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Hello, welcome to the next talk, in this Pattern Recognition course. Very briefly let us 

recall what you have been doing. We been considering ways to implement the Bayes 

classifiers, specifically we need to estimate the class conditional densities, for 

implementing the Bayes classifiers. So, we will be looking at various techniques for 

estimating class conditional densities, given iid samples from a density we want to 

estimate densities. 

(Refer Slide Time: 00:46) 

 

Currently we are considering the parametric way of estimate density; that means, we 

assume the density is known but for values of some parameters; and we were looking at 

techniques for estimating the parameters. We have considered earlier the maximum 

likelihood estimation for parameters of a density. We seen many examples of how it is 

done and we seen in that many cases, we can actually obtain closed form solutions, say it 

is a very efficient technique. Then in the last class we briefly looked at another 

parametric way of estimating densities, what is called the Bayesian estimation of 

parameters. So, this class we will consider Bayesian estimation in more detail, we will 



look at a few examples. So, both this class and part of next class we will be looking at 

Bayesian estimation. 

(Refer Slide Time: 01:45) 

 

We discussed Bayesian estimation last class but let us briefly recall the basic idea of 

Bayesian estimation. In the maximum likelihood case, the parameters are unknown but 

are assumed constant. In the Bayesian estimation we think of the parameter itself as a 

random variable, what does that give us? It allows us to capture our knowledge or lack of 

knowledge, see we do not know the parameters that is what our lack of knowledge is, but 

it is may not be complete, completely unknown. At least for example, we know what 

space the parameter belongs to but we are certain about the actual value of the parameter. 

So, this lack of knowledge or whatever partial knowledge we have, about the value of a 

parameter is captured through a probability density or the parameter space. As I said last 

class, we call this the prior density of the parameter, it is prior to seeing any data. So, 

before we do any experiments, our, whatever ideas we have about the parameter, are 

captured in this prior density. Any information we have about the value of the parameter 

can be incorporated into the prior density. Then we look at the estimation process, 

slightly differently the data itself is now used to transform our prior density into what is 

called a posterior density of the parameter, posterior is posterior to seeing the data. So, 

the data essentially transforms our prior density to a posterior density using Bayes 

theorem. 



(Refer Slide Time: 03:21) 

 

This is the basic idea of the Bayesian estimation, we will see examples this class. So, to 

get our notation as earlier, unless we have some other symbol for the parameter, for 

generic parameters we use the symbol theta and script D is the data that we have. So, D 

is simply x 1, x 2, x n where, x i’s are iid realization for the density, that is we have an 

underlying density model f (x) given theta, which is known but, for the value values of 

theta. 

So, each of these x i’s have the same density f (x i) given theta, and they are independent 

because, this is the data we have and this f is the assumed probabilistic model for the 

density and we want the value of the theta. So, because we decided that the parameter 

itself is to be treated as a random variable, let f theta denote the prior density of the 

parameter and let f theta given d be the posterior density. Just one caution about notation 

just to keep notation simple we use f for densities of all random variables, when I want 

density of theta, I write it as f of theta and when I want density of x, I am writing f of x. 

So, in that sense the symbol f is not specifying any specific function, normally in the in 

the probability literature. The random variable 2 is the density reverse to is put as a 

subscript on the density. So, for example, when I talking about the density of f, I should 

say f subscript x of x side, when I am talking about the density of theta, I should say f 

subscript theta of at a at an argument value theta and so on. It just clutters up the notation 

a little bit more. So, just using this unspecified f, as a density function for all random 



variables that we are considering, the the meaning will be clear from context and all of 

you should be a little cautious about about this notation. 

(Refer Slide Time: 05:21) 

 

So, once again f theta is the prior density of the parameter and f theta given D is the 

posterior density. So, the bayes theorem tells us, how we can link the prior density to the 

posterior density. So, the posterior density f theta given D is given by f (D) given theta 

into f theta by a normalizing constant where, f(D) given theta because, D consists of n x i 

each of them are iid, it is simply product of the individual marginal density values. So, f 

(x) say given theta which is nothing but, the data likelihood that we have already seen. 
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We also talk briefly about what are called conjugate priors last class, a form for the prior 

density that results, in the same form for the posterior density is called a conjugate prior. 

So, the prior for example, is normal, then we want posterior also to be normal, then the 

prior is conjugate. So, for a particular problem, if I choose the right form for the prior 

density, then the posterior may also become a density of the same class. 

