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So we will start the course with optical wave guide theory.
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Optical waveguides are the basic elements for integrated optics so light propagation optical wave

guides is important to understand their properties they design and so on so there are many types

of optical waveguide like slab waveguides ridge waveguides channel waveguides because there

are also optical fibers we need to interface optical fibers with integrated optical devices, so we

need to understand their properties so the mathematics of this is quite simple and we will start

with the basic self optical wave theory and proceed to understand these properties.

So a typical integrated optical waveguides looks like this you have a substrate of some material

like glass and using lithography which we will see later on we can create regions where the



refractive index is high like this is a typical optical waveguide called channel wave guide the

cross-section of this looks like this the higher refractive index region here in the guiding region

and lower refractive index in the substrate and in the covered regions, so this is called the subset

this is the guiding region and of course the covers are rarer.

So this is called a channel waveguide typically this can be formed on a glass sub state by ion

exchange into it as the typical glass consist of sodium ions you can exchange sodium ions with

silver ions to create higher refractive index it suppose you create the whole surface of a sub state.
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Suppose you take a glass slide and make hole of the top surface as the waveguide then this is

called the slab waveguide sub state guide and cover is called ass slab waveguide so here the

whole tops whole top surface is the waveguide.
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So how do you characterize these waveguide is an important question what are the factors what

are the structural parameters which will define an optical waveguide and it is a design, so the

most important property of course is the dimension like width then the depth and so on and also

optically the most important parameter is called the refractive index profile as you have absorbed

the refractive index varies with the dimensions and we can represent it using n( x , y ) where x

and y are the coordinate axis as an example for a slab waveguide we can say suppose it is can be

drawn like this.

And you can say the refractive index is n1 in the guiding region and to in the sub state and n3 in

the cover and we can draw the refractive index profile as follows if this is the x axis this is the n

is a function of x and it is called the refractive index of n1 in the guiding region and n2 in the sub

state region and n3 outside refractive index profile looks something like this, so refractive index

profile is variation of the refractive index with dimensions in the case of a channel waveguide we

can represent we can to present the refractive index n in terms of to coordinate variables. So

these are transverse cross section what I hope shown.
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Now before going into the properties of optical waveguides we need to understand what are

called the modes of optical waveguides in microwaves and other branches of physics you must

have come across modes of the waveguides or propagation, so mode of an optical waveguide can

be defined as a pattern of electric and magnetic fields, we know the light is electromagnetic wave

and has got electric and magnetic fields which are which are governed by Maxwell's equations,

so the propagation of light in optical waveguides is also governed by Maxwell's equations we

need not go into the Maxwell's equations right now.

But we know that a wave equation can be derived from the Maxwell's equations, so the typical

form of a wave equation looks like this, so where ψ is the wave function representing any of the

fields electric or magnetic field components and V is the speed of the light in the waveguide  so

this  is  called  the  time-dependent  form  and  ∇2 is  the  operator  which  contains  transverse

components x, y, z or in any other coordinate system that we choose, so we can say that a wave

equation is the result  of Maxwell's equations which can be used to study the propagation of

optical waveguides.

So there are several parameters with us like x, y, z and the structural parameters go in the form of

key  velocity  which  can  be  expressed  in  terms  of  the  medium  properties  by  the  electrical

permeability and permittivity and electric permittivity of the medium properties.
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So a mode of an optical waveguide can be defined as a pattern of electric and magnetic fields

which can be obtained from the wave equation and we talk about the wave propagation in terms

of harmonic  fields,  if  ψ is  the  wave function  dependent  on x,  y,  z  and t  we can study the

properties of the wave weights in terms of a harmonic field defined as having a single frequency.

So  we  can  call  them as  monochromatic  waves  of  a  certain  given  frequency  ωt, so  this  is

equivalent to saying that we are going to study the Fourier components of the field.

