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Lecture No. # 26 

Tutorial – 4: 3D Flows in Axial Flow Turbines 
  

We are talking about axial flow turbines, and in last class, last lecture, we talked about 

how to design and bring into the design steps and design features, three dimensionality of 

flow through axial flow turbines. Now, we know that the flow through the axial flow 

turbines, as in axial flow compressors, is normally annulus in nature and that flow 

through the annulus space that is available to the turbines is often not exactly uniform. 

So, some aspect of the non uniformity or some aspect of the variation from the lower 

radius to the outer radius or inner radius to the outer radius, and more specifically from 

the root to the tip of the blade of a rotor needs to be factored into to begin within the 

design, and later on, in the computations, and of course, later on in the analysis. We have 

seen how some of these things can be brought into simple analysis. That we had done in 

the last class without getting into more complex computational analysis. 

As I mentioned, we shall do computational, an introduction to computational analysis 

through turbo machines towards the end of this lecture series, but right now, we are 

looking at turbines specific certain theories which factor in the three dimensionality of 

the flow and built it into the design. So, most of it is indeed used for design, and then, 

immediate pose design analysis to find out how the turbine is actually going to behave. 

So, in today's lecture, we will look at some problems that actually use these theories that 

we have done in the last class, and then, try to actually solve some problems which are 

prescribed problems, and from the problem statement, we tried to figure out what kind of 

solutions can be arrived at using the theories that we have done in the last lecture. 

And towards the end, I will leave you with a few problems to solve by yourselves so that 

you can get the feel of the application of these theories to actual problems, realistic 



problems and you also get a feel of the numbers. It is essential for an engineer to get the 

feel of the numbers and that is why it is essential that we look at a few problems which 

are probably a little textbook problems, simplicity problems where, you know, typically 

you have all the data you require. In a real life problem, you often may not actually have 

all the data that is require to solve, but we are dealing with problems where the problem 

statement gives you all the data that you require. 

 And now, you need to use the theories that we have done to arrive at solutions, and in a 

process, one learn how the solutions would look like and indeed as I said you get a feel 

of the numbers. What the numbers would look like? So, that is very important for all 

practical engineers. So, let us look at some of the problems related to three-dimensional 

flow in axial flow turbines. Now, in axial flow turbines, that we are going to do some 

solved problems, and then, I leave you with some exercise problems to solve for 

yourselves.  
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Now, in the solved problems, we will first look at the problem statement. In the first 

problem, the problem statement shows that a constant nozzle exit angle which we have 

designated earlier is alpha 2 is being use for axial flow turbine design. In which, it is 

prescribed that the temperature drop should be 150 k, and at the hub, the flare velocity a 

blade speed u is 300 meters per second, and at the tip, it is 400 meters per second. 

At it is prescribed that alpha 2 is 60 which is constant as prescribed from a root to the tip 

hub to the tip and alpha 3 is 0, that is, 0 whirl at the exit of the rotor. The radius ratio 

given for this particular problem statement is 0.75, that is, hub radius to tip radius ratio is 

0.75that is prescribed here. The problem asks a solution in which he should complete the 

design velocity diagrams at hub mean and tip of the stage, and thereafter, calculate the 

velocity components if the design is a free vortex design for the turbine and compare the 

results of that with that of constant nozzle exit angle. So, one can look at the whole thing 

from a free vortex point of view and compare the results. So, this is a problem statement 

which we can now try to find a solution to.  
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Now, at the rotor illustration, we have done in the last class - the equation for variation of 

whirl component is defined by the variation of alpha 2 and that is given by C W 2 by C 

W m which is the mean and that is also equal to C a 2 by C a 2 mean, which is also equal 

to C 2 by C 2 m which is mean and all these velocity ratios are equal to radius ratio r by r 

mean r being at any radius to the power sine square alpha 2. Now, this is what we had 

done in the last lecture following which, what we get is, at the rotor exit, the actual 

velocity C a 3 square is equal to C a 3 mean square plus twice U m into C W twice m 

whole thing multiplied by 1 minus radius ratio r by r m to the power cost square alpha 2. 

Now, this is also the theory that we had the expression; we had shown in the last lecture. 