Such a prior is called a conjugate prior, see posterior density of course, depends on the 

product of the prior and the data likelihood. And the form of data likelihood depends on 

the form of the assumed f (x) given theta the density that we are estimating. So, 

ultimately what will be a conjugate prior is determined by the form of f (x) given theta 

that we use and hence that of the data likelihood, we will see examples later on. 
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The reason why we want to use conjugate prior, is that the prior and posterior would 

belong to same class of densities and hence calculating the posterior would be like 

updating parameter values. 

(Refer Slide Time: 06:59) 

 

What we mean is? In this expression if I know f theta, let us say f theta is normal with 

some mean and variance. And for this problem the f (D) given theta is of the form that 

when multiplier f theta what I get is another normal density, then f theta given D also 



will be a normal. So, to transform f theta to f theta given D I have to only know what will 

be the new mean and variance. 

(Refer Slide Time: 07:31) 

 

So, in that sense because if the prior and posterior belong to the same family of densities, 

transforming prior to posteriors is just a parameter update step. Hence calculating the 

posterior would be like updating parameters values, we are going to consider examples. 

(Refer Slide Time: 07:40) 

 

One final point, how do we use the final posterior density for implementing the 

classifiers, this is also what we discussed last time is worth recalling again. As I said last 



time there are many possibilities for this. Ultimately, we need class conditional density 

for implementing Bayes classifier that is what we are doing. So, one method is given the 

posterior density, can we find a density for x based on the data. 

(Refer Slide Time: 08:05) 

 

So, the density is not dependent on any unknown parameter, last class we seen how it 

can be done, if I know f theta given D, we can write a density f (x) given data that is 

density of x conditioned on the data. As as the marginal of the joint x comma theta 

conditioned on D, by integrating with respect to theta. Now, this marginal can be split 

into f of x given theta comma D and f theta comma D and given theta, x density of x 

does not depend on the data. 

So, this integral becomes product of f (x) given theta f theta given D d theta. f (x) given 

theta is the assumed density model, f theta given D is the posterior that we have 

estimated. So, we can use this integral to find f (x) given D, which we can then use at the 

class conditional density. So, depending on the form of the posterior, we may be able to 

get a closed form expression for this density and then we can use that at the class 

conditional density. We will see examples of how to calculate this class, there are also 

other possibilities. 
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We can use one particular value of theta based on the posterior. We can for example, 

take mode that the value at which the density has the highest value, when we do that is 

called a map estimate as I said last time maximum a posteriori probability estimate or we 

can take the mean of the posterior density, both these are also often used and we will see 

that in examples in this class, with that introduction let us move on to examples. 

(Refer Slide Time: 09:23) 

 

So, first consider very, very simple example. We want to estimate the mean of a 

Gaussian density but, this time we assume even variance is known. So, only mean is 



unknown we have iid samples from a Gaussian density, whose variance is known and the 

only unknown parameter is the mean. So, with that assumption what will be my assumed 

probability model of x give theta now becomes theta is the mu the mean of the Gaussian 

density is a one dimensional example. So, f (x) given mu, this is the standard Gaussian 

density model. Once again I emphasize in this model, we are assuming sigma is known 

and mu is the unknown parameter which we want to estimate. 

(Refer Slide Time: 10:36) 

 

We have of course, as usual x 1 to x n iid data from this density for estimation. So, what 

is the likelihood? Likelihood is simply product of f (x i) given mu. So, that becomes a 

just put x as x i in this expression and then take n fold product, if I take n fold product I 

will get this term to the power n because this does not depend on x and here when I take 

the product all of them get added up inside the exponent right. So, my likelihood become 

this first term to the power n exponential some over i, x i minus mu whole square. 

Now, we are asking if this is the form of likelihood, what prior would be conjugate, for 

that this likelihood when viewed as a function of mu what is it is main characteristic, is 

as a function of mu it has an exponential of a quadratic in mu. What is inside the 

exponent is some quadratic function mu, remember that x i’s are given data they are 

known they are not the variable the variable is mu here. 

So, inside exponential what I have is a quadratic in mu. So, as a function of mu is an 

exponential of a quadratic in mu. What is the density is it exponential quadratic in mu, a 



normal density right. So, if the prior is normal, a normal density is exponential of 

quadratic right. Then if the prior density over mu is also normal, then what happens is I 

am multiplying one exponential, which has a quadratic in mu with another exponential 

there is a quadratic in mu because, inside the exponents thing added up I once again get 

an expression which is exponential of a quadratic in mu. And that means, my product 

would also be a normal density again, which means for this problem. 

