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In the last lecture, we looked at  radiative transfer in an enclosure containing gray diffuse

isotropic surfaces. We will now look at situations, where the assumption of a gray surface is

not good. We saw earlier, when looking at radiative property of surfaces that there are many

materials which cannot be assumed to be gray; that is their emissivity and absorptivity are

functions  of  wavelength.  Now, that  immediately  causes  a  problem.   We will  take  a  few

examples today to illustrate how the spectral variation of properties of materials causes very

unusual situations, which is not encountered when we deal with gray surfaces. 

(Refer Slide Time: 01:12)

The example we  are going to take is a Dewar flask. All of us have seen it, in many situations,

where people carry liquid nitrogen in these flasks to the laboratories. These are essentially

containers, which contains liquid nitrogen or liquid oxygen or hydrogen, and they are like

thermos flask, but of a larger size.  They are used to let us say to store liquid hydrogen or

liquid nitrogen.  These are at very low temperatures, typically below 100 degrees Kelvin and

so  we will imagine that from the ambient, heat will leak into the flask. 



 The main purpose of this Dewar flask is to cut down the amount of heat leaking from the

outside into the flask, because as the heat leaks in the liquid will start boiling and we will lose

the liquid.  Now normally, if we have looked at  the heat transfer literature,  generally it  is

believed that  heat  leakage in  this  case will  be proportional  to  the difference between hot

temperature and the cold temperature.  This is the well known Newtonian cooling law, which

says that the heat transfer from a hot surface to the cold surface is essentially proportional to

the temperature difference.

 If this is high, then we will expect the heat leakage to be high, and vice versa. This is true in

most situations, as the temperature difference between the hot and the cold object increases,

more heat  is  transferred.  But  today, we will  see in  the Dewar flask case,  there is,  a new

situation, wherein the heat transfer is not proportional to the temperature difference. Not only

that, that there are situations wherein, as the temperature difference increases, the heat loss

actually decreases So, as the temperature difference increases,  the heat leakage decreases.

This is completely counter-intuitive result; goes against all the previous understanding of the

nature of heat transfer between two surfaces. This shows that, radiation heat transfer has some

unusual features, which make it different from conduction and convection heat transfer. 

In conduction and convection heat transfer, in most situations, we can be quite sure that the, if

the temperature difference between the two objects increases, then the heat transfer between

them  by  conduction  or  convection  will  be  larger.  To encounter  situation  here,  radiative

transfer can decrease, as the temperature difference increases, in what is called a paradox.

Our aim will be to understand this paradox, in the context of what we have learnt so far about

the way emissivity variation varies with wavelength and temperature, and how radiation is

exchanged between two bodies. 



(Refer Slide Time: 04:51)

So, just to recap, Dewar flasks are used to store cryogenic fluids like nitrogen, hydrogen and

helium. The boiling point of hydrogen is 20 degrees Kelvin, when the pressure is 1 bar, while

that of nitrogen is around 76 Kelvin. If   these liquids are carried in Dewar flask, and the

ambient  temperature,  the  surroundings  is  around 300 Kelvin,  room temperature,  then  the

difference between the ambient and the hydrogen contained in Dewar flask is 280 degree

Kelvin, while that between the ambient and the flask containing liquid nitrogen is about 223.

So, by normal wisdom, we would expect the heat transfer into the Dewar flask containing

hydrogen to be larger than that containing liquid nitrogen, because the temperature difference

is larger, but it was found by experiment that this is not so. 



(Refer Slide Time: 06:01)

 Laboratory observations show that, heat leakage into the flask with liquid nitrogen, which has

a lower temperature difference, is about 60 percent more than the heat leakage into the Dewar

flask which contains liquid hydrogen.  The question is, why should heat leakage be higher,

when  the  temperature  difference  is  lower.   This  is  the  issue  we  want  to  address  and

understand, from radiative heat transfer. 