Now, from the prescribed radius ratio that is given, we can see that the mean to tip radius 

ratio would be 0.875 and mean to hub radius ratio would be 1.166, that is calculated from 

the hub to tip radius ratio that is prescribed in the problem statement.  
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Now, the work done by the rotor is given by the rulers equation which you are all aware 

of. Now, in this particular problem statement, alpha 3 would be equal to 0; exit whirl 

component is 0, which means C W 3 indeed would be 0, and in which case, the specific 

enthalpy rise or, you know, specific work that we normally use for aero thermodynamic 

relations, that is, a c p into delta t would be equal to U m into C W 2 m C W 3 being 0, 

and from which, we can write that C W 2 m would indeed be 492 meters per second and 

corresponding C a 2 would be from the velocity triangles that you can draw at station 2 

that is before the rotor and that would come out to be 284 meters per second. As per the 

prescription, that also would be equal to a actual velocity at the exit of the rotors C a 3 m. 

Now, at the rotor hub, at the inlet of the rotor, one can write a axial velocity C a 2 h is 

equal to C a 2 m to the multiplied by a radius ratio r m by r to the power sin square alpha 

2 and this would yield a axial velocity of 318.8 meters per second. On the other hand, the 

whirl component at hub, at the inlet C W 2 h would be a C W 2 m into r m by r to the 

power sine square alpha 2 and that would be 552.2 meters per second. So, you now start 

getting the components of the velocities at station 2, that is, before the rotor at the rotor 

inlet. 
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Now, at the rotor tip of the inlet, one can now find the actual velocity using the same 

relation, that is, C a 2 m into r m by r to the power sin square alpha 2, and in which case, 

the actual velocity would now be 257 meters per second, and at the whirl component, C 

W 2 tip would be 447 meters per second. So, as one can see that the whirl components 

has actually decreased from hub to the tip, whereas, the actual velocity is also decreased 

a little from hub to the tip and this is a consequence of the fact that alpha 2 has been held 

constant from root to the tip of this prescribed problem. Soon as a result of which, we 

now have all the velocity components that are required at the inlet to the rotor.  
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Now, at the rotor tip outlet, we can find what the actual velocity would be and this can be 

found from the axial velocity relation that we had done earlier and that is given by C a 3 

equal to whole thing root over C a 3 square plus twice U m C W 2 m multiplied by 1 

minus radius ratio r by r m to the power cos square alpha 2, and if you do that, we can 

calculate the actual velocities at tip and hub as at the outlet as 262 and 306 meters per 

second.  
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So, once you apply the relations that we had done in the last class for three-dimensional 

flow estimation, we now have the axial velocities at tip and hub at the outlet to the rotor. 

On the other hand, if we calculate all the values with reference to the free vortex design, 

we can see that the velocities that we get in comparison to the nozzle angle can be now 

written down in a tabular form, and one can see that these values are the ones in constant 

nozzle angle are given in red and the free vortex values are given in black, and the actual 

velocities as you can see in, in, front of the rotor and behind the rotor are constant for 

free vortex, only the whirl component is changing as per free vortex variation from tip to 

hub. On the other hand, for constant nozzle angle as one can see all the velocities are 

varying, and essentially only at the mean, the values of free vortex and the constant 

nozzle angle are same at the tip as well as at the mean, the axial velocity the whirl 



component velocity and the exit axial velocity they are all same at the mean, but at the 

hub and the tip, the constant nozzle angle gives completely different values compared to 

that of free vortex. 

Now, this is something which you may like to take a look at and you may like to sit 

down and draw all the velocity triangles that are born out of this two calculations, two 

sets of design calculations and you will probably find that you get completely different 

blade shapes. The blade shapes that come out of this two design exercises would indeed 

be quite different from each other and that would tell you that, if you use different kind 

of design law or design philosophy, you would in end up getting quite different blade 

shapes, the three-dimensional blade shapes.  
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Now, if we go onto the second example in which, the problem statement reads that it is 

propose that for design of an actual flow turbine two design methods are to be explored. 

Now, first design method that is prescribed is C W 2 m is equal to C W 2 h that is equal 

to C W 2 t; that means the whirl components at hub mean and tip are equal to each other. 

Now, this type of design is what we have called earlier solid body essentially design; that 

means the fluid behaves more like a solid body and correspondingly the whirl component 

everywhere are same. 

The second design that is prescribed is where C a 2 is equal to C a 2 hub into the radius 

ratio hub to tip radius ratio to the power sin square alpha 2, which somehow tries to 



make use of the constant alpha 2 prescription and that is your Case B. The second design 

that is suggested here in Case B, and incase C, we have C W ratio C W 2 t to C W 2 h 

has equal to the radius ratio r h by r t. 

