

question is what does it depend upon, what does the change in intensity depend on. One thing

we can easily see is that the intensity decreases, this quantity has to be negative that is quite



clear. Secondly, it adds proportional to the thickness of the element that is quite obvious, the

thicker the element there is the more absorption and more scattering.

We exploit the change in this that has to be proportional to the thickness. It also proportional

to the incoming intensity because this intensity  is a measure of the photon flux. If there are

more photons, there  will be more decrease of the intensity. There are 100 photons here and

ten  photon  can  be  absorbed as  a  it  goes  through  the  medium here.  Now, there  are  400

photons,  we except 40 photons to absorb. That is  expressed from the fact that d i  prime

lambda is proportional to i prime lambda and the  thickness of the element.

 There is something in the front of this which is an unknown, and which is what we call the

extinction coefficient. This  statement you are saying is that change in intensity in a given

direction and wave length is  a proportional to the incoming intensity, proportional to the

thickness of the element, it is negative because decreasing and the  proportionality constant is

called the extinction coefficient. 
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Now,  this is something called as the Beer’s law and Bouger’s law that is the matter of which

text  book,  you will  look up.  Now, this  law was discovery by many people  in   different

branches of science, this has been used by people dealing with illumination and optics. It is

used by people who do astrophysics. It is also use by people how do radiation in furnaces. So,

and of course, it is also used in nuclear radiation laws.



This  law has been discovered in a wide variety of contexts and some of them call Beer’s law

or Bouger’s law. The name  is not important except that, this law follows logically. We can

verify this law in the laboratory by doing experiment, but what we have stated so far is it

follows  essentially, from common sense because  we are  expecting  the  decrease intensity

depending on thickness of the layer and the  incoming radiation, and the  proportionality

constant k lambda is called the extinction coefficient. 

This  extinction  coefficient  has  two  parts,  one  is  absorption  coefficient  and  another  is

scattering coefficient. And note that as per this equation, this quantity has to have a units of

eta minus 1 so that this product is non dimensional and this  same as this. So, extinction

constant is very important thing because 1 over extinction co-efficient can be thought of as

mean free path on the photon, that is the mean distance that a photon travels before it is

absorbed or scattered. 

This  quantity is very useful quantity because if k lambda is shown to be 1 meter minus 1

then we say that photons travel approximately 1 meter, before they are absorbed or scattered.

That  is  our  physical  understanding  of  k  lambda  that  1  of  k  lambda  is  measure  of  the

approximate distance on an average, but a photon travels before it is absorbed or scattered.  It

is sum of two quantities, the absorption co-efficient where in the photon is absorbed by the

material  and  disappears  from  your  calculation,  or  photon  travelling  in  given  direction,

suddenly changes direction and goes some other direction. 

 As for as this direction concerned you have lost that photon. So, once the photon is scattered

out is not following this part that we have initiated, this part is going some other part from the

direction.  As far as this direction is concerned, we have lost the photon because it is scattered

out of this direction.  Now, in this  first part  of the course we will  focus primarily on the

absorption co-efficient, and take up scattering much later in the course because it is much

more complicated. So, absorption is our main focus.
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The absorption coefficient of a gas or medium can be a function of many things of course,

function of a wave length. Function of the temperature of the medium obviously, depends on

the total pressure, depends on the concentration of the individual gas. We can provide this

function, how the absorption coefficient of gas or any other medium depends on temperature,

total pressure and the  concentration of gases or particle. 

Once that is given to you, this function then of course  will be  quite straight forward, but we

must mention that this is most full quantity that we deal in radiation because a lambda is an

extremely, strong function of wave length.  It  varies very rapidly from let’s say from one

wavelength to other. It is a very extremely complex function, and hence a lot of time has been

devoted by hundreds of people over a last period, to find out how to solve this problem,

where in  the basic  function we have got  a lambda is  an extremely strong function wave

length.