(Refer Slide Time: 06:39)

 To do that, we treat the Dewar flask as a simple, two parallel cylinders. The inner cylinder is

at  temperature  T2,  which  is  close  to  the  boiling  point  of  hydrogen  or  nitrogen  and  the



emissivity of the outside surface which is silvered is epsilon lambda 2.  We are reminding

ourselves that, the emissivity of the surface is not constant; it is not gray; it is a function of

wavelength. Similarly, the inner surface of the outer cylinder which is also silvered is epsilon

lambda 1 and the outer temperature is T1.  Our aim is to get an expression for the heat leakage

from the outer to inner cylinder through radiation, when the  emissivity of the two surfaces

varies with wavelength. We have discussed this issue when discussing the radiative properties

of surfaces and since we are talking about here, silvered surfaces, silver is a metal, we had

discussed, quite in detail, how the emissivity of metals varies with temperature.  

(Refer Slide Time: 07:55)

The  simplest way to understand the heat transfer between the two surfaces is to do a simple

ray-tracing,  the  radiation  emitted  by surface  1  reaches  surface  2;  is  partly  absorbed;  the

remaining part is reflected and it is reflected back to surface 1 again.  One can add up the total

number of photons arriving  from 1 to 2 and being absorbed at 2 as an infinite series; the

direct contribution after 2 reflections, 4 reflections, 6 refection so on and this standard ray-

tracing technique. 



(Refer Slide Time: 08:36)
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 This is how it looks; the radiation absorbed by 2 from that emitted by 1, is an infinite series

and finally, the net radiation exchange between two surfaces can be written as follows.  These

results are derived by ray-tracing. It could also be derived in, by using electrical analogy.  This

is a well-known result. This  result is very simple and because in these results we have not

allowed for the variation of emissivity with temperature and wavelength. 
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  This result can actually be expressed in a simple way, in terms of Newton’s cooling law.

This standard law that comes from convection is, heat transfer coefficient times temperature

difference; because it is radiation, if it is a, two black surfaces, it will be T1 to the power of 4

minus T2 to the power of 4; we can expand it and we can see that, these two terms do not vary

that much when we vary T1, T2, because this is in degrees Kelvin, while the real difference

comes in here.  Many people write, Q radiation also as radiative heat transfer coefficient times

the temperature difference. They make it look like convection. If this was true, then the heat

transfer  by  radiation  should  be  proportional  to  temperature  difference.  But  this  does  not

happen, in the case of Dewar flask. In a Dewar flask, it is found that, when the delta T is

higher, the Q radiation is lower.
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 The expression we just now derived, assuming gray diffuse isotropic surfaces is not quite

accurate, and we need to look at an alternative derivation. 

(Refer Slide Time: 10:33)

In  the new derivation, now, we take into account the fact that, the spectral emissivity of

metals, because the outer surface of the inner cylinder of the Dewar flask and inner surface of

outer cylinder, are both silvered. Silver is a metal and for that, we can assume that emissivity

is a constant times temperature of that surface divided by lambda to power of 0.5.  This is the



expression which we had earlier looked at and showed how it affects both the total emissivity

and total absorptivity of metals. Now, we are going to use this result.

(Refer Slide Time: 11:17)

 

The  expression for heat transfer in wavelength range lambda to lambda plus d lambda will

now become, as an extension of the previous derivation for gray surfaces, this is now a non-

gray surface, can be written as epsilon lambda 2 epsilon lambda 1 into e lambda by e lambda

2 times divided by this quantity.  This result is very close to what we derived.  

(Refer Slide Time: 11:43)



 If the surfaces are gray, then Q1-2 could be written like this.  This is the expression we write,

but if it  is non-gray, then Q 1-2 becomes 0 to infinity, e lambda b 1 minus e lambda b 2

divided by 1 by epsilon lambda 1 plus 1 by epsilon lambda 2 minus 1.  This expression will be

same as the expression above, if these quantities are independent of wavelength and we can

take it out; then we integrate this to get that result. Now, we cannot do that, because we just

now saw that, epsilon lambda goes as B into root T by lambda.  Epsilon lambda is a function

of lambda.