Now that, if you remember is nothing but you free vortex design. So, we have three 

design that is suggested for design of an actual flow turbine - one in which the flow 

behaves like a solid body; the second one in which one may use the alpha 2 equal to 

constant that is constant nozzle angle prescription and Case C is which resembles of that 

of a free vortex design. 

What is prescribed are some common data and these are the actual velocity at the mean 

is prescribed as 200 meters per second; entry alpha 2 is 60 degrees; exit alpha 3 is 0. The 

degree of reaction is 0.5 at mean and radius ratio prescribed is 0.8. What is asked for is 

complete the velocity diagrams for all the cases. The velocity diagrams are asked for 

because those are the velocity diagrams based on which final blade shapes would be 

created. So, the velocity diagrams would give a fairly good idea about the blade shapes 

that are being created by three cases - a b and c. 
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Let us look at how to go about finding a solution to this particular problem statement. 

From the prescribed data of the example 2, one can calculate that radius ratio r m by r t 

would be 0.89 and r t by r m would be 1.11. This is calculated from the hub to tip radius 

ratio that is prescribed in the problem, and then, the whirl component at mean C W 2 m 

can be found from the mean velocity diagram that is a C a 2 into tan alpha 2 and that 

gives C W 2 m equal to 346.5 meters per second and it is prescribed that alpha 3 is 0. So, 

C W 3 m would be 0. 

Now, C W 3 m equal to 0 is what we had done in the first problem also, where it is 

prescribed that C W 3 m could be given as 0 or alpha is given as 0. This is a fairly 

standard prescription for many of the designs, because what happens is, when the flow is 

going out of the turbine quite often, the prescription often encourages that the flow going 

out of the turbine does not have any whirl component, because the whirl component 

going to going out of a turbine typically of a single turbine or a multistage turbine, last 

stage would be quite useless. 

So, typically of a turbine it is quite often unless you know it is one of the earlier turbines 

are one of the middle stage turbines. The prescription quite often comes with alpha 3 

equal to 0 which leaves 0 whirl component, and if the flow is going in to a nozzle or 

going into exhaust, any whirl component present is quite useless, only component that is 

useful for nozzle effect for thrust making is the axial component. So, giving a 



prescription of whirl component 0 is pretty much a practical and standard prescription for 

turbine design as I mentioned, unless you are designing a turbine, which is one of the 

middle stages of a multistage turbine. 

So, as we have seen in both the problems C W 3 and alpha 3 of the prescribed to be a 0, 

and as a result of which, the problems does become a little simple, but the prescription is 

realistic it is not really idealistic. Let us get back at the problem. For this particular 

problem statement, it is given the degree of reaction r x is 0.5. Now, that means, it brings 

us back to the symmetrical balding concept that you may have done earlier and certainly 

done in some detail in axial flow compressors.  

So, the moment you put a degree of reaction 0.5, the symmetrical bleeding concept 

comes in, and then, you have at the mean, alpha 2 m equal to beta 3 m that would be 

equal to 60 degrees as prescribed and alpha 3 m equal to beta 2 m equal to 0 degrees as 

prescribed. This of course, makes the problem a little simple to handle. However, many 

turbines in the past and the early days of turbine design have been used, using these kind 

of a somewhat simpler design prescriptions and those turbines were a operating quite 

well. 

It makes the designers job definitely a simple and a probably analysis also become 

simple in those days and long back thirty forty years back if you may remember, the aid 

from a computational fluid dynamics was not available, and as a result, the refinement 

that is possible in today's turbine design was not really available in those days, and as a 

result, somewhat simpler design prescriptions were often used for design and those were 

functional, they worked fine cell. So, a similar somewhat simpler design prescriptions 

has been also prescribed here. 

Now, the blade velocity U m would come out to be same as a C W 2 m because u r beta 

2 m is 0, and as a result of which, 346.5 meters per second as calculated just a little 

above, and at any radius, we can now calculate the blade velocities from the radius ratios 

that we have just written down. So, the hub blade velocity would be 308 meters per 

second and the tip blade velocity U t would be 385 meters per second. So, the blade 

velocity is vary all the way from root to tip as a per omega into r concept. 
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Now, for case A, we have three cases to be actually looked at, and as I indicated, this is a 

fluid which is a prescribed to be behaving like a solid body for a cases which we have 

done in the last lecture n equal to 0 for the equation C W 2 equal to r to the power n. 

Now, when you put n equal to 0, it is a Cases which fluid behaves like a solid body. 

