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We had discussed in detail about the physical and mechanical properties of not only 

normal bulk materials, but also of nanostructures and nanomaterials. The next topic we 

take up is the topic of electrical properties. As before we will first describe some of the 

basic concepts involved in electrical properties and electronic properties followed by 

electrical and electronic properties of nano structure materials and nano crystals and 

other nano entities. Further, we will take up part of this overall gamut of what you might 

call the electronic structure and electronic properties magnetic properties and also optical 

properties, that will be in the coming lectures. 
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Now, if I were to consider electrical properties then before we had already noted the two 

important factors come into play, when we want to understand the properties of 

materials. It is of course, at the heart of every all the properties is what we may know as 

the electromagnetic structure. And crudely we would like to sort of divide this overall 

electromagnetic structure into what we may call the atomic structure. Where, we will be 

worried about the atomic entities and their positions. Also, what we may call the electron 

distribution, which we might call the electromagnetic structure in this specific context. 

This electromagnetic structure can be thought of as in a simplified way as the spatial and 

energetic distribution of electrons, taking into account the charge and the spin of the 

electrons. In other words when you are talking electromagnetic structure, typically unless 

we are really interested in very specific properties. Typically, the nucleus of the atom is 

usually ignored. So, we are worried about the electrons, we are worried about the 

electron density. We are worried about the spatial and energetic distribution of these 

electrons. In this process not only the worry about the charge of the electrons in terms of 

its density, but also we worry about the spin of the electrons.  

As we shall see later the spin is the dominant force behind the magnetic properties, 

which we will take up and usually in the common language. We call the language of 

bonding this electron density distribution is interpreted as kind of a bonding. In other 

words if the electron density distribution is high between the two atoms, we call it a 



covalent bond. If the electron density distribution shifted towards one atom, we call it a 

ionic bond. If the electron density distribution is delocalised in other words the electron 

belongs to the whole solid and not to a particular atom, we call it such a material or such 

a kind of a bonding as the metallic bonding. 

Just to reiterate the nuclear aspects are usually ignored unless of course, we are worried 

about the certain kind of important phenomena, where in the nucleus may play an 

important role. In these set of lectures we will not consider that further. Often, when you 

are talking about electronic properties and electrical properties, we are interested in the 

response a material to do kind of entities. One is the fields the electromagnetic fields, 

which is essentially would be, which we would mean we are talking about optical kind of 

properties and other kind of external stimuli like heating. 

So, these two aspects you always keep in mind when you are trying to understand, for 

instance any kind of properties. Suppose, I am talking electrical conductivity then I will 

worry how electrons are accelerated, when you apply an electrical field. How this 

electrical conductivity is actually going to change with temperature, as we shall see soon. 

Many aspects of this response, that means the response is the material to external stimuli.  

These external stimuli could involve fields and heating another kind of stimuli is 

governed by quantity known as the band structure of the solid. In other words, we have 

individual atoms, which have discrete energy levels, but when these atoms come 

together, we have a concept of a band, where in the electrons no longer belong to a single 

atom, but to belong to a entire solid as a whole. This band structure is going to determine 

some of the important properties, which include the magnetic, optical and electrical 

properties of the solid.  
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Let us start with understanding what you may call the resistivity and its variation across 

different kind of elements. You know resistivity is the coefficient when you are talking 

about the variation of the systems with geometric related terms like the length of the 

conductor divided by the area of the conductor. Resistivity happens to one of those kinds 

of one of the rare kind of material properties, which varies to about 25 orders of 

magnitude. When you go across from one element to the other on one hand, we have 

extremely good conductors with very low resistivities like silver, which at 20 degree 

celsius has a resistivity of the order of about 10 power minus 8 ohm meter.  

On the other hand we have extremely high insulators like fused quartz at 20 degree 

celsius as a resistivity of the order of both 10 power 17 ohm meter. So, this is one of 

those rare quantities, which varies orders of magnitude, which implies. Suppose, I am 

using aluminium as a conductor. If on the surface of this aluminium conductor you have 

formed an oxide, which is going to be a 1 2 3. Then you would notice that the resistivity 

is going to jump by orders of magnitude. This implies that my electrical conduction is 

going to be very poor just by this mere process of oxidation, at the surface of this 

aluminium conductor.  

There are materials with intermediate conductivity like silicon, which has an 

conductivity of the order of about 10 power 2 ohm meters. If you look at how this 

resistivity changes with temperature than the behaviour too here, too is the very different 



for instance. If you heat silver than the resistivity would increase on the other hand, when 

you heat silicon actually the resistivity would drop. In other words, if I do not understand 

such phenomena, then as we pointed out in previous slide.  

We have to look at what is known as the band structure of the solid, which will tell us 

why such a behaviour of resistivity is formed. When I go from one kind of a material like 

Silver or Copper or Gold, which is a very good conductor to intermediate conductor. 

Like Germanium or Silicon to a very poor conductor, like Diamond or P V C or fused 

quartz as the case may be.  