So if we express ψ as ψx, y, z say let me put a bar about is to say that this is only a coefficient eiψt

we can reduce the wave equation to  ∇2 ψ =  ω2  /  v2  I  am differentiating  this  twice and then

substituting and ψ bar we can also express we can also express the velocity in terms of frequency

into the wave length and reduce this equation further to let me put velocity is C / n where n is the

refractive index of the medium and the wavelength multiplied by the frequency will give the

velocity divided by n and after a little bit of manipulation we can reduce this to ψ 2 + k0 2 n2 ψ= 0.

So the refractive index profile is appearing in the wave equation as follows this is called the

Helmholtz equation which does not contain a time variation this is for the harmonic fields, so we

are  talking  about  the  wave  guides  which  have  a  cross  section  I  will  draw  one  thing  the

waveguide geometry, so you have a refractive index which is a function x, y only and along the

propagation direction the refractive index is not varying, so let us say that the propagation is in

terms in the z direction and we can define a mode which varies as eiψt eiβz t in the Z direction.



So I can replace once again this ψ in terms of okay Let me go to X, Y, Z has going to ψ I will use

another symbol ψ~(x, y) e ißz . So we can define a mode as a component which varies as e iωt ± eißz

so with this we can reduce the wave equation as follows.

(Refer Slide Time: 12:50)

So I am using the same notation ignoring the ~ and bar place the above ψ , so the ψ represents

the mode field and along with the ß the Ø characterizes the mode so the mode has got a field

pattern and the propagation constant and I have shown the two-dimensional form x2 and y2 for a

channel  waveguide  both  the  components  and if  we are  talking  about  a  2d two dimensional

waveguide like a slab waveguide.

We can ignore one of the variations like Y then for a 2D waveguide we can reduce this to d 2 ψ/

dx2 + ( k02 n2 -  ß2 ) ψ = 0 just remind that n is the structural parameters which varies with the X

or  Y,  so the  problem is  to  solve  for  the  wave function  as  well  as  the  propagation  constant

simultaneously, so let us take an example and try to solve this for a typical example.
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 Before that as we know the electromagnetic fields inside the optical waveguide have has many

components X component Y component Z component and so on and electric fields EX, EY, EZ

and HX, HY, HZ in principle all the components can exist and can be important but it is possible

to  reduce  the  study of  optical  wave guide  to  a  single  component  sometimes  if  you are  not

interested in the polarization issues etc.

The basic properties of optical wave weights can be studied using what can be called as a scalar

theory, where only one component is important and all the other components could be derived

from the given component we will go into the details later on but let us start with the scalar

approach and see the properties of waveguides and relate them to the vector properties where

polarization and other properties will be important.

For this let us consider the slab waveguide that we have discussed earlier, for slab waveguide, so

the slab waveguide the geometry is like this where you have refractive n1 in the guiding region

n2 in the sub state region and n3 in the cover region and I will put the axis X and I will take a

specific case of a symmetric slab waveguide, a slab waveguide can be called symmetric when the

super state also has a refractive index n 2.

And what is expected of this before we derive let us look at what is expected of this as a solution,

so the wave equation are first of all let me write the refractive index profile I will draw it the

same axis that we have chosen to represent the waveguide and let me take the origin as the



middle and the refractive index profile could be drawn like this n(x) this X direction this is the let

me say the width of the waveguide is W width or depth and from –w/2 to +w/2.

We have a refractive index N1 and outside is a refractive index n2 this is geometry and this is a

refractive index profile and the corresponding wave equation turns out to be d2 ψ/dx2 + k02 n2 -  ß2

) ψ = 0 our problem is to find ψ and ß similarly, we should remember that N 1 this contains the

refractive index profile n on their which have got a refractive index n1 in the core and n2 in the

cladding.

We can also separate  out  these we can write  these equations  differently  for  core as well  as

cladding and then later on match we can say D ψ1/ dx2 in the core region the field and K 02 where

refractive index is n1 and ß  and ψ1 = 0 and in the cladding region D 2 ψ2/ dx 2 + k02 n22 – ß2 (ψ2)

= 0, so we have written the we have split the wave equation the core region and the cladding

region.