 We have to do this integration very carefully to get the right result.  This result at the top can

be written as similar to what we have discussed for convection.  If we treat this quantity as not

a  strong  function  of  temperature,  then  this  is  what  is  called  the  radiative  heat  transfer

coefficient. This kind of result is used frequently by many people and it is quite adequate in

those situations where the surfaces are gray. But when we come to a non-gray surface, like a

metal, this is not going to work and we saw that observation with Dewar flask shows clearly

that, the heat transfer rate is not proportional to the temperature difference. This is the point

we want to look at further.

(Refer Slide Time: 11:17)
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This expression which is written earlier. If we integrate that expression for the spectral flux,

assuming the emissivity to be B times root  T by lambda, then we will  get the following

expression for the net radiation. Notice that, this is very different from the simple expression

involving T to the power of 4 that we obtained for gray, diffuse, isotropic surfaces. This is

much more complicated; involves T1 to the power of 5, T2 to the power of 0.5, T2 to the

power of 5 and so on, and we will not expect this expression to show a simple dependence of

heat transfer rate to delta T. Here we have a typical number for a silvered surface.  We have to

calculate this for case, when there is hydrogen; when T2 is 20 degrees Kelvin; for nitrogen, it

is 77; in both cases, T1 will be taken as ambient temperature. And if we  take this equation

and remember  the fact that, if T1 is about 5 to 10 times larger than T2, so T1 to the power of

5 will be much greater than T2 to the power of 5;  We can neglect these terms. 



(Refer Slide Time: 15:53)

 We take the ratio of heat transfer to nitrogen to heat transfer to hydrogen, then we will get

this  kind  of  number,  which  will  come  out  as  around  1.63.  This  is  very  close  to  the

observations which indicated that, heat leakage in nitrogen was about 60 percent more than

that to hydrogen. This simple spectral, non-gray approximation has given a result very close

to the observations. This clearly shows that, this is the approach we need to take, because if

we had not taken this approach, but had assumed that, the emissivity is not a function of

wavelength, as it is a gray surface, then we would not, we would get a number less than 1

here; because we then assume that, heat transfer is proportional to delta T.

(Refer Slide Time: 16:48)



To  make this point, we  more dramatic, we take up the case of Dewar flask, where the outer

cylinder has 300 degree K and I vary the temperature in the cylinder, so that delta T, when the

inner cylinder is 0 degrees Kelvin, delta T is 300; when the inner cylinder is 300, delta T is 0.

If the inner cylinder is 300, of course, there is no heat transfer, because the temperature of the

outer and the inner cylinder are same.  We start reducing into the inner cylinder, the heat

transfer will go up and we see that, up to around 150 Kelvin, the heat transfer keeps going up.

But then something unusual happens. As the temperature difference goes beyond 150, the heat

transfer starts coming down. This is the portion which is of great interest to us. This is the

portion where, if we   store liquid oxygen, or liquid hydrogen, we will be in this part of the

curve. In   this part of the curve is where, as the delta T increases, the heat transfer goes down.

This is the result which is counter-intuitive, which does not follow the traditional heat transfer

texts, which say that, as we increase delta T between two surfaces, the heat transfer should go

up; here, it is going down. 

And, to the point that, if the inner surface was really at 0 K, then heat transfer is almost 0;

although  delta  T  is  of  the  order  of  300  K.  This  is  a  point  which  is  really  what  the

understanding that, when the temperature difference is small, then roughly, the heat gain is

proportional to delta T; but when the temperature of the inner cylinder becomes very  low,

below 150 K, we start seeing another domain in which the heat transfer is going down, as

delta T is going up. 

(Refer Slide Time: 19:00)



 This can only be explained by the fact, that radiation heat transfer and temperature in the case

of radiative heat transfer, is quite complicated; especially, when the two surfaces are not gray,

but metals. 

(Refer Slide Time: 19:21)

 Because of the spectral  variation of emissivity with temperature and wavelength, we can

expect this unusual result. The  simplest way to understand this, is the impact of emissivity on

temperature. If the inner cylinder is truly at 0 Kelvin, according to this equation, emissivity is

0. Now, strictly speaking, we cannot use this equation when temperature approaches  0K,

because the phenomena of radiation that occurs at such low temperatures, are different from

what was assumed in obtaining this  equation; but still,  we can assume that,  although this

actual equation may not be valid, that as the temperature goes to 0, emissivity will indeed tend

to 0. 