So, even for a simple property like electrical conduction and material property like 

resistivity I have to look at some of the details of the band structure or the electronic 

structure of the material. The simplest kind of a theory, which is which been proposed to 

understand what called a phenomena like conductivity or the variation like conductivity 

temperature, or the what it might call the origin of resistivity, when you actually apply an 

electric field is known as the free electron theory. 
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In the free electron theory the outermost electron of the atoms are only considered to be 

taking part in conduction, or in other words they these electrons belong to the whole 

solid and not to a particular solids. These electrons are assumed to be free moving 

through the whole solid. So, they are delocalized they roam belong to the single atom. 

This electron gas also often called as fermi gas or a free electron cloud and in it is 



assumed that the potential field, due to the ion cores is assumed constant. The potential 

energy of electrons is not a function of the position, though it is moving around enough 

potential of these ion cores, it is assumed to be constant. That means there is no spatial 

variation of these what you might call the potential in which these electrons are moving.  

It is to be noted that the kinetic energy of the free electron is much lower than the bound 

electrons in an isolated atom. Now, we have a simplified version of what you might call 

the real picture, which is called the free electron theory, but interestingly this free 

electron theory is able to explain many concepts, many simple concepts. We take them 

one by one. We will slowly build towards what you might call the region, where we need 

to transcend this free electron theory. Go into a what you might call a band structure, 

which is will be needed for explaining the conductivity of semiconductors and insulators. 

The starting point for all this is that we have something known as a wave particle duality 

of electrons. 
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In others words every moving particle has certain wave nature. This wave nature 

becomes more and more important, when the mass of the particle becomes small, so for a 

very lightly massed particle like electrons the wave nature becomes extremely important. 

We will see later on that this wave nature is that the heart of what you might call 

quantisation of energy levels, where in we were talking about nano crystalline material 

or a nanostructure, where in we want to understand the conductivity. So, this wavelength 



is given by h by m v. Typically, in a free electron theory you would plot what is known 

as the energy of the various levels. The orbital levels as a function of k, which is the 

defined as 2 pi by lamda, which is goes as the inverse of the lamda.  

So, this wave number or the wave vector is what we plot against energy. In the free 

electron theory the energy is a function of k square, which are the other constants added 

on including the mass of the electron. In other words, you have what you might call a 

continuum of energy levels, which increases parabolically and electrons can occupy 

these continuum of energy levels. This implies that if suppose an electron sitting at the 

higher top most energy level. There are energy levels free above that to which it can be 

excited.  

So, they are in proximity to this energy level and if you are looking at an increase in the 

wave debroi. Debroi wavelength, then you would notice that the k decreases and the 

energy decreases. So, in this, but of course, if you look little closely you will have to note 

that these energy levels though have to be from this kind of an equation looks 

continuous. They are actually slightly discrete, because of the Polly's extrusion principle, 

which tells that no two electrons can actually have the same set of quantum numbers. 

Therefore, if you look closely there may be a slope closely spaced electron levels, but 

nevertheless for now we will assume they are continuous.  

Therefore, there is a series of levels, which can be available for the electron to occupy 

another kind of a diagram, which we will encounter, where in we do not plot energy 

versus the wave number or wave vector, which is where in we try to notice a different 

kind plot a different kind of quantity, which is called a density of state, which is also 

encountered more frequently than the K kind of a diagram. Now, we have to of course, 

know that when we write down the energy as half m v square. We are ignoring the 

relativistic corrections. Now, we noted that suppose I fill start filling electrons and I 

know that there are N number of orbitals, which need to be filled with these electrons. 

There will be obviously an highest energy level, which is filled.  
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So, all the electrons in the solid might fill up and still you will only reach a certain 

energy level, which means all the states below this energy are filled up by electrons. This 

is the top most energy level, which is filled this top most energy level, which is filled is 

called the fermi level. Typically, the concept of fermi level is defined as the highest 

energy level filled, but at 0 Kelvin 

Now, if in other words if I look at my energy versus the property of finding an electron. I 

would note that at 0 Kelvin the curve, which is the green curve is the one, which is valid. 

In other words upto the highest level of fermi level all the energy levels are filled that 

means the probability of finding an electron is one, but beyond the fermi level no energy 

levels are filled at 0 Kelvin, which means the probability of finding an electron, above 

the fermi level is 0. This is so it is 0 here, now suppose you and this fermi level can be 

given by a formula like this as E f is h cross by 2 m into k f square where and which is 

related to n, which is the total number of orbitals, which are available.  

In other words in the k k x k y k z space you would notice that the energy of the highest 

electron, which is a constant energy surface is a sphere. This sphere the electrons lying 

on that sphere have an energy, which is equal to the E f. Now, if I look at the total 

number of orbitals with energy below E. Of course, I can replace E by E f at 0 Kelvin is 

given by the function n, which is v by 3 pi square v is the volume of the specimen. It 

goes as 2 M e by h cross square and the important thing to note is this exponent 3 by 2. 