Now, the actual speed is calculated from the actual velocity pressure derived from the 

energy equation for the cases n equal to 0 and this comes out to be C a 2 is equal to C a 2 

m whole thing root over 1 minus 2 tan square alpha 2 m into l n radius ratio r by r m. 

Now, this can be derived; you can said an and derived in the same way we were done 

earlier for the cases n equal to 0 from the energy equation that we are written down 

involving the various velocity components. 

And you have to put the value of n equal to 0 there and he would arrive at this a solution 

which we are looking at for a axial velocity at any station with relation to axial velocity 

at a mean radius along the blade length.  
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Now, using this, you can also calculate the angles across the rotor from the above 

considerations. If you do that, the solutions that you get for the case A tells you that the 

actual velocity prescribed at the mean was a 200 and C W 2 at the mean was found to be 

346.5. On the other hand, we found the axial velocity is varying from tip to hub and both 

at the rotor entry as well as at the rotor exit. At the rotor exit, the C W 3 is prescribed to 

be actually 0, and correspondingly the value of alpha 3 also has been prescribed to be 0. 

The alpha 2 variation is shown here as part of our results. It varies all the way from hub 

to the tip. Correspondingly the beta 3 also varies exactly in the same manner from hub to 

the tip, and the beta 2 values are shown here. It is 0 at the mean as we have calculated, as 

off we prescribed the degree of reaction being 0. However, there is a small value beta 2 

at the hub and a small vale of beta 2 at the mean, at the tip that is been shown here. 
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Now, if we move to the results of a case B, the prescribed condition is C a 2 t is equal to 

C a 2 h into radius ratio r h by r t prescribed here in the problem to the power sine square 

alpha 2. Now, this of course, brings us to the fact that all the velocities at the tip and hub 

and mean can be the ratios of them can be put down as equal to each other. All of them 

would be equal to some relation to alpha 2. 

Now, this allows us to write down that far constant nozzle angle, which is the prescribed 

case B that we were looking at. C a 2 can be now written down as C a 2 m into radius 

ratio r m by r to the power sine square alpha 2, and in case of C W 2, that would be C W 

2 m to the into radius ratio r m by r to the power sine square alpha 2 and C 2 is equal to 

C 2 m to the multiplied by radius ratio r m by r to the power sine square alpha 2. 

So, far constant nozzle angle case, all the velocity C h 2, C W 2 and C 2 which is the 

absolute velocity can be found from the mean values, that is, at the mean radius to hub to 

tip at any radius by using this radius ratio concept. 

If we do that at the station 3, at the exit of the rotor, it is prescribed that alpha 3 is equal 

to 0 and C W 3 is also equal to 0. The expression for axial velocity comes out as we have 

done in the last lecture a C a 3 square is equal to C a 3 square 3 C a 3 m class twice U m 

C W 2 m to multiplied by 1 minus radius ratio to the power cos square alpha 2. Now, this 

allows us to calculate C a 3 at exit of the rotor. If we now use the relation that we have 

done which is essentially for the case B, which is a exit angle from the rotor is held 

constant from root to the tip of the blade. 



Now, this is something which we have discussed in last lecture that, holding the exit 

angle from the rotor constant from root to the tip of the blade makes the rotor untwisted 

or very likely twisted. Now, this is important for a stator nozzle blade cooling purpose. 

We shall be doing a cooling technology from next lecture onwards, but this particular 

design philosophy of holding alpha 2, 2 equal to constant from hub to tip or root to tip of 

the blade of the stator essentially caters to cooling technology, and if we apply this, in 

this present problem what we see is the result that we get for case B.  
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Let us look at the results of Case B. What we see here is the axial velocity is now vary all 

the way from hub to the tip. At the hub, it is 218.5. At the mean, it is prescribed as 200. 

So, the variation of axial velocity at the entry as well as at the exit is quite pronounced 

from hub to tip. The values of C W 2 are also variables from hub to tip point. 

Substantially C W 3 is being held constant; alpha 2 by prescription is held constant; 

alpha 3 by prescription is 0. 

We get a variation of beta 2 from 17.9 2 minus 19.4 and we get a variation of beta 3 from 

54 to 60 nine from hub to tip. So, these are the results of the Case B which is of a 

constant alpha 2 from hub to the tip of the stator nozzle. Now, we can move to the Case 

C. Now, Case C is what we had seen was actually the free vortex design. Now, the free 

vortex design as we have mentioned before is not the most popular design for actual flow 

turbine even though it is a very popular design for axial flow compressors.  