But we should remind that this ψ is a composite function having some value in the core and

another value in the cladding and refractive index also having a different values the core and

cladding  but  the  ß  the  propagation  constant  belongs  to  the  entire  waveguide  and  wave

propagation , so we can the form of the equation is familiar suppose we replace the constant now

the N 1 N 2 are constants separating as K and α.

Let me define as K2 and α2 where K2 can be defined as K02 N1 2 -  ß 2 okay I do not need to go and

also α2  being defined in terms of the constant line there I will define it as a negative parameter I

will explain why it is o case k02 and n 2 -  ß 2 so if the equation inside the core is d2 x2 /dx2 + k02

and are plus k2  ψ = 0 then we know this is the question for a simple harmonic motion and we

know the solutions in terms of the trigonometric functions.

ψ (x) as A sin ox + B cos kx so this  representation  field which is  oscillating  along the x

direction we can write similarly the typical solution for the cladding region and we see that

instead of K there is an α  and if α is a positive then we can expect an oscillating solutions at the

core and cladding also and if we choose α to be negative or if we choose ß such that K 0 and n22

< ß  2  than  then  α is  negative  and we can  represent  a  field  in  the  cladding in  terms  of  the

exponential phase expansion rising and exponentially decaying fields. So this is a typical form of

the mode field profile.
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And we can express this is suppose d2 ψ /dx 2  this is ψ 2 in the cladding region - α 2  x ψ 2 = 0

Now with  α of the negative a α being defined in terms of ß2  –k02  n22   so now we know the

solutions of this equation in terms of the exponential functions ψ 2 is Ce αx + D e – αx so we have

these solutions to be wave equations as oscillating fields inside the core region and exponentially

rising or decaying fields in the cladding region.

We can take a physical explanation saying that the fields of an optical wave at the desirable form

of the fields of an optical waveguide as oscillating fields which gradually decay to infinity and

choosing the constants  will  be an important  problem now, so if  you look at  the wave from

waveguide and the equations we can say the field should be continuous at the boundary. So now

we use the boundary conditions to boundary conditions.

To choose the parameters or the arbitrary constants barring any equations, so we have a field

which is trigonometric inside record is in an exponentially decaying or reducing in the cladding

region, we can give a rigorous mathematical explanation or meaning for this problem for the

shape or the fields that we choose but for understanding purposes let  us now choose a very

tentative approach and say that  the fields are  required to go to zero at  infinity  and have an

oscillating form given by the trigonometric functions in this region.

So and also the boundary conditions imply that the fields should be continuous at the boundaries.

So let us force that the field ψ1=ψ2 at x equals W/2 and on the other point and the other side also.



Similarly we have many constants in the arbitrary constants in the solutions, so we need more

boundary conditions to evaluate the further constants, let us force one more boundary conditions

saying that the derivatives of the fields are continuous at X=W/2 and the fields go to infinity four

fields go to 0 at x equals ∞.

So these conditions which invalid the infields and remain working that the way we need to solve

for the data and the mode field.

(Refer Slide Time: 25:09)

Now in the case of asymmetric slab wave guide, the case of symmetric slap wave guide we can

expect two types of modes from the symmetry of the geometry we can expect that the field for X

greater than 0 and X less than 0 or symmetric or anti-symmetric, so the field can be symmetric

like this or anti-symmetric like this and only if it  is enough if we solve the equations for X

greater than 0. 

So by looking at the solutions that we have ψ=A sin kx+B cos kx for the case of mode 1 we can

say that it is like a cosine field and for the sake of for the second mode they say that the field is

like sin, to cook any process let us take it symmetric mode with cos is about fields is a code

region and say that the by choosing constant A=0 we can force it to be symmetric. We can be

done more rigorously more mathematically, so let us choose ψ to be B cos kx in the code region.