The importance of this exponent will come, when we do not track actually at the total 

number of orbitals, but we go to the what I mentioned as the density of states. Now, 

suppose I heat this specimen above 0 Kelvin, then what will happen progressively with 

increasing temperature is that more and more electrons will be excited to these higher 

energy levels. 
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And there is no barrier to this excitation, because these energy levels are closely spaced 

and are just above the fermi level, which implies that. Now, my probability of finding an 

electron above E f increases. That means that the probability of finding an electron below 

the fermi level slightly reduce. 
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Above the fermi level increases this probability of finding an electron at any finite 

Kelvin temperature is given by this fermi dirac function. In other words I multiply the 

probability of finding electron at 0 Kelvin by this fermi dirac function. Therefore, I find 

the probability of finding an electron at any finite temperature using this fermi dirac 

function. Therefore, with increase in temperature what happens is that more and more 

electrons are promoted to higher and higher energy levels, which are now accesible to 

the system, because the energy are continuous and parabolic.  

Therefore, the the tail of the fermi dirac function starts to grow this implies that I can 

actually increase the energy of the electrons. Of course, at the expenses some of the 

electrons, which had a lower energy level by merely heating the solid. Now, it can this 

process be also be done by an alternate method.  
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That is by applying an electric field and this application of an electric field with lead to 

what we know as the conduction of these free electrons. Since, there are empty energy 

levels above the fermi level, then in the presence of the electric field. There is a 

redistribution of the electron occupation energy levels in other words in the absence of 

an electric field. You notice that all the electrons are filled upto the top most level, which 

is now my fermi level the green line is shown here. All the levels above the fermi level 

are completely vacant, but what happens when you actually apply an electric field. That 

there is an asimity between the positive k x direction and the negative k x direction. So, 

this is my positive k x direction and this is my negative direction. Therefore, more the 

electron levels are occupied in the positive k x direction.  

That means electrons are promoted the electrons, which originally were occupying this 

level are actually now promoted to this higher energy levels. Since, like before for the 

thermal excitation there were free energy levels in the what you might call in the E k 

diagram. Therefore, these electrons, which gain momentum can actually occupy these 

levels.  

Therefore, you will have a electrical conduction and of course, you can write down the 

force experienced by the electron in the presence of the electric field E as f equal to E 

into e where e is the electron charge and M is the mass of the electron. If you want to 

write down the acceleration as M a. So, I have two ways of actually exciting electrons to 



higher energy levels. So, point number one of course, is that there are continuous set of 

energy levels.  
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At 0 Kelvin it is filled to a certain energy level known as E f beyond E f. There are no 

energy levels filled, but there are continuous free energy levels available above the E f 

also. I can actually excite electrons to these energy levels by either heating the solids or 

by applying electric field. In the case of heating of the solid there is actually no net flow 

of electron in any given direction, but when you apply an electric field, electrons tend to 

flow down the electric field gradient. Therefore, because of the electric field they flow 

and, because of that you have actually electrical conduction. 
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But if you just notice this part that f is equal to M a. That means electrons will be 

accelerated by the presence of this electric field. What you would expect with time is that 

the electrons keep on gaining velocity soon they will obtain a very high velocities. 

Perhaps, they will get to a closed velocity of light, but then that is not what is found this 

is, because no material is perfect. 
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What really happens is that this when the electrons are accelerated at constant 

acceleration they gain velocity. When they approach a velocity known as the V d they 



get scattered they suffer collisions and when a when an electron suffers a collision. It’s 

velocity actually falls down to 0, now, because of the presence of electric field. Again, 

the electron is accelerated at constant acceleration, we assume it to a velocity V d, but 

then it again suffers a collision. The velocity comes down to 0 this of course, a idealistic 

picture in reality.  

Of course, you might find that one electron accelerates a little more compacted than 

other electron before it suffers collision, but what we are talking about is average 

quantities here. Now, what we are saying is that in the presence of the electric field the 

electron velocity increases by an amount about its usual velocity, which may get 

diffusive velocity to an amount called the drift velocity. So, the drift velocity is the 

velocity acquired in the presence of the electric field.  

This velocity is lost on collision with the obstacles we will of course, soon note that what 

kind of obstacles are these, which are giving rise to these collisions, which is what is 

leading to what you might call loss in acceleration of the electron. Or in other words this 

is at the heart of the quantity called resistivity or the origin of resistance, because if there 

were no collisions then the material will be will be conducting smoothly. What you may 

have is very good conduction, but, because of these collisions in the Eddy’s obstacles. 

You are actually having the concept of resistivity the average time between collisions, 

which can be seen as the quantity here between.  

So, you have this average time between collisions is given by the quantity tow. The time 

actually the distance actually travelled during this period is called a mean free path. The 

word mean is, because as I told you each electron is following a different kind of a time, 

before it suffers a collision. What is drawn here is for an average kind of a number here. 

When you statistically average over a large number of electrons. Therefore, we have a 

mean path, which an electron travels before it gets scattered and the time in which during 

the period in which it actually experiences an uniform acceleration is given by this tow, 

which is called the average collision time, or some time you can call it more casually as 

mean free time.  

Now, I can write my F is equal to M a as F is equal to M V d by tow, which we have 

noted is equivalently written as e e where e is the electric field and not the energy. 