This is one important feature and this is the primary reason why the heat transfer to hydrogen

Dewar flask is lower than that of nitrogen. Because, hydrogen is at 20 K and at 20 K, the

emissivity is about one fourth of the emissivity at, 77K for half of the emissivity at 77 K.

What really happens is that. the Dewar flask containing hydrogen, being at a low temperature,

absorbs  about  half  the  radiation  compared to  the  Dewar flask  containing  liquid  nitrogen,

mainly because the emissivity decreases with temperature; that is the main, but if we really

want to account for all other phenomena occurring there, including changes in the, how the

emissivity, if we take all these into account, we get this 60 percent change; otherwise, we



should get around 2. Because of temperature change alone, the emissivity of the inner surface

which is equal to absorptivity, assuming the surface is diffusive, isotropic, then the Dewar

containing liquid hydrogen should absorb about half of the radiation emitted by the outer

surface in comparison to liquid nitrogen, normally because of this phenomenon. But if we

take into account both the temperature effect and the wavelength effect, then one can show

that, the result will be somewhat more complicated than which we saw here.

This is a very good example showing how radiation heat transfer behaves in ways, somewhat

paradoxically, mainly because of the spectral variation of radiative properties, which can alter

the general rule  that  heat transfer is  proportional  to temperature difference.   We saw this

interesting  example  that,  as  the  temperature  of  the  inner  cylinder  keeps  falling,  the  heat

transfer rate keeps falling, although the delta T is going up.   This is related to the fact that

emissivity is a function both of temperature and wavelength, and that plays an important role.

By looking at  the non-gray nature of the radiative properties,  we are able  to explain this

unusual  feature  of  radiative  heat  transfer,  which  is  quite  from difference  from what  one

encounters in either conduction or convectional transfer. 

(Refer Slide Time: 23:04)

Now,  we are going to take another example of the spectral variation of properties having

influence  on  temperature,  while  looking  at  temperature  control  in  space,  through  use  of

selective surfaces. We had talked about selective surfaces earlier, as surfaces whose radiative

properties varies dramatically in two different wave length ranges. So, we have taken a very



simple example in which the emissivity of a surface is a large value; is of one value for a

wavelength  below  a  cutoff  wavelength  called  lambda  c  and  above  that,  it  has  a  totally

different value.  There is one wavelength at which the property changes dramatically.  This is

seen quite often, when we coat a semi conductor on a metal, the semi conductors’ properties

will  emerge in  this  region;  while  the properties  of  the underlying substrate  metal  will  be

appearing in this region.   This unusual sharp change in the radiative property is related to the

way in which radiation is absorbed in the semiconductor. Now, such surfaces are used quite

frequently  in  satellite  to  control  temperature  of  a  surface.  In  a  satellite,  there  may be  a

requirement to have the temperature of a surface to be very high, or very low; very high

would be, in application where we are trying to generate power in a satellite using a high

temperature source.  In that case, we want to maintain the temperature of the surface very

high; that means, we want to absorb as much of the solar radiation as possible in a surface and

at the same time, reduce the emission of the surface, so that, the surface remains hot.

This  is  commonly  also  useful  in  solar  collectors,  where  we  want  to  get  a  very  high

temperature.  We want your collector surface to absorb radiation in the solar region, which is

between 0.4 micron and 4 micron; but at the same time, we do not want the surface to emit

much  radiation  and  most  of  the  radiation  emitted  by the  surface  is  usually  in  the  range

between a few microns to 100 micron.   We choose a cutoff of your wavelength  somewhere

around 4 micron, so that, we maintain the emissivity of the surface low, in the region beyond a

few  micron;  at  the  same  time,  in  the  region  where  solar  radiation  is  incident,  the  low

wavelength  region,  we  try  to  main  a  high  emissivity  and  high  absorption.  This  is  done

deliberately ; let us write down the energy balance for this case. 
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 Let us write down the energy balance for this case. We will take a very simple case of a flat

plate,  insulated here and subjected to solar radiation.  This is  the selective surface we are

talking about.  The energy balance will tell we that, Q sun and we already indicated that, our

selective surface will be one in which, we will have one emissivity at one wavelength, and at

some cutoff wavelength emissivity will go down to epsilon 2.  If that is a case, then the total

energy absorbed will be the amount of radiation lying in this region, 0 to lambda c, plus the

amount of radiation lying in the remaining region on the right. 