Similarly if we look at the field in the cladding region where we have ψ= C.eαx and D.e-αx we

have chosen the feeling to be going to 0 at ∞. So if we take α is a positive quantity so the field

you should go to should decay the cladding if you choose only this part of the field. In other

words we can put C = 0 for this and choose the field to be D e.-αx in the cladding region. 
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So we have the ψ(x) is B cos kx for x less than W/2 and D e -αx for x greater than W/2, now let us

apply the boundary conditions to find out the exact form of the field and once again to remind

you  that  we  need  to  find  out  the  β  which  is  their  embedded  inside  the  K  and  α  in  some

complicated way. So at x=W/2 ψ1=ψ2 implies B cos κx or xl replaced by W/2= D e-αw/2 and once

again at x= W/2 if I force ψ1 = ψʹ 2 1 we get let us derive a differentiate first and then apply theʹ

boundary condition.

So ψ x is  κ.B sinκx  and –α  Deʹ -αx so  we have  the  by  matching  the  boundaries  we have  –

κ.B.sinκ.W/2=-α.D.e-αx so  this  equation  1,  and  this  is  equation  2  to  solve  for  the  arbitrary

constants BD and so on. So from the first equation I can say, I can find out one constant D to be

equal to eαW/2.cos κW/2 E we can use up the first equation to find out to eliminate one arbitrary

constant D. We can use the second equation along with the first equation to eliminate the other

arbitrary constant D.

But one o four choice one of our intentions is to find the beta which is embedded inside the α and

K so we will  use instead of eliminating the arbitrary constant we will  use it to find out the



expression for the β, so by looking at these equations we observe that on the left hand side and

right hand side we have the arbitrary constants B and D, so we can eliminate this B and D by

dividing one equation by other equation. So by doing so we get and dividing the equation 2 by

equation1 we get K tan kW/2= α this can be called as the characteristic equation to define or to

obtain the value of the propagation constant β. 
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So this equation is a transcendental equation where the constant the required constant β is inside

the constant k, k0
2and 12-β2 and α, β2-k0

2 and 22  so it is not easy to solve this equation directly but

by programming is a MATLAB or any numerical software we can obtain the values of β. Before

we go further let  us interpret  this equation and how we can solve this graphically,  graphical

solution of this equation can be obtained by looking at the left hand side and right hand side and

the geometrical figures that they represent.

So the expression K10 KW/2 let us say is equals to y and if we represent the independent variable

by x let us say this is x and I will multiply the equation with W/2 on both sides to get so we can

say this is x tanx this is of the form x tanx, we know the form of tan function and X multiplied by

tan x also would look somehow similar these are form of the tan functions or I would use a

different fine, even though I use the x for the other variable.
Similarly the right hand side of the equation if we look at the definitions of if on K can be written

in terms of K again, so W/2 α can be written in terms of W/2 in terms of K as follows. β 2 –k0
2n2

2



and if I add k2 and α2 I get (k0
2 n1

2-β2)+(β2-k0
2n2

2) so the +β and – β can cancel and say that k0
2 n1

2-

k0
2 n2

2 or k0
2.n1

2-n2
2  so I can say and multiplying by W/2 on both sides square of it I guess and

representing this by some constant v2. 

I can say this is v 2 -K 2 where the constant V is defined in terms of K0 2 x W /2 now square can

be removed W /2 √ N 1 square - n 2square, so this is called the V parameters of the wavelet. With

a slight modification you can say this represents three parameters containing the row bed with

the  refractive  index  contrast  and  through  K  0  which  =  2π/λ  will  represent  the  operating

frequency.

So the constant α if we are representing XKW /2 as X we can say this = X2 v square- X 2, so we

can say that this if we say the first curve is y 1 the second curve is y 2 then these are curves y s

the  this  represents  a  circle  of  radius  V.  The  right-hand  side  of  the  characteristic  equation

represents a circle of radius V and depending on the value of V the point of intersection of these

two curves representative solution that us how we can obtain the solution B equation graphically

draw.