(Refer Slide Time: 13:08) 

 

That is the problem of estimating mean of a one dimensional Gaussian with variance 

known the conjugate prior is a normal density. So, let us take the prior, prior is a density 

on mu remember we are thinking mu itself as a random variable. So, prior is a density on 

the variable mu. So, we are assuming it to be normal, we will use the script N to denote 

normal the notation is N of mu 0 sigma 0 is a normal density, whose mean is mu 0 and 

whose variance is sigma 0. So, we are thinking that the prior density is normal, we are 

not thinking, we are taking the prior density to be normal with mean mu 0 and variance 

sigma 0. 

 Now, we can calculate the posterior, the posterior of mu given D is f (D) given mu this 

is my likelihood, into f (mu) that is my prior, which is assumed to be normal with mean 

mu 0 and variance sigma 0, variance sigma 0 square. 
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This is of course, a normalizing constant, so this is how I can calculate the posterior, so I 

have to just substitute. So, if I substitute f of D given mu we have from the previous slide 

right, that is f of D given mu. So, I am skipping all the unnecessary constants, we only 

want the want the expression that depend on mu. 

(Refer Slide Time: 12:12) 

 

So, that is why I put a proportionality sign that is a unspecified constant. So, the posterior 

depends on the product of these two and the first I am f (D) given mu is this exponential 

minus 1 by 2 sigma square sum of x i minus mu whole square and f (mu) is a normal 



with mean mu 0 and variance sigma 0 square. So, that will add 1 by 2 sigma 0 square, 

mu minus mu 0 whole square. This is the only part of this product that depends on mu 

the the bottom the denominator in this expression is an integral with mu as the dummy 

variable is not dependent on mu, its just some normalizing constant. 

(Refer Slide Time: 14:21) 

 

Similarly, both these densities have some constant that do not depend on mu. So, all 

those are subsumed in a constant that comes here. So, that is why I put a proportionality 

sign instead of equal to. So, the posterior is proportional to this expression. So, let us 

look a little more in this expression. So, posterior is proportional to minus 1 by 2 sigma 

square, some i is equal to 1 to n, x i minus mu whole square minus 1 by 2 sigma 0 

square, mu minus mu 0 whole square. 

So, if I expand this and write it in a quadratic, I can think that this is proportional to 

exponential minus half, let us take the minus half factor out into some expression A, 

what is the expression A, what will come out of this, 1 by sigma square and when I 

expand this I get x i square mu square and 2 x i mu. So, one term is 1 by sigma square x i 

square, then the mu square term comes out, I got a sum over i is equal to 1 to n of a 

constant 1 that will give me n. 

So, I will get n by sigma square into mu square, another mu square term will come from 

here and that will have factor 1 by sigma 0 square. So, I will get mu square into 1 by 

sigma 0 square plus n by sigma square, what is the left over terms minus 2 mu term, 



minus 2 mu here has coefficient summation x i by sigma square, the half is already being 

taken here right we are only looking at A. So, the 2 mu term from here, I will get 

summation x i by sigma square, the 2 mu term here will give me mu 0 by sigma 0 square 

that is the 2 mu term. So, finally, the posterior density is propositional to exponential 

minus half A, where A is a quadratic in mu given by this. 
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So, what does this tell us because f (mu) given D is proportional to exponential of 

quadratic in mu, as expected the posterior is also a Gaussian density. Now, I have to 

figure out for this Gaussian density. What is the mean and variance? Then I have 

completely characterized the posterior density. Because, I know that the posterior density 

is Gaussian, let us assume that posterior density is Gaussian with mean mu n and 

variance sigma n square. 

Then the form over the posterior density would be exponential, forgetting about the 

constants will be exponential minus half, mu minus mu 1 whole square by sigma n 

square. That is mu square by sigma, sigma n square mu n squared by sigma n square 

minus 2 mu, mu 1 by sigma. So, this will be the quadratic inside the exponent if the 

posterior is normal with mean mu n and variance sigma square n. 
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We know what is the actual quadratic in the posterior, this is the actual quadratic in the 

posterior. So, if I want to find what is the mu n and sigma n I have to just compare the 

terms right between that quadratic and this quadratic. 

(Refer Slide Time: 17:12) 

 

So, comparing terms we get the following. So, first what is the coefficient of mu square 

here 1 by sigma square n. (Refer Slide Time: 14:21) What is the coefficient of mu square 

here, 1 by sigma 0 square plus n by sigma square right. (Refer Slide Time: 17:12) So, I 

get 1 by sigma square n is 1 by sigma 0 square plus n by sigma square.  