This region has to be equal to the heat lost  by the surface,  which will be epsilon 1, F(0-

lamdaTsun), this is T sun here; this is 0 to minus lambda c T of the surface; and epsilon 2 into

1 minus 0 to lambda c T surface into sigma T surface to the power of 4. This is the main

balance. We have neglected here the cosmic background radiation coming on to the surface;

we will include that subsequently; because that is very small; only two causes  that we are

getting is, photons coming from the sun are being absorbed by the selective surface and at the

same time, the selective surface is emitting radiation, depending on this temperature T s. Our

aim is to find T s as the function of this cutoff wavelength lambda c. We want to know, what

is  the  best  value  of  lambda  c,  which  gives  the  highest  temperature.  This  could  be  an

application, where we are trying to generate power in a satellite, using a high temperature

surface as a heat source.  We want to know, what is the appropriate cutoff wavelength. This

problem can be solved easily, but of course, since we have to calculate these quantities, we



have  to  integrate  the  function  numerically;  this,  we  have  to  obtain  numerically  and  this

equation is non-linear.

 There is no simple, analytical solution available to you. This is solved numerically using

standard software which calculates this integrals, and then assumes the value of, T s which

will get this balance.

(Refer Slide Time: 29:26)

  Let us see what we get. This is the problem and here, at the top we see, this is the equation;

this is called the equivalent temperature; this is surface temperature of the selective surface

and what we have shown here is, how the equivalent temperature surface depends upon the

cutoff  wavelength,  varied  from 0.001  micron  to  10  micron,  steps  of  0.1  micron,  solved

numerically, and we have taken various cases, one in which the emissivity is 0.1, 0.9 in the

solar region and 0.1 in the infra red region; and I have gradually increased this value to, close

to 1 and this one very close to 0; we realize, in this case, we cannot make it exactly 0, because

if the emissivity of the surface is exactly 0, then it cannot have a steady state temperature,

because then it cannot get rid of the heat, and so whatever heat is absorbed, cannot be lost; so

temperature will go on increasing.  We have to keep this non-zero; so we have kept a very low

value. We can see, the lower the value, higher a temperature.  In this example, we have gone

from a value when emissivity is 0.1, a value close to 600 degrees Kelvin, and as we reduce the

emissivity from 0.1 onwards to very low values, this temperature is going up, is increasing,



and has gone up to 2100 degrees Kelvin. And as we take emissivity lower and lower, it will

keep going up. 

 We probably realized, the highest value it can go to is of course, the Sun’s temperature, which

is assumed to be 5800 Kelvin; we assume sun to be a black body at  5800 degrees Kelvin, and

highest we can attain, if at all is that number; but we will not get anywhere near it; unless we

make this extremely  small.  The  reason why this temperature increases so rapidly, as we

reduce the cutoff wavelength, is because of the fact that, the amount of radiation from the sun

is around 1365 watts per meter square; this is quite large. 

If we recall from the previous lectures, the sun’s radiation lies between, mainly between 0.4

micron and 4 micron. If we keep the cutoff wavelength at 4 micron, we will see that, the

temperature we get there is around 600K, whatever the values of these  emissivity.  What it

means is that, at 4 micron, the high emissivity in this region, is leading to sufficiently high

losses from the surface; the temperature cannot really go beyond 600. We need to push the

cutoff wavelength to a lower, lower wavelength, of course, which ultimately will reduce the

amount of solar radiation absorbed; that is why we got two lower value, like around less than

a micron, then we can see temperature falls sharply, because we are not absorbing sufficient

amount of solar radiation, in order to attain high temperature. 