The graph of left hand side and right hand side with normalized parameters like X and then find

the point of intersection and from the value of the solution the X we can find out what is value of

β so from this expression we have said that K W/ 2 as X, so once we got the value of x we can

find out the value of β. That is how we can obtain the value of the β, so we observe that we

observe that the radius of this circle is depending on the parameter V.

So V is the parameter which will define how many points of intersection we have if the release is

bigger this will intersect the left hand side curve at more points and we can say there are more

equation more solutions if it intersects only one curve representing the left side you can say that

there is only one solution and we have the single-mode wave rate. So we can design a single-

mode wave rate by choosing the parameters of the wave red light wavered with the operating

wavelength and the refractive index contrast.
As I mentioned earlier we can solve this equation directly using a MATLAB and you can find

out what are the various solutions that we can get.
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Now we let us discuss little bit about the design curves for a slab wave grade. We said that the

design parameter V is1/K0 x width x√n 2 - n 2 2. I will replace the width parameters earlier we

have W /2 in the equations later on when we generalize the theory to estimate X laborite we see

that there is a more general solution and W Z parameters or before going for that I will go back

and say that we can also think of symmetric modes.
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See we have called these are asymmetric modes and these are symmetric modes, so we have

solved for a symmetric mode all the characteristic equation. So we can also solve do the exercise

for anti symmetric or our modes of odd mode by choosing sine kx instead of cos kx. We may end

up in having cot θ instead of tan θ, so the design curves are generally drawn as a β as a function

of with how the propagation constant varies with the design the waveguide parameters.

So we can form a table of values of the V versus propagation constants and then plot them as a

two-dimensional plot V on one axis and a bit other axis. At this point the propagation constant

can also be normalized by saying that the above theory we have found that β should be we

should lie between should be K 0n1 for K to be positive and should be more than K0 x α to be˂

negative.

So K is positive if you threw this and α is also positive with you, so this range of values of β has

to be chosen for what can be called as guided modes. Guided modes are the one which are got

the constantly nature in the grading region and the exponentially decaying the cladding region.

So these are the ones which are used to guide the lights inside the waveguide and we can say that

if we choose the value of θ like this the light in the mode is confined when it is a wavelength

region.

So this β is normalized with respect to the refractive XS as follows. β has got the dimensions in

the free space with a has body dimensions of 2  / λ into the fraction X, so if we choose if weϕ

solve for a particular β and divide /2  / λ, so it has got the dimension of a refractive index, butϕ



as we see from the expression that brittle ice between K0 and N1 and we can expect this n to be

line between K0n2 and K0n1.

So and we can  call  it  as  an  effective  refractive  index of  the  wave vector,  so  this  effective

refractive index of the waveguide lies between the referred to basis of the substrate and the

guiding region, and a normalized propagation constant can be defined as follows. As a B which

is β /K 0 2 - n 22/N 1 - n 22 later we will explore the logic how the logic behind the definition. So

if you choose the β like this we can say that n effective is like between n 2 and CN1and so the β

will lie between 0 and 1.

The  plots  looked  like  this  for  the  fundamental  mode  the  for  whatever  the  value  of  the  V

parameters there is always a solution, so we can say the fundamental mode always exists and

starts at origin and as we increase the wave that will tour the flatness contrast or the frequency

you can say that it is a accurate towards some particular value looks like this. For the next mode

we can see from the characteristic equation.
 
You can see from the characteristic equation that we there are multiple modes and the second one

a pair softer π/2, so if we say that the odd modes are in between you can say the cutoff of the

modes to be π and it starts at this point. So this is at typical nature of the curves representing the

propagation constant  with operating wave length and D will  get  bit.  So we will  take up the

discussion about the wave grades further, when we go to the next exercise on the asymmetric

slab will gates.
 