We got a very high value then within few 0.5 or 0.2 microns it will come down to almost

transparent.  Essentially a lambda fluctuates very rapidly and that as all of you must now

realize, is not something computer likes. Computer likes function which are monatomic in

nature, which very slowly and which can be easily represented by a simple function.  But

unfortunately radiation transfers in gases a lambda, as you will see later is extremely complex

function of lambda. It  is not easy to specify a function in the class. 



We will spend some time later in this course asking, how this function varies with lambda.

How we ultimately handle this complexity which is inherent in gas radiation heat transfer.

Now, the only thing that is important about this result we have written is that it depends on

total pressure, and this of course depends on the  partial pressure of the gas. The  absorption

co-efficient of a gas depends not only on the temperature, but both on total pressure and

partial pressure. 

This  is  the  dependence  which  confuses  most  students.  For  example,  suppose  you  have

mixture of nitrogen and carbon dioxide in a container. Nitrogen is transparent to almost all

radiation, but carbon dioxide is strong absorption in the infrared.  All though N 2 does not

directly absorb any radiation because it is a, linear diatomic molecule, we have to figure out

what role nitrogen is playing in this mixture.

Nitrogen itself will not be able absorb any radiation because it is a linear diatomic molecule,

but  it  can  assist  carbon  dioxide  in  trying  to  absorb  some  radiation.  The   way nitrogen

indirectly  affects  the  absorption  of  the  infrared  molecules  in  this  situation,  one  need  to

understand that what nitrogen does when it collides with carbon dioxide and broadens, the

absorption curve of that mixture. 

 The higher temperature and higher pressure is always preferred we want to calculate, the

absorption coefficient of mixture of gases. Now, this concept will be dealt with great detail

later in the course, when we look at how to get this function a lambda. 
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Right now, we will look at an absorbing medium and neglecting scattering function, and go

back to original equation which we wrote down which is d i prime lambda d x is equal to

minus i prime lambda. Now, this quantity deals only with absorption, and so we will write

into a prime lambda no scattering is looked at right now. Now, all of you know by now that

any medium liquid, solid or gas, if it absorbs radiation, it also emit radiation. We have to put

an emission term here which we have so far not mentioned. The way to look at  this the

change in intensity while going to certain path is equal to loss of intensity due to absorption,

and some gain in intensity, due to emission. 

The real rate of change of intensity will depend both on the loss of photon due to absorption,

as well as the gain that may occur due to emission by a photon. Essential by looking on this is

there are photons coming here partly absorbed, and two of them come here, but can always

by emission from inside which can add to that, that is a second term. 

  The second question is how to estimate the intensity emission by the gas. For that we have

go and appeal to Kirchhoff’s law, all of you know that if we neglect the term and solve for the

i prime lambda, it will be solved i prime lambda of 0, e to the power of minus a lambda x

assuming  a  lambda  is  a  constant.  In  the  absence  of  the  emission  intensity  declines

exponentially, and how rapidly this exponential decay occurs depends upon  the absorption

coefficient of gas, and the  length traveled by the radiation peak. This is a very important

result and is used in this field widely. But notice that we can also define absorptivity of this

gas absorption coefficient which is a dimensional quantity.
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Now, we talk about absorptivity, which is fraction of radiation that is absorbed that is what

was coming in and what went out divided by what is coming in. This is absorptivity. Now, if

we remember  Kirchhoff’s law that  directional  spectral  absorptivity has  to  be  is  equal  to

directional spectral emissivity. This is following from the basic statements Kirchhoff’s law

that states that the directional spectral  absorptivity, and directional spectral  emissivity are

equal.  If they are equal then you can write emission. We have 1 minus i prime lambda x

minus i prime lambda 0. 

This we already solved if you recall.  We will get in the absence of emission this kind of

simple expression for intensity. The final expression for absorptivity if we substitute it here, it

is i prime lambda is 0 you can write then alpha prime lambda is equal to 1 minus a lambda x.

This is important expression and so this we know is equal to emissivity. This is an important

use of Kirchhoff’s law for gases. We will continue this lecture next time where, we will use

this Kirchhoff’s law to estimate the emission intensity, which we did not include in the first

derivation.