 There is a trade-off between using a very high lambda c, which causes some of the emission

from the surface to be in the region below the cutoff wavelength and lose heat; so to avoid

that, we have to reduce the lambda c. But if we reduce lambda c to too low a value, then the

sun’s radiation plays a role. This line represents the optimal wavelength at which we are able

to attain the highest temperature.  This depends, of course, on the emissivity epsilon 2. It

depends on this emissivity because this determines how much heat the surface is losing.  If

this  can  be  cut  very,  very  low, we  can  reach  as  high  a  temperature  as  we  can;  as  said

theoretically, the  temperature  we can reach is  about  5800 degrees  Kelvin,  which  is  sun’s

temperature. 

We cannot exceed sun’s temperature, because if we did, we will violate the second law of

Thermodynamics. Now, we might ask, why we did not go to lower temperature, and lower

emissivity values. Actually, there is a problem with numerical convergence as we go to very

low emissivity. We have to, we need more and more accurate numerical schemes to calculate

this  F(0  lambda  T)  values.  These  are  obtained  by  numerical  integration.  And  those



integrations have to be pretty accurate to the sixth or seventh or eighth decimal place for we to

get the right values. That is the main intention. 

 (Refer Slide Time: 34:12)

Now, let us look at the next example. Now here, let  us rewrite this equation we wrote  earlier.

In this case, we are trying to keep the temperature cool. In this case we think of an application

in space, where a certain surface has to be kept cool, although it is absorbing solar radiation.

We want to make the problem a little more complicated. Here is the flat surface; it is subjected

to sun’s radiation; it is also subjected to radiation from all around. This is known as cosmic

background radiation.  This  is  from black  body, at  around 2.72 degrees  Kelvin.  This  was

discovered about fifty years ago.  This is radiation coming from the,  all  around from the

universe.  It is very close to a black body at about 2.72. Normally, we will ignore this kind of

temperatures; they are so low. But in this present example, where we are trying to keep the

surface at low temperature, we have to account for this, for completeness sake. In this case,

the radiation absorbed will be from the sun, which will be epsilon 1 times F( 0 to lambda c

Tsun) plus, epsilon 2(1- F( 0 to lambda c Tsun)), plus the second term here, is from the cosmic

radiation, which will be sigma T c to the power of 4; here, it will be epsilon 1 F 0 to lambda c

T cosmic, plus epsilon 2 into 1 minus F 0 to lambda c T cosmic. 

These are the two terms of the incoming radiation absorbed by the surface. This will include

emission.  Emissivity of the surface is now is  going to be epsilon 1 ( F 0 to lambda c T

equilibrium of the surface), plus epsilon 2 into 1 minus F (0 to lambda c T equilibrium), into



sigma T equilibrium to the power of 4.   We want to find what is the equilibrium temperature

of  the so called radiative equilibrium temperature,  that  is  the temperature attained by the

surface, purely  from radiative balances. This quantity as a function of the sun’s radiation and

the  cosmic  background radiation.  Of  course,  we would  expect  that  this  will  play a  very

important role; because the radiation emitted by the sun is 1365 watts per meter square. This

will be very, very low, because at a temperature of around 2 degrees Kelvin, the radiation

coming into the surface is very small. We still retain it, because in the limiting case, wherein

we are able to prevent absorption of any solar radiation, this term will begin to play a role. So

here, our aim is to find that lambda c which will give we the lowest temperature. So we want

to find out the T equilibrium as a function of the cutoff wavelength. And in this case we are

interested in that cutoff wavelength at which the temperature of the surface is the lowest;

because in this application, we want to minimize the temperature of the surface; not maximize

it, like we had last time. 