Similarly, if I take the coefficient of 2, 2 mu that is mu n by sigma square n. (Refer Slide 

Time: 14:21) What is the coefficient of 2 mu, we got earlier is 1 by sigma square 

summation x i plus mu 0 by sigma 0 square right. (Refer Slide Time: 17:12) So, by 

comparing coefficients we get these equations, where the unknowns are sigma square n 

and mu n right, those are that is what we want to find. We want to find what is the 

posterior density, we can easily solve them. For example, from this expression I get 1 by 

sigma square n is sigma square plus n sigma 0 square by sigma square sigma 0 square, 

now you invert it we get sigma square n. 
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So, that is sigma square, sigma square sigma 0 square by sigma square plus n sigma 0 

square. 
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Similarly, now substituting that substuting that sigma square n in this expression, I can 

calculate mu n and that turns out to be this expression. 
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This expression is very interesting. So, I am write that expression as n sigma 0 square by 

n sigma 0 square plus sigma square into mu n bar plus sigma square by n sigma 0 square 

plus sigma square into mu n into mu 0 where mu n bar, is just a symbol for this 1 by n 

sum i is equal to 1 to n x i, I just taken this expression out. 



The reason for giving a symbol for this is this is the ML estimate right. So, the final 

posterior density is Gaussian with mean mu n and variance sigma square n. And these 

completely specify the posterior density because, posterior density is Gaussian mean and 

variance completely specify it just a word about, why we chose this. So, we think of mu 

n and sigma n is the posterior density after we have seen n examples, in that sense mu 0 

sigma 0. Are the density when we seen no examples that is the prior right. So, because 

mu 0 sigma 0 is for prior mu n sigma n is the are the parameters of the posterior after we 

see n example. 
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Now, let us take a look at this mu n and the expressions for mu n square and sigma n 

square to see some interesting structure there. So, this is what we derived, as our final 

posterior density. Posterior density is Gaussian with mean mu n and variance sigma 

square n which are given by this, in this mu 0 sigma 0 are what we have chosen those are 

the prior densities that we have started with n is the number of examples. 

Sigma or sigma square is the variance of the Gaussian of from which data is come which 

is assumed known. We are we are estimating the mean of a Gaussian whose variance is 

known. So, sigma square is known, and mu n bar is simple an expression for 1 by n 

summation x i which happens to be the ML estimate for mu in, in the same problem. So, 

thus mu n is a convex combination I hope you can see that if it it is some some constant 

into mu n bar plus some other constant into mu 0 both the constants are positive and they 



add up to 1. So, mu n is a convex combination of mu n bar and mu 0 mu n bar is nothing, 

sample mean is the ML estimate which is the sample mean. So, if we did not do anything 

else all this Bayesian thing we could have simply taken sample means as the sample 

mean as the estimate. 

But, we are not doing that we are taking as convex combination of the sample mean and 

the mean of the prior density, mean of the prior density is what we guessed originally 

without seeing any data as to what what is the most probable or what the expected mean 

expected value for the unknown mean is. So, our final estimate the the mean of the 

posterior density is a convex combination of mu 0 the mean of a prior density and mu n 

bar which is the sample mean right. 

So, the final estimate has has both the prior and the data play a role in the ML we are 

simple taking mu n bar, as the as the final estimate. Here we are letting our initial beliefs 

about the values of the unknown unknown mu also to effect the final estimate right. That 

is how this became a convex combination of the sample mean mu n bar and the prior mu 

0 second thing to notice is as n becomes large right once n becomes large n sigma 0 

square no matter what is the value of sigma 0 square is will certainly dominate sigma 

square as as it keeps growing large and large. So, this this term becomes 1 and this term 

becomes 0. 

So, as n becomes large the mean of the posterior simply become the sample mean. So, if 

I have large data my estimate is same as the maximum likelihood estimate, as it should 

be because maximum likelihood estimate is consistent, as n tends to infinity, it will give 

me the right value. So, I should go there any way and that is also given by my posterior 

densities sigma goes to 0 as n tends to infinity. So, as n becomes large, sigma n becomes 

very small, mu n becomes same as sample mean that means, the posterior density 

becomes more or less a dirac delta at the sample mean. 
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So, that is my Bayesian estimate also right. So, as Bayesian becomes very large Bayesian 

estimate is essentially same as ML estimate as we expect. ML estimate is consistent as n 

tends to infinity it gives me the true value. So, Bayesian estimate should also give us the 

same thing. So, as n tends to infinity it becomes same as the ML estimate but, at any 

reasonable n the actual mu n is a convex combination of mu n bar and mu 0 that means, 

both prior and the data have a role to play. 

Actually i we can see it even little more by asking you know how large is large for n. So, 

these are our sigma square n and mu n. So, what does large n mean essentially mu n 

becomes approximately equal to the sample mean, when n sigma 0 square is much larger 

than sigma square. How large n should be for this to happen depends on sigma 0. If 

sigma 0 is small, n has to be very large to achieve this, if sigma 0 itself is large then n 

does not have to be too large to achieve this. What does that mean? What does our prior 

say? Our prior is normal with mu 0 sigma 0.  