For turbine, it is not the most popular design, but it is the simpler design it of course 

works. If you make actual flow turbine with a free vortex design, it will surely work; 

there is no reason why it should not work, but it is not the most popular design today, 

and ever since the cooling technology came into the market, the free vortex design has 

been essentially replaced by the constant alpha 2 design which is the more popular 

design philosophy for turbines essentially as I mentioned to cater to a cooling 

technology. But let us look at the results that we get for this problem a statement problem 

to Case C for a free vortex design philosophy. 
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If you apply free vortex design philosophy, the whirl components at tip and hub the 

ratios are directly related to the hub to tip radius ratio. Now, if we apply the same at the 

outlet also, C W 2 also is held constant as per free vortex principle across the blade at 

mean various. So, C W, C a 2 is equal to C a 3, and if you apply all these, in the, as per 

the free vortex law, we get a set of results directly as per very well known free vortex 

law prescriptions. 
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The results that we get that the axial velocities are held constant from hub to tip as well 

as across the rotor. C W 2 varies substantially from hub to the tip as per free vortex law 

and which would tell you that you would end up getting a substantially twisted blade. C 

W 3 is being held constant. So, the trailing edge would be rather leaner. On the other 

hand, the value of alpha 3 is 0 corresponding to the prescription. Alpha 2 varies from hub 

to tip and the C W 2 variation shows that, and then, of course, you have the variation of 

beta 2 which goes minus at the tip and this is something that comes out of the free vortex 

design, and as a result of which, you get a variation of beta 3 which also varies from hub 

to the tip of the blade. 
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So, you have the results of the Case C Tabulated here, and then, we have three Cases – a, 

b and c these variations can now be all put together into one table which are essentially 

tries to compare the 3 Cases – a, b and C, and as you can see the Case A is given in red, 

the Case B that is a constant nozzle angle is given in b and the free vortex design is given 

in Case C and all three of them are brought together. If you sit down, use the velocity is 

that I given the angles that are given, and if you draw the velocity triangles of all the 

cases, you will probably get a very clear picture of what kind of blades actually come out 

of the three-dimensional blade shapes that should come out of the three Cases that are 

prescribed here. The three cases that are prescribed here had certain commonalities, that 

is, the mean actual velocity prescribed by 200. The exit the angles were prescribed to be 

0. The whirl components at the exit were prescribed to be 0. 

So, with those common prescriptions, we try to put together; the blades that would come 

out even with those commonalities, and we see that three completely different blade 

shapes are likely to result from three cases that are prescribed here for axial flow turbine 

design. So, as I mentioned, you can probably sit down and actually draw the velocity 

triangles and you would find that three different cases or three different blade shapes and 

he would indeed need to choose different aerofoil shapes, different blade sections from 

hub to tip for the each of these three cases. So, you end up having three completely 

different blade shapes for three different design philosophies even though we started out 

with a common data prescription for all three cases. So, this is an example which tells 



you with certain simplifications or simplified problem. It still tells you that, if you have 

three different design philosophies, you end up with three completely different blade 

shapes. I will now leave you with a few problems which you can sit down and solve for 

yourself and get a feel of the numbers that come out of solving of examples problems 

that are prescribed with numerical values. So, let us look at some of the problems you 

can solve for yourselves.  
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The first exercise, exercise, problem, the problem statement reads that an axial turbine 

rotor that is prescribed with rotor inlet and outlet flow in radial equilibrium, which means 

the static pressure and the dynamic pressure are balanced at the inlet and outlet of the 

rotor. The whirl component of the flow is designed to vary radically as per this 

prescription as C W at the inlet as a r minus b by r and at the outlet as a r plus b by r. 

Now, a and b are the constants, and what is required for you to find is find the inlet and 

outlet exit velocities and the expressions for those velocities. 

In this case, you can see the answers given here and the actual velocity is of course 

would remain constant across the rotor. So, we are dealing with rotor only. So, the 

problem statement is essentially for rotor. Part b of the problem is - it is prescribed that at 

mean various given value is point 3 meters. The actual velocity is 10 meters per second 

and the degree of reaction is 0.5. The blade loading coefficient is prescribed as, as, per 

the definition, psi rotor is equal to work done, specific work done 8 0 by U tip square and 



the r p m in 7640 rpm.  