  Again we have to solve this equation numerically, because all these factors F 0, lambda

factors here,  they are all  obtained by accurate  numerical  integration.  We know these two

quantities. We know everything, except T equilibrium. This problem is solved iteratively; we

assume some value  of  T equilibrium and see whether  the  left  hand side,  right  hand side

balance; if they do not, they are adjusted, until they come to balance. This is a process of

iteration; has to be done carefully and accurately, because some of the numbers are quite

small, but they are still very important. This is best done with commercial software available

today in most computers and institutions.   We use this to solve this problem iteratively. It is a

good exercise in numerical analysis to solve these equations, because it is highly non-linear. It

requires  some kind  of  expertise  as  well  as  intelligence  to  ensure  that  your  methodology

converges quickly.  We take it up and see, how good we are. Let me just show we the answers

that we got. This is the variation of the equilibrium temperature with the cutoff wavelength.

The  cutoff wavelength is varied mostly from around 10, 20 microns to 1000 microns, because

we want to reduce the absorption of solar radiation in order to keep the surface cool; so  our

cutoff wavelength has to be as high as is possible.
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 We can see, that as the cutoff wavelength is increased, from around 10 microns, all the way to

a 1000 microns, the minimum temperature which is a the dot line here, goes on decreasing;

and ultimately, will reach 2.72 degrees Kelvin, asymptotically. But before that, notice this

interesting feature, that if your surface had, let us say the green one, emissivity only 0.0001 in

the solar region, but a very high emissivity in the region beyond lambda c; then, we see that,

we get this kind of curve.

(Refer Slide Time: 42:14)

 



That is, when lambda c is 0, or very large, in both cases, the temperature is close to 393

Kelvin. The 393 Kelvin comes in if the emissivity is, here, a gray surface, then your equation

will be, Q sun, epsilon surface is equal to epsilon surface sigma T s power 4.  We can solve

this equation very easily, and we will get that, for Q sun of 1365 watts per meter square, we

will get T s is 393 degrees Kelvin. This is the solution when emissivity is not a function of

wavelength. This happens for lambda c of 0, and lambda c tending to infinity. In both these

cases, if we recall, lambda c tending to 0, then we will have only, it will be equal to epsilon 2.

This is a general function; so lambda c is equal to 0 here. On the other hand, if lambda c tends

to infinity, we have only epsilon 1. Both these are gray surfaces.  For a gray surface, this

cancels out, epsilon surface; We are left with a very simple balance from which we will get

this number. Now, let us go back to the result we saw here. 
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  In both these limits, very low lambda c and high lambda c, the temperature approaches the

393 value. In between, it reaches a  minimal.   In this present case, for this particular case, for

example, it reaches at about a 100 micron. At 100 micron, what we are able to do is, we are

able to keep the amount of solar radiation that is absorbed by the surface to a minimum, at the

same time, keeping the radiation emitted by the surface highest. Only when we do that, we get

a minimum value, which around here, is 25 Kelvin. But if we really take this case, where

emissivity in the region, one below lambda c is 0, and the emissivity at the higher region is 1,

then the minimum temperature goes on decreasing and if we do your computation accurately,

ultimately we will reach a temperature of 2.72 degrees Kelvin, which is the temperature of the

cosmic background radiation. So, that is the result that we get in this case.  These are very

interesting problems, and the unusual behavior we see here, is primarily on account of the

non-gray nature of the surface. Both in the case of Dewar flask as well as in this case of

selective surfaces used in solar, in space applications, we see some unusual behavior, because

of the fact that, we allow for the variation of spectral properties with wavelength. So, that

brings in rather interesting issues into play. So, these two examples were brought in just to

show that,  there  are  situations,  wherein  the  variation  of  emissivity  and absorptivity  with

wavelength can get  very paradoxical result, a result which are counter-intuitive, because of

the strong variation of the properties with wavelength.   These are two examples, which we

wanted to take up. 
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Now, before we move on to the detailed treatment of the, how to treat non-radiative, non-gray

surfaces, we will give one more example of non-gray nature of surface. This is in the design

of tungsten filament lamp. For more than 100 years, this was the traditional lamp used for

lighting  houses  and  industries.  Of  course,  today, slowly  this  lamp is  getting  phased  out,

primarily because these lamps are not very efficient. Typical tungsten filament lamp converts

around 5 to 8 percent of the electrical energy consumed into visible light. Tungsten filament

lamp emits mostly in the infrared.  Tungsten filament lamp is not a good way to get light

energy; it is a very efficient way to get energy for heating; infrared radiation, for example, is

used in industry for infrared heating of various materials. But it is not a very good source of

visible light. And this is because tungsten is a material whose melting point is 3655 degrees