Therefore, I can write down my V d, which is now my average or the peak velocity 



gained as e e tow by M. Now, what is the importance of these two quantities, because 

there are two important quantities we have introduced in this slide. One is the what you 

might call the mean free time or the average collision time. Other is what you might call 

the M f p, which is otherwise known as the mean free path.  

So, this slide involves two concepts one concept is a concept of acceleration of electron 

to a peak velocity V d, which we call the drift velocity. The second important concept is 

that we can’t keep on accelerating electrons, because they suffer collisions, which is the 

origin of resistance. This time average time over, which the electron is actually 

accelerated is called the average collision time or the mean free time. The path 

equivivalent to that is the mean free path.  
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Now, I can relate this mean free path to the conductivity as the material by writing noting 

that the flux of an electron. A flux is nothing but the flux flow of electrons is what do 

you might call the current density, which is given as J e. The conductivity can be written 

as flux per unit potential gradient. In other words, J e the flux current density is nothing 

but conductivity into E the electric field or the potential gradient. This quantity this 

function is very similar to our Ohm’s law. This can actually be verified by using by 

comparing the dimensional quantities, because on the left hand side you have ampere by 

meter square, which is now my flux.  



On the right hand side I have conductivity, which is one by ohmmeter into volt per 

meter. On the other hand if I track my V into i r that is vol t per Ohm. On the right hand 

side is I take the mm Ohm from here to the bottom side. Therefore, the ohm has come 

here and this is equal to ampere. Therefore, if you compare the two equations you can 

see that both sides. If you divide by ampere meter square, you can see that volt power of 

ohm per meter square.  

If you take the volt above is similar to this kind of a quantity. In other words, this is some 

form of Ohm’s law, which is very familiar. Now, this current density J can be written as 

number of electrons into the electronic charge into the drift velocity. Going back to the 

previous slide we know that b d can be written as e e tau by M. Substituting that I can 

write it as n e square tau e by M. In other words, I am combining this equation for J with 

the equation for the flux. I can get the conductivity as n e square tau by m, in other words 

my conductivity is directly related to my what you may call the average collision time, if 

I have a longer average collision time.  

That means I would have an higher conductivity for the material. If I have a material 

where, because we will see the origin of all these collisions. Therefore, if the electrons 

suffers more and more collisions per unit time, that means that such a material is going to 

be a poor conductor. We should note of course, that we are still talking in the regime of 

what we might call a free electron kind of a picture. Now, we have a few more things to 

say about the mean free path, which we had pointed out before.  
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The mean free path obviously can be written down as the drift velocity into the average 

collision time. This is the mean distance travelled by the electron between successive 

collisions. For an ideal crystal with no imperfections the mean free path we expect at 0 

Kelvin to be about infinity. That means in an ideal crystal there are no collisions. The 

conductivities is infinite. 
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Because we know now the mean free path or the average collision time is directly 

proportional to conductivity.  
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And if the mean free time goes to infinity the conductivity goes to infinity, but as I 

pointed out there are scattering centres in a material, which reduce my mean free path 

time is directly proportional to the conductivity. Therefore, increase the resistivity of the 

material. Now, what are these what is the origin of these kind of a scattering centres? 

One is obviously thermal vibrations, that means if the there are atomic vibrations and 

collective quantised modes of these vibrations are called phonons. Therefore, if an 

electron suffers a collision with the phonon its velocity can be reduced to 0. The second 

kind of an origin to these kinds of scattering centres is solute or impurity atoms. That 

means of course, I say impurity or solute I mean it could be a substitutional element 

intentionally added or it could be an unintentional element present in any material.  

This kind of impurity atoms actually distort the lattice. Therefore, cause an imperfection 

in the lattice and therefore, can act like a scattering centre for these conduction of 

electrons. Further, we also know that a crystal could have additional kind of defects like 

dislocations grain boundaries stacking faults. Other kind of defects, which also can act 

like scattering centers for these electrons. Therefore, instead of the mean free path being 

infinity the mean free path typically reduces to a very small number.  

You would notice that the mean free path typically for a good conductor like gold or 

silver is about 50 nanometers. On the other hand, even for a slightly less conductorless 



conducting material like aluminium. You notice that the mean free path has already 

reduced to about 15 nanometers.  

So, and for mean free path for copper is about 39 nanometers clearly, you see that the 

mean free path is of the nano scale. So, automatically the question will, which will come 

to our mind is that. Suppose, I have a nano crystal and if this nanocrystal is of the size of 

the mean free path, then what happens to its conductivity. So, this is the question, which 

we will understand try to understand very soon. 
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But before that will say a few more things about the quantity, which is the thermal 

vibration of phononic scattering. Now, at any temperature below above 0 Kelvin the 

atomic vibration, which leads to the phononic scattering is going to lead to an increase in 

the resistivity of the material. Now, the mean free path does not have a constant kind of a 

function. The mean free path is a function of the temperature at which you are making 

your measurement. It goes as one by t cube approximately at the very low temperatures 

and at slightly higher temperatures, it goes as 1 by T. The other factor, which we saw 

was the impurity scattering. We said that the material with an alloying element or with 

an I am purity is going to have a higher resistivity as compared to completely pure metal. 