So, what we can think is initially we think the most probable or the or the expected value 

of the unknown parameter mu is mu 0 but, of course,, we are not sure and how 1 should 

is by determining by sigma 0. If my prior density has very small sigma 0 that means, I 

have lot of faith in my initial guess mu 0 and on the other hand if sigma 0 is very large; 

that means, I do not have much faith in my initial guess mu 0. I can think of mu 0 as the 

initial guess and sigma 0 as the label of uncertainty in this initial guess take a large sigma 



0 in my prior density means I am not too sure of my guess mu 0 right. That is why the 

the Gaussian will be very, very widely spread. If sigma 0 is small I have lot of 

confidence. 

So, if I have lot of if if mu n bar becomes same as mu 0, then the convex combination 

will always be same. If mu if anything mu 0 and sample mean happen to be the same 

then, obviously, this whole thing will be sample mean but, on the other hand if sample 

mean is much different from mu 0. Then I would not believe it unless n is very large 

right, that is what small sigma 0 would mean, on the other hand if sigma 0 is large 

initially itself I do not have much faith in my guess. 

Then moderate n would be enough for me to believing only the sample mean, by any 

case if the samples are very few then I would not let just sample mean take me as I have 

some control, by what prior I choose of course, mu 0 sigma 0 is what we choose. So, that 

depends on whatever initial knowledge, we have about the about the area in the 

parameter space where, we think the true value of mu lies what its utility is that if the 

first few data that we got, by our misfortune happen to be out layers that immediately 

does not take away our guess too far our estimate too far. 

(Refer Slide Time: 26:09) 

 

Now, of course, so, far (()) we just told you, we just calculated that the posterior density 

is Gaussian with mean mu n and variance sigma square n and we seen how to calculate 

mu n and sigma square n. So, the Bayesian estimate the whole posterior density. So, 



what should we take as the final estimate, as we explained earlier today, we can use 

mean or more of the posterior density because the posterior density is Gaussian, it is 

mean and more both are equal to it is mean and that is mu n. 

 So, which means I can simply take mu n to be the value of the unknown mean that 

means, my class conditional density I am originally assuming it to be normal with mean 

mu which is unknown and variance sigma square which is known. Now, my estimate 

could be simply mean or more of the posterior that means, I can simply take my class 

conditional density to be a Gaussian with mean mu n and variance sigma square this is 

one thing I can do. I can simply take the mean or more of the posterior density as the 

parameter value which happens to be mu n and hence I will say my final class 

conditional density is Gaussian with mean mu n and variance sigma square because I 

started with a model where sigma square is known. 

(Refer Slide Time: 27:32) 

 

On the other hand as I said we can actually calculate, a density model for the data, for 

forfor x based only on the data right. So, in this particular problem it happens to be easy 

to calculate easy in a in a in a figurative sense we are not actually calculating the algebra 

involved is quite complicated as it would have taken at least four five slides for me to 

show you the algebra. But, let us just at least write the expression. So, f (x) given D is 

integral f (x) given mu f (mu) given D d mu right. 



This is very integrated with respect to mu. So, only x and d will remain what is f (x) 

given mu this is my assuming model, 1 by sigma root 2 pi exponential minus x minus mu 

whole square by 2 sigma square, that is the first term multiply by second term f (mu) 

given D, mu given D is normal with mean mu n and variance sigma n. So, that is 1 by 

sigma n root 2 pi exponential minus mu minus mu 1 whole square by 2 sigma square n 

right integrated with respect to mu. So, this is my expression for f (x) given D. Of course, 

this looks a complicated integral, what I have is a quadratic in mu here right. 

(Refer Slide Time: 28:59) 

 

X is x survives the integration. So, there is a quadratic in mu here quadratic in mu here 

mu n and sigma n are given. So, ultimately I get some constant we have to exponential 

quadratic in mu. So, you can at least see that they will be some simplifications possible, 

by using the standard Gaussian integral, after lot of length the algebra one can actually 

crunch this integral. And show that this turns out to be this right, once I do all the algebra 

right that expression turns out to be this. What is this? This says f (x) given D is 

Gaussian with mean mu n and variance sigma square n plus sigma square right. So, for 

example, instead of just taking mu n as which is the mean or mode of the posterior 

density as my estimate. I can take my class conditional density estimate to be this that 

means, I will use a class conditional density, which is still Gaussian with mean mu n as 

earlier but, now variance is sigma square plus sigma square. If I take the mean or mode 

of the class conditional density as my estimate, I would have taken my mean and mode 

of the posterior density as my estimate. Then final class conditional density would have 



been Gaussian with mean mu n and variance sigma square which is originally assumed 

or no but, what our calculation f (x) given D shows us. That the right class conditional 

density to use is Gaussian with mean mu n but, with variance sigma square plus sigma 

square n. The idea is mu n is only estimate of the unknown mean and hence sigma square 

n is our initial our at that level uncertainty in our estimate. 