Kelvin.  When we use tungsten filament lamp, we have got to ensure, your temperature is

sufficiently below this, so tungsten does not evaporate and disappear.  The challenge in design

of the tungsten filament lamp is to keep the temperature sufficiently low, so that, it does not

lose material rapidly. But at the same time, the temperature has to be high enough, that is

sufficient to emit sufficient radiation in the visible. This is the challenge. 
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If we keep the temperature too low, then most of the radiation will be in the infrared and not

enough in the visible. In   order to get a lamp which gives sufficient visible light, we need a

high temperature of the filament. But a too high temperature, will lead to destruction of the

filament because of evaporation, or actually, strictly  sublimation. This trade-off has to be

there. The  tungsten filament lamp is not a gray surface and that is illustrated, if we look at the

emissive  power  of  the  tungsten  filament  lamp,  measured  in  the  laboratory,  in  Watts  per

centimeter square. Empirically, we see, it is around 160.5 into T by 3000 to the power of 4.48.

So, notice that, it is not to the power of 4, which is true for a gray body or a black body; it is

somewhat, it is not like a true metal; a true metal, if it is a metal as in the manner in which we

discussed in the properties of metals, then emissive power should go on as T to the power of

5. Emissivity is proportional to temperature. But it is not following that; black body is to the

power of 4.  Tungsten material is somewhere between black and metal behavior, in between,

4.5. 
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But the real issue in the tungsten filament lamp, is the way in which it  loses material  by

sublimation. The sublimation rate, that is conversion from solid to vapor, it has been measured

in grams per centimeter square per second, and it is typically, 10 to the power minus 6 into T

by 3000 to the power of 30; a huge power; that is, as the temperature increased, even 1 or 2

degrees, the sublimation rate goes up as T to the power of 30. This is really what is going to

control the design,  because if  the temperature goes up too rapidly in the design, then the

sublimation rate goes up very rapidly, and hence, the life goes down.  As the temperature of

the filament increases, life will go down very rapidly. This is the challenge that is faced by the

design of the tungsten filament lamp, is to maintain the lamp temperature sufficiently high to

ensure that there is more radiation in the visible but at the same time, keep the life high.

Essentially, the design involves realizing that the power consumed by the filament is equal to

V squared  by R;  and the  power  radiated  is  the  power generated  by electrical  heating,  is

radiated is epsilon filament, sigma T filament to the power of 4, into area of the filament

which  is  pi  D L.  These two have to  be equal,  at  equilibrium,  neglecting conduction and

convection. 

At the same time, we must remember that, the resistivity of the tungsten filament lamp in ohm

– centimeters, is 92 ohm - centimeter at the standard value of 3000 degrees Kelvin, to the

power of 1.2.  This also has to  be accounted for.  Once we know the temperature of  the

filament, we calculate the resistivity; from that, we calculate the resistance; then your power



generated; that has to be equal to the power radiated. So, there are two unknowns, here, in this

problem.  The two unknowns are the length of the filament and the diameter of the filament.

We will find when we do the design, for a typical lamp, the diameter may be of the order of 1

to 10 micron; and the length will be of the order of centimeters. 

  In order to build this we do, what is known as coiled coil. We  take  a thin filament and then

it is coiled many times to get the large length that is required within that small lamp. This is a

coiled coil that we arrange inside the lamp; and we can see that, the tungsten filament lamp

demands a very precise manufacturing technology, because the diameters of the filaments are

very low.  Any error in manufacture,  will  cause a short life of the lamp.  Here is where,

electric engineering and heat transfer engineering are interacting in the design of a filament

lamp.  The design is very sensitive to the details of the, emissivity of the filament and the

resistivity of the filament. This illustrates how, many of the problems in real engineering are

interface between many subjects.   We have given a few examples, and we will continue in the

next lecture with some more examples. 