Now, the increase in resistivities approximately proportional to the amount of alloying 

material added.  
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Therefore, if I have a pure material like copper and with a very low defects densities and 

I plot its resistivity as the function of temperature. Then I would notice suppose I plot the 

resistivity of pure copper. Now, I am talking about a pure copper with low density of 

imperfections. That means I am ignoring my stacking faults and dislocations. I track its 

resistivity as a function of temperature I would note that with decrease in temperature my 

phononic scattering would reduce and resistivity. Keep on decreasing in other words my 

conductivity is going to continuously increase. What you would expect at 0 Kelvin or as 

it tend to 0 Kelvin is that the material will tend to some kind of a superconductor. 

Because, this is not pure copper and there are no phononic scaterings.  

There are no other form of lattice defects, which can gave rise to scatering. Therefore, 

you expect it to become superconductor, but on the other hand suppose I have a Copper 

Nickel alloy. This alloy even though the resistivity decreases with temperature, which is 

what we, because of phononic contribution is going to decrease, but then there is always 

residual resistivity, even as we tend towards 0 Kelvin. This is coming from the fact that 

now you have an alloying element like Nickel, which is going to give rise to what you 

might call the impurity scattering or the alloying element scattering. As you increase the 

amount of alloying element the resistivities can all.  

Suppose, I might have a vertical temperature like about 100 Kelvin you would notice that 

at this 100 Kelvin. You would notice that my resistivity increases as you add the alloying 



element. You add little more of the alloying element resistivity further increases that may 

increase with more and more alloying element. You going to higher and higher residual 

resistivity as you tend towards 0 Kelvin. So, we know now that if I want to make a 

perfect conductor. Then I have to avoid all these scattering entities, which includes 

presence of solid elements and the presence of defects.  

If I reduce my what you may call the phononic scattering contribution by reducing the 

temperature. Then I would have an increase in conductivity so to reiterate the message of 

all these slides, so far in the free electron model. There are free energy states available 

where electrons can be excited. If you apply an electric field then its going to get directed 

motion of electrons in the presence of what you may call temperature. This is going to be 

random motion of electrons in the presence of an electric field the electron is accelerated 

but, suffers collisions, because of which the velocity comes down to 0. This time or the 

path it travels freely before a collision is suffered is given called a mean free path. 
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The mean free path or the equivalent mean free time can actually related to the 

conductivity.  
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That means you increase the mean free path, then the conductivity increases 

equivalently. Suppose, if I note that the mean free path of most materials good 

conductors is of the order of about tens of nanometers. If I make a nano material or a 

nano crystal, which is of vocalised noise with whose size of this order, than I would 

expect some drastic changes in the properties. 
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I had pointed out that the free electron theory cannot explain all kind of concepts. It’s a 

sort of a simplified theory the more or the more rigorous way of understanding the 



conduction property is. The overall electronic structure is what is known as the band 

structure. Now, vocalised noise in a simple physical way of understanding the band 

structure is to assume, that you have these individual atomic levels.  

When the atoms are far apart, so you have an infinite separation here and atomic 

separation on the x axis. The energy levels on the y axis and when the electrons when the 

atoms are very far apart here at the infinity. Then these electrons do not talk to each other 

the electronic energy levels do not talk to each other.  

Essentially, you have discrete energy levels, but as the electrons come the atoms comes 

closer the outer most energy levels start to overlap and given the pauli’s exclusion 

principle. They spread into a band in other words all my 3 D electrons would split into 

band like this the 4 s electrons would form a band like this. Now,  these 3 D and 4 s 

bands belong to the entire solid and not to the individual atomic levels.  

Therefore, there is an equilibrium atomic separation at which you can see that there are 

energy bands. The 4 s band starts here and ends here and the 3 D band starts here and 

ends here. There is some more detail about this 3 D four s bands and their overlaps, 

which does not become obvious, when you look at a diagram like an energy atomic 

separation diagram. Therefore, we will take up something known as the density of state 

diagram very soon. So, the message of the slide is that at equilibrium atomic separation 

the outer electronic energy level give rise to bands, the core levels continue to remain 

discrete.  

That means they have the atomic character still bands may overlap and fill in parallel 

over a range of energy values as shown in the figure here. That means that once I have 

when once I am in the energy region between here and here. That implies that I am going 

to be filling my 3 D and 4 s band parallelly, as a range of energy values are allowed in a 

band. Of course, we know from Pauli’s exclusion principle that they are discrete, but 

they are closely spaced. Any radiative transition from these outer levels to core level has 

a broad range of wavelengths.  

Now, because if we had if we look at the to mice mission spectra on a absorption spectra 

that will tend to be very sharp, but suppose you have a radiation radiative transition from 

these bands. They will have a continuous energy value, because you these band 

themselves have a continuous range of energy levels. Now, as I pointed that certain 



important details are hidden away when you plot a diagram like this, where in you are 

showing an overlap between the 3 D and 4 s bands.  
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This kind of a diagram would be for a typical transition metal. So, we have to invoke the 

concept known as the density of states density of states is defined as a number of 

available states, in a given interval of energy. Previously, we had noted the value N ion 

the free electron model we noted the N goes as E power 3 by 2, which is scaled by the 

volume of the material. Now, the density of state is nothing but the number of states 

available in a given energy interval of energy. This available implies we are talking 

about available to be filled by electrons. So, I can calculate my density of states as d N 

by d E. The N formula as I showed you before. And therefore if I do this differentiation I 

would find that the density of state goes as E power half. In other words, if I plot my 

density of states with energy in the free electron model.  