So, it is better to take our class conditional density after seeing n samples, as Gaussian 

with mu n and variance sigma square plus sigma square n. Once again as n becomes 

larger and larger, this sigma square n becomes 0 and this becomes the ML estimate 

which is consistent right. So, seamlessly as the data increases ultimately it becomes 

Gaussian with sample mean as the as the value of the unknown parameter and variance 

to be sigma square. So, which means if I use this class conditional density, naturally we 

take care of the sample size problems. 

If you remember at the end of ML, we said the main problem with the ML is while it is 

consistent at small sample, sample size our estimate may be may not be too good. Now, 

here by calculating f (x) given D we realize that if when I am taking mu n as my 

estimate. I do not simply plug mu n into the into the density model we assumed, which is 

Gaussian with mean mu 1 known variance sigma square. I increase the variance of the 

class conditional density model I used to, to account for my current level of uncertainty 

in my estimate. So, this is another another very interesting thing about Bayesian 

estimation it it does take care of the sample size. 

So, this one example of course,, as you can see when I derived the ML estimate, we 

actually taken a problem where both mean and variance of the Gaussian are known, we 

taken our first simple example as the unknown density is Gaussian and we directly 

estimated both unknown mean here. Just estimating the mean itself involves considerable 

algebra but, essentially it allows us to take prior beliefs into account, ensure that in at all 

sample sizes we do not we do not get, let us take too easily by out layers and so on. That 

is what we are getting gaining by Bayesian estimation, for the increase in complexity 

right. We will see one more simple example right. 
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Consider estimating a Bernoulli density, this is the second example we took even in our 

even we did ML maximum likelihood. So, like that we here also let us consider 

estimating a Bernoulli density with parameter p. So, what is the Bernoulli density with 

parameter p? P is (( )) with parameters. So, the densities of f of x given p is p power (( )) 

for 1 minus (( )) only 0 and 1 value. So, by density I mean is actually a mass function 

right. It has only two values f 0 given p, f 1 given p. f 0 given p is 1 minus p f 1 given p, 

p is a Bernoulli. So, it takes value 1 with parameter with probability p and 0 with 

probability 1 minus p.  

So, what is the likelihood? Likelihood D is the product of this over x i that is i is equal 1 

to n, f (x i). So, what is f (x i)? P to the power x i 1 minus p to power 1 minus x i. So, if I 

do this product I get p to the power of some x i into 1 minus p to the power of n minus 

summation x i. That is my likelihood. So, the likelihood is of the form p to the power 

something into 1 minus p to the power something. Now, I have to multiply this 

likelihood with some prior and the product should once again be the same form as the 

prior. So, if I choose prior also to be p to the power something into 1 minus p to the 

power something, then the product will once again be p to the power something into 1 

minus p to the power something. 
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So, the prior that we need right should be some density which is proportional to p to the 

power of a into 1 minus p to the power b and this should be a density because p is a 

continuous value it can take any value between 0 and 1. So, it should be a well defined 

density over the space 0 1 and should have a form which say that the density is 

proportion density is some constant times p to the power of something into 1 minus p to 

the power f something. 
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The reason why this this should be the right prior is if that was the prior and then i 

multiply with the likelihood then what I get is p to the power of something into 1 minus 

p to the power of something. So, which means the posterior will once again be in the 

same class of the prior. 
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So, the question is what are the densities that have this form? An important density 

which had this form is, what is called the beta density, it has two parameters a and b and 

it is given by f p is gamma of a plus b by gamma of a into gamma of b into p to the 

power of a minus 1, 1 minus p to the power of b minus 1 the density over 0 1 and a, b are 

constants which are assumed to be greater than or equal to 1. Where the gamma is the 

gamma function, the gamma function is given by gamma of z is 0 to infinity x power z 

minus 1 e power minus x d x. I hope all of you have have come across gamma functions 

sometime  

There are many, many places where you could have studied gamma function including 

your probability course but, any way with this as the gamma function this is the density. 