The hub to tip radius ratio is given as 0.5, and at 80 percent of the rotor radius, it is 

required for you to find the rotor relative flow inlet and outlet angles. So, what you are 

required to find the beta values of a beta 2 and beta 3 for the particular problem 

statement that is given here. Now, the answers given are 43.3 degree and 10.4 degree for 

beta 2 and beta 3. So, you can try to sit down and see whether you can arrive at those 

answers.  
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The second exercise problem that is given is the gas exits from the turbine stator or 

nozzle at a radically constant angle alpha 2. So, it is a constant nozzle exit angle 

problem. The gas is prescribed to be in radial equilibrium. The axial velocity variation at 

that station is given as C a 2 in to r to the power into sine square alpha 2 equal to 

constant. This is what we have done in our lectures also, and for a turbine in which the 

axial velocity at the radius, 0.3 is a again prescribed 100 meters per second, and if the 



turbine has stated above is designed with a constant alpha 2 equal to 45 degree, find the 

actual velocity at that station at 0.6 meters radius. 

Now, the answers given here is very simple and that is 70.7 meters per second. So, it is a 

constant exit, stator exit angle problem and you have to apply the relations that we have 

done in the lecture or in the earlier problem that has been solved for you.  
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The third and the last problem that is prescribed for you to solve is an axial turbine is 

designed with free vortex at stator nozzle exit and 0 whirls at stator at rotor exit. So, it is 

a free vortex problem applied at stator and nozzle exit and a rotor inlet. So, the station 

between the stator and the rotor carries free vortex prescription. For the following 

operating condition, that is, at the entry t 0, 1 is equal to 1000 k mass flow is given as the 

thirty 2 kegs per second. The hub radius is 0.56; the tip radius is 0.76 meters; rpm 

prescribed is 8 thousand; the degree of reaction is point 5 and a actual velocity is 

constant that is 1 into 3 meters per second, and it is prescribed that the inlet and exit 

absolute velocities are equal to each other, that is, c 1 is equal to c 3. 

You are required to find C 2 that is the nozzle exit velocity. As you know, it expands ha 

hugely from C 1 to 2, and then, you are required to find the mach number, maximum 

mach number at the stage. In this particular stage, typically it is most likely to be a 



somewhere in the nozzle exit, and then, the reaction at the root, the power output of this 

particular working turbine and t 0 3 and t 3 at that stage exit. So, these are the numerical 

values that you need to find out of this prescribed problem. 

The answers solutions that are given here is that the nozzle exit velocity C 2 is would be 

for in 80 meter per second. The maximum mach number in this stage is so solved as 

point 0.818. The reaction at the root is 0.08, and you remember at the root, it is quite 

often specially free, free, vortex. It is likely to be very close to 0 and 0 of course would 

mean an impulse turbine, and we are looking at a problem in which, the solution actually 

comes pretty close to giving you an impulse station, impulse section at the root of this 

particular turbine, and then, the power output are work done for this particular rotor 

given the mass flow is 3.42 mega watts, and the temperatures at the exit t 3 is 907 and 

the static temperature t 3 is 8 892 k.  

Now, you can sit down and try to solve this problem and see whether you can come. You 

can standard values of ah gas constant r, that is, 247 joules per kg k and value of C p as 

thousand 147 joules per kg k. So, you can use those standard values to solve this problem 

in which, numerical are given and you are required to find the certain prescribed 

velocities, mach numbers, work done and the exit temperature. So, I leave you with these 

problems for you to solve yourself so that you can get a feel of the numbers the typically 

come out of axial flow turbine design. So, some of these problems would give you an 

idea how the turbine designs indeed proceeded with, and what kind of numbers you get? 

What kind of variations? You get a you get a feel of the numbers by solving these 

problems. 

In the next class, we will be looking at turbine blade cooling, because in this class and in 

the earlier lecture, we had looked at the design philosophy of alpha 2 is constant from 

root to the tip and we have stated again and again that this particular design philosophy 

essentially caters to turbine blade cooling. In the next lecture onwards, we will devote 

ourselves to looking at this turbine blade cooling technology and how it impacts the 

turbine blade, the turbine blade shape, and essentially, the aerodynamics or the aero 

thermodynamics of the flow over the turbine blades is very strongly impacted, and 

essentially, the aerodynamics of the blade changes hugely by application of cooling 

technology. 



 

We will look at various cooling technologies and how do they actually impact the turbine 

design of modern actual flow turbines specifically these cooling technologies are very 

widely used in aero engines, and we will look at some of the typical examples of these 

applied cooling technologies in turbine, actual turbine, rotor and stator. So, we shall be 

doing turbine cooling technologies from next lecture onwards.  