I would note that the it goes like an e power kind of a relationship and at 0 Kelvin you 

know that the energy is only upto fermi level are filled, which we pointed out in other 

words all the level energy levels below the fermi level are occupied, which is given by 

the blue region in this plot. All the energy levels above the above E f level are all vacant, 

but we had also pointed out, when I want to track the number of energy levels at any 

finite Kelvin temperature. Then I need to multiply my function by what is known as the 

fermi dirac function. I would do the same thing here to find the density of states at any 



finite Kelvin temperature. I, that means at t geater than 0 Kelvin to find the density of 

states.  

I will multiply the density of states is 0 Kelvin, which is of course, the region blue 

shaded region in the curve and multiplied by the P of e which is given by fermi 

diracfunction. Therefore, this function close to the E f will start to develop this kind of a 

curved region. Otherwise there will be a small tail now the energy there will be electrons 

states, which will be vacant go vacant here and there will be electron levels, which will 

be occupied here at higher energy levels. So, this is at a finite Kelvin temperature in 

other words I have taken my density of say it is 0 Kelvin and multiplied by the fermi 

dirac function.  

Now, thus kind of a picture is not actually valid, when you are close to the what you 

might call the bandage. This kind of a picture is only valid when you are in the 

completely free electron domain. That means the electron is not filling any effect of the 

potential of the ion course. Once it starts to feel that potential this kind of a function, 

which is given by E power half has to be modified. The way to do it is by invoking the 

effective mass of the electron. The new density of state can be plotted instead of E power 

half then I have the E v minus E power half, where E v is the energy corresponding to 

the bandage. In other words, close to the what you might call when the fermi surface 

actually starts to talk to the blown zone. 

Then what happen you actually modify the function and the function starts to look 

something like this. In other words, this is the regime where I can talk about absolutely a 

free electron. This is a regime where I need to modify this E power half kind of a 

functionality. Later on when we talk about nanostructure materials we will see how this 

E power half kind of function is actually modified in the case of a nanostructure material. 

How we will actually even a very good conductor can actually start to become 

aninsulator, because of the limitation or quantisation in one or more dimensions. If you 

look at we had also talked about in the previous slide, that actually bans can fill parallelly 

that means the 3 D and 4 s bands can fill parallelly.  

In that case the density of state function is to be even further modified. It looks a little 

more complicated as in the case here you can see that, it starts look little more 

complicated, when more than one band is overlapping. This is typical of divalent metals 



and this diagram here corresponds more close you to the transition metals like, Iron in 

the case of transition metals. You would notice that the foremost band, which is the 

broad band in the density of states is parallelly filling compared to the. Also, with the 3 

D band, which has a high density of states localised to a small region in energy. This has 

important implications, because now we are not just merely talking about the free 

electron picture.  

We are talking about a picture, where I am taking into account what you might call the 

density of states. In other words it is the number of states available in a small interval of 

energy D e. This is going to determine much of my important properties for instance. 

Now, the fact that this 3 D band is highly localised has a narrow bandwidth tells me that 

the electrons here the 3 D electrons are not fully. That means they have a partial kind of a 

localisation character. Later on we will see this plays a very important role in a 

magnetism of Iron.  

So, to summarize this slide we know that we have normally, what we plot in the case of 

materials is the what you call the density of states, which is the number of energy levels 

available in a small interval of energy. This intensity of states function has to be initially 

of course, looks like a E power half function in the free electron regime, but has to be 

modified. When I am talking about overlapping of bands and close to a bandage the 

function becomes little more complicated. 
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The density of states function is highly altered with respect to a normal material. So, now 

what happens in the case of this kind of a wire if I keep on exciting the system. That 

means that originally in a free electron picture I could keep on exciting the system. 
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I would find always energy, there are energy levels to be occupied. That means the 

material will behave like a conductor, but now you see that upto a certain extent. Of 

course, I have a density of state, which is now falling with energy not increasing with 

energy. 

(Refer Slide Time: 38:44) 

 



Beyond this kind of a critical energy, there are no density of states available for the 

electron to be promoted till. Of course, the next quantum level is occupied that implies 

that this material. Now, starts to behave in some sense like a semi conductor not like it is 

not like a metallic conductor, which we expect even though we started off with the metal, 

but we this by reducing dimensions the density of states is been altered. I have developed 

a band gap in my density of states. We had originally said that this band gap is 

characteristic of an insulator or a semi conductor. Now, this is a pure metal starting to 

look like a semi metal or atom. Look like a semiconductor or an insulator purely by the 

quantum confinement effect, which is coming from fact.  