While I am assuming that all the people using this course, know basic probability which 

means you know about density, joint densities you know all the standard densities, such 

as exponential, Gaussian, Bernoulli, binomial, Poisson and so on. 
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This beta density is not something that one often comes across in first course in 

probability. So, we will spend a little time on understanding the beta density first. So, 

beta density beta a comma b is beta density with parameter a and b is a density given by f 

(p) is gamma of a plus b by gamma a into gamma b into p to the power a minus 1 1 

minus p to the power b minus 1, this is the density. 

This is a very important density over 0 1 many other say 0 1 all of you know for 

example, uniform is 1 density over 0 1 that everybody knows. So, after uniform density 

possibly, this is 1 of the very important continuous densities, which are defined over 0 1 

where the random variable takes values only over 0 1. If a is equal to, b is equal to 1, if I 

put a is equal to 1, b is equals to 1 f (p) is a constant, for all p belonging to 0 1. That is 

nothing but, the uniform density the constant should turn over to be the right constant, 

namely 1 but, that that it will will currently show that this is a density. 

So, if a is equal to b is equal to 1, it reduces to uniform density but, if a is equal to b is is 

if a and b are different. Then this is a density which is not uniform over. So, that is how 

we would be able to to give some bias. To the give some some view to our initial views 

about the values of p. We will come back to that again later but, just right now let us 

remember that a is equal to b is equal to 1, it reduces to uniform density. 

 Now, first let us show that this is the density, what do you have to show for for this to be 

a density? A gamma function is obviously, positive and p is between 0 and 1. A and b 



are greater than equal to 1. So, this entire expression is positive. So, the only thing we 

have to show is integrated over 0 to 1 with respect to p this expression should be 1. So, 

which is same as gamma a a gamma of a plus b integral 0 to 1 with p power a minus 1 1 

minus p b minus 1 d p this should be equal to gamma a into gamma b. So, that if I bring 

gamma a gamma b this side that whole thing will become 1. 
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So, this is what I have to show, to show that this is a density, this is a little non trivial 

thing. So, let us just show it, so first. So, this is what we want to show. So, let us take the 

LHS gamma a into gamma b and ask what is that. So, this is the gamma function. So, 

because I want product of two gamma functions, I have taken different dummy variables. 

So, gamma a is x to the power a minus 1 e power minus x d x over 0 to infinity gamma b 

is y to the power b minus 1 e power minus y d y over 0 to infinity because, I have taken 

variables I can write it as a double integral. So, 0 to infinity 0 to infinity e power minus x 

plus y x to the power a minus 1 y to the power b minus 1 d y d x. I need some order of 

integration, it really does not matter they are independent details here. So, I just chose d 

y and then d x. 

Once I do that in the inner integral we will make a small change of variable, so the inner 

integral with respect to y. So, let us change change y to t using the transformation t is 

equal to x plus y. What will this mean d t is d a d y is d t. So, that does not change when 

y takes value 0 t takes value x when y takes infinity t takes infinity. So, the limits 0 to 



infinity for y will become x to infinity for t and x plus y will be substituted by t and x and 

y itself will become t minus x. 

Now, this integral will now become, x plus y has become t x power a minus 1 as it is y 

has become t minus x the variable has become d t and limits have changed from x to 

infinity. So, this is a d t d x integral x is the outer integral that goes from 0 to infinity, t is 

the inner integral that goes to x to infinity. So, let us say I i want to a change the order of 

integration that is I want to first integrate with respect to x and then integrate with 

respect to t. 
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So, how do the limits change, here for each x, t goes from x to infinity, which means for 

each t x goes from 0 to t. So, if I change the order of integration this expression will 

become the outer outer integral is now d t integral, right the inner integral is d x integral. 

So, it becomes 0 to infinity, the t goes from 0 to infinity, now and x goes from 0 to t 

earlier x goes from 0 to infinity t goes from x to infinity which means for each x t goes 

from x to infinity which means very simple geometry will tell you which means for each 

t x goes from 0 to t. Now, let us start with this. 
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So, we come up till here gamma a gamma b is given by this expression, now once again 

we will make a change of variable in the inner integral right, we change x to t u where u 

is the new variable. 
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What does this give us, when x goes from 0 to t what happens to u, when x is equal to 0, 

u is 0. When x is equal is 2 u is equal to 1. So, as x goes from 0 to t, u goes from 0 to 1 

and d x is d t u. So, using that we change the variable from x to u in the inner integral. 

So, that will give me a change from x to u this becomes a d u integral e power minus t 



stays x has become t u. So, that is t to the power of u minus 1 t to the power of a minus 1 

and u to the power of a minus 1. 