Now, that the density of state functionality has been altered in the case of a what you 

might call a quantum wire, as you would like it. Now, what happens when I before of 

course, I take 0 D up nano crystals. It is important to see that there are actual examples of 

this kind of 1 D nano materials, which are now like for instance my carbon nanotubes.  
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And in this carbon nano tubes you will take up an important phenomena, which is known 

as the ballistic transport of an electron, which is coming from the second effect, which 

we talked about here. We had said that there are two effects, which are very, very 

important in when you are talking about the conduction of electrons or conductivity. one 

is the quantum confinement of which we have been talking about so far, which 

determines what you might call the an altered density of states, but additional we also 



have this issue, which we talked about the mean free path becoming comparable to the 

size of the system. 
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When there are no scattering events within the system, then the electrons can actually 

just be accelerated or can keep on gaining velocity. That implies that you can have what 

is known as ballistic transport of electrons scattering, does not lead to a loss of kinetic 

energy. The electrons can move unimpeded to the system the ballistic transport is 

observed, when the mean free path of the electron is bigger than the size of the material. 

In these cases the electron transport mechanism changes from diffusive to ballistic and 

ballistic transport is coherent in the what you might call, the wave terms of wave 

mechanics or quantum mechanics terms.  

Now, the optical analogy of the ballistic transport is the light transmission through 

waveguide, where there in there is no loss. In other words, now there is an loss less 

transmission of in the course will have wave guide, there is loss less transmission of 

light. In this case there is lossless transmission of electron. There are actual structures, 

which are metallic carbon nano tubes, which is a 1 D nano structure, where in transport 

along the length can become ballistic. When this happens you can actually have a current 

density of the order of about 10 power 9 ampere per meter square. If you compare it with 

the metal like Copper, which has a current density of 10 power.  



You can clearly see that this now this carbon nano tube has become really a very good 

conductor along the length. We are talking about those kind of where you actually M and 

N numbers, where in actually have what you call a metallic carbon nano tube. It is 

alsoseen that ballistic conduction may be observed in silicon nano wires, at very low 

temperatures like 2 to 3 Kelvin, where phononic scattering becomes small contributor.  

So, to summarise this slide we have noted that a system size can become, so small that 

normal drift transport at diffusive transports, which is to what you may call ballistic 

transport, where there is no scattering of electron. There are and when this happens you 

can obtain very high current densities as in the case of metallic carbon nano tubes along 

the length of the nanotube. This transport this kind of a current density is much higher 

than, what you typically obtain even in a good conductor like Copper. There are other 

systems like Silica nano wires too, where in we would expect some kind of a ballistic 

transport at very low temperatures.  

Of course, we had known that this metallic carbon additive has to be defective. Because, 

all these if there are any defects in the crystal then or a nanotube, that will lead to 

scattering, which would lead to further, which will not give us this kind of high current 

density. So, it is indeed surprise that in nano tubes we can get very high conductivities 

and very high current densities, which is coming from the fact that, now the dense scale 

of the problem has gone to nano size.  
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So, having talked about what you might call bulk materials. Then we have talked about 2 

D nanomaterials, then went on to talk about 1 D nanomaterials, wherein we saw that 

even metallic materials change their behaviour.  
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We can now talk about what you might call the 0 D nano materials or quantum dots. 

Here, all the energy levels are discrete, because now the system is confined in all three 

dimensions. So, such an system is now a quantum dot and is confined in x y and z all 

three dimensions. Therefore, this implies that there are no free electrons in the system. 

There are no free dimensions along, which the electron can freely move about. There is 

quantisation of confinement in all three directions.  

Therefore, now such a system is described by three quantum numbers energy levels n x n 

y and n z. If you look at the density of states of such a system this becomes, what you 

might call delta function in the ideal limit. In other words, the density of states for us 

quantum dot becomes similar to that of an atom and metals start to behave like 

insulators.  

You can see that if I plot my density of states in of course, the ideal situation they start to 

behave like delta functions. In other words they are discrete and if electrons have 

promoted, they have to be promoted from one energy level to the other by giving a 

discrete amount of energy. More realistic of course, if you have the size of the system 

little larger than you would notice that, there would be a little broadening of the energy 



levels. Never the less they remain discrete and such a system you know the electric 

conductivity would be limited and metals would start to behave like insulators at very, 

very small length scales.  

So, far we have been talking about conduction, which is called the normal conduction, 

where in you have a free electron or an electron, which is travelling down the potential, 

but there is another kind of a quantum effect, which is called tunnelling in which case an 

electron actually has a finite probability of being formed beyond a barrier. 
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So, suppose if this is my conductor and this is a barrier in classical terms the electron 

cannot be found this barrier, this potential barrier. So, particularly in quantum mechanics 

actually there is a finite probability of actually finding this electron outside the barrier. 

So, this implies that if I have a a small resistor of a thickness smaller than this, what you 

might call the d k length for this tunnelling than actually, such if this region is 

conducting. This region is conducting I am actually transport the electrons purely by the 

tunnelling mechanism. So, this tunnelling has no classic analog, and it is purely a 

quantum effect.  
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When you are talking about tunnelling there is a very closely interesting kind of an 

effect, which is called the coulomb blockade, which is observed. We will take this 

example, because such an kind of effect can actually put to some kind of a application. 

There is something called the tunnel junction and this tunnel junction behaves like a 

resistor.  

Now, I can take a metal which is a conductor where in electrons can normally flow and 

on in between this metal. Another metal I put a insulator and as I just pointed out if this 

insulator is thin enough. Then actually I can flow tunnelling current from one metal layer 

to another. If I apply a potential this tunnelling current is obviously going to be smaller. 

Then the normal current you would observe when you have a flow through the 

conductor. This resistance in the exponential increases, exponentially with the barrier 

thickness.  

Now, I am talking about barrier thickness, which is very small of the order of nanometer. 

If this insulating barrier becomes large, then I would find that there is no current, which 

is transported from this green metallic region, which is shaded green to the next metallic 

region, which is also shaded green. So, for this kind of a tunnelling current to take place 

the thickness of this barrier the insulating layer has to be small, but addition to the fact 

that this layer introduces resistance to this flow of current to this kind of a setup. It 



additionally also has capacitance, because this insulator can is also a dielectric. As you 

know dielectrics can store charges. 

Therefore, it can also be behave like a capacitor the important point to note is the current 

through the junction the tunnel junction passes, as one electron one at a time sometimes. 

Of course, a co tunnelling can occur, where two electrons can also pass through, but 

typically it is one electron at a time, which actually tunnels through this tunnel barrier. 

Now, this implies that the tunnel junction capacitor is charged with one tunneling 

electron. Once this tunnel barrier has been charged with one tunneling electron.  

This implies that if I want to push the second electron into through this system, across its 

voltage the first electron, which is already built charge, because of the capacitance of the 

insulating layer work has to be done by the external voltage to push the second electron. 

That implies for an additional charge cube to be introduced into the conductor work has 

to be done against the electric field of the pre existing charges residing in the insulating 

layer. Of course, it should this should be an insulating layer charging an island with 

capacitor C.  

There are island of course, insulating island we are talking about with an electron of 

requires change E square by 2 C. That implies that if I do not supply this much of energy 

I cannot push a second electron in an insulating to the insulating layer, which is already 

been charged with the first electron. That implies if I now plot my voltage current 

characteristics this becomes very different from the odd, that what we normally observe 

for normal materials, which is like a normal conductor. We know that V is equal to I R 

kind of a relationship. That means it goes the current goes linearly with voltage, but you 

can see that in such a system, where in I have a metal insulator better configuration. You 

can see that the current voltage characteristics has a starchius kind of a structure.  



(Refer Slide Time: 49:53) 

 

Now, at low voltages; first of all, no there is current itself is suppressed. That means if 

you have very low voltages, you see that no current passes through the system. This is 

called the coulomb blockage, that means that I have no current. If I have low voltages in 

a normal conductor, if you have low voltages you will still have some current. The 

current value will be small typically for a coulomb blockage to be observed you have to 

work at low temperatures, because at otherwise at higher temperatures thermal excitation 

can transport the electrons. Instead of tunnelling that means purely, where thermal 

excitation this barrier may be broken. Therefore, you will have some conduction thermal 

excitation. Therefore, you will not you will be not observing the coulomb blockade 

phenomena.  

So, what is essence of this coulomb blockade phenomena, you see that initially. Of 

course, at low voltages, there is no current at all and when you put sufficient voltage. 

You can see that the system charges to one electron, but further increase in voltage does 

not in this regime. We can see that in this regime between from here to here further 

increase in voltage is not leading in a increase in current, because the pre existing charge 

in the capacitor is effectively stopping a second electron from entering the capacitive 

system. That implies that I have to again breakdown this capacitor for which I have to 

employ our higher voltage.  



Once I have charged the system two electrons, again you find that there is a plato in the 

current voltage characteristics. Therefore, this very interesting system, which has been 

put to use by in developing devices. Like single electron transistors and coulomb 

blockade thermometers, but you can clearly see that, there is no classical analog of such 

a behaviour in the voltage current characteristic phase, which is coming from a thin 

insulator. The fact that this insulator is now in the nanoscale. It is what you might call 

you at the heart of this whole process is what you might call tunneling current, which 

only happens in a nano scale. If I make a thick material then the tunneling current fall 

down to 0, because the resistance increases exponentially with the barrier thickness. 
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Therefore, we can see that there are very, very interesting phenomena, which are very 

very different from bulk scale materials, which you observe regarding the electrical 

conductivity in nanoscale materials. Some of this can actually be put to very good use in 

the form of devices. Various kind of counter connects additionally we have to remember 

that when you are making a when you are trying to reduce a dimension of a, because 

when we tried to do a very large scale integration for devices. Trying to reduce the 

dimensions of various wires and interconnects.  

We have to note that some of these quantum effects may come in some of these 

confinements may come in. Therefore, the materials may start to be have very differently 

than the bulk. Therefore, newer and newer technologies have to be discovered before the 



size can be reduced to very small scale, but addition with those problems, we can see that 

there are newer possibilities, which are opening up, because of newer phenomena which 

kick in when you actually go down to the very small scale. 