Now, once again x has become t u, so I can take t common. So, it becomes t to the power 

b minus into 1 into 1 minus u to the power b minus 1 and d x has become t d t. Now, I 

can gather to get all the t term this is a t power a minus 1 here, t power b minus 1 here 

and a t here. So, that gives me t power a plus b minus 1 because 1 minus 1 will cancel 

with this t. So, that will give me this 0 to infinity 0 to t e power minus t t to the power a 

plus b minus 1. Then u to the power of a minus 1 1 minus u to the power b minus 1 d u d 

t. Now, as you can see in this double integral, right the limits do not depend on each 

other and the t and u terms are separable. So, I can write this as a product of two integrals 

right. 

So, I bring all the t terms out 0 to infinity e power minus t t to the power a plus b minus 1 

d t. And all the u terms separately 0 to 1 u to the power a minus 1 1 minus u b b minus 1 

d u. Now, are we done, can we recognize this as 0 to infinity e power minus t t to the 

power something d t. This is nothing but, a gamma function, gamma function of a plus b 

right. 
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So, what have we got, this is a gamma function a plus b. So, is gamma of a plus b 0 to 1u 

to the power of a minus 1 1 minus u to the power b minus 1 d u. So, if i taken u u to be p, 

then this is exactly what we wanted gamma a gamma b is gamma of a plus b into 0 to 1 p 



to the power of a minus 1 into 1 minus p to the power b minus 1 d p. So, this completes 

the proof that the beta density is indeed a density. 
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There are some interesting things about the beta density, this is the beta density. Suppose 

I want the mode of the beta density that means, I want the value of p at which f (p) is 

maximum that is very simple you differentiate this with respect to p equate to 0 using 

that 1 can easily calculate that the mode occurs at a minus 1 by a plus b minus 2. Once 

again if a is equal to 1 and b is equal to 1, this is an undefined quantity 0 by 0; obviously, 

the uniform density has no more. Similarly, we can also find the mean value of this. 
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How do I find the mean value of this? If I want to find mean this is the f (p) density. So, I 

have to do p into f (p) d p 0 to 1. This is also easy to do. So, let us do this. So, bring 

gamma a plus b this constant out. So, I have 0 to 1 this p goes with p of a minus 1 to give 

me p of a 1 minus p power b minus 1 d p. Now, because you already shown beta density 

to be a density right. We know if I multiply this with see it is just another beta density, 

where in place of a I have a plus 1 in place of b I have b. 

So, I know this integral can be written in terms of numbers. So, that will be gamma a 

plus 1 gamma b by gamma a plus b plus 1 right. Because, if I had given 1 by this at the 

constant here, this would have been 1 because that is a beta density. Now, I suppose all 

of you know the standard property of the gamma function which can be obtained by 

integrating by parts the gamma function. 

That is for any x gamma of x is x gamma, gamma of x plus 1 is x comma x. So, gamma 

of a plus 1 is a gamma a and gamma of a plus b plus 1 is a plus b gamma a plus b right. 

So, if I write that it becomes gamma of a plus b by gamma a gamma b a into gamma a 

gamma b a plus b into gamma a plus b. So, cancel all the gamma terms we get a by a 

plus b at the mean. So, for the beta density a by a plus b is the mean and a minus 1 by a 

plus b minus 2 is the mode so, much about the beta density let us get back to the problem 

that we are interested in. The original problem was we wanted to estimate the parameter 

of a Bernoulli density and we taken the beta density to be the prior. So, what is the 



posterior density f of. So, we are doing the Bayesian estimation of the Bernoulli 

parameter. 
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So, we want to calculate the posterior density. So, posterior density is given by f of p 

given D is f of D given p f by some normalizing constant. So, I just put that as K. So, f 

(p) given D is some constant K times above D given p f (p). Now, I can substitute f of D 

with p and f (p), f (p) is the is the beta density. So, it has some constant in terms of 

gamma functions. This we already calculated earlier. 

So, forgetting about the constants I change the constant K to K 1. f of D given p where 

(()) to p, p to the power summation x i 1 minus p to the power n minus summation x i 

and we had taken the prior to be beta. So, p power a minus 1 1 minus p power b minus 1. 

So, the constant that comes in beta is subsumed into this that is why that K has been 

changed to K 1. So, what is this K 1 times if we gather to get all the p terms I get p to the 

power summation x i plus a minus 1 1 minus p to the power of n plus b minus 

summation x i minus 1. 

So, this is once again a beta density only thing is the parameters have changed, we 

started with the prior which is beta with parameters a comma b. Then the posterior turns 

out to be beta with parameters. Summation x i plus a and n plus b minus summation x i. 

So, this is the posterior density, posterior density happens to be beta. Now, once you 

have posterior density we have as we seen earlier, we have various choices for the 



estimate, we can use the mean of the posterior density, we can use the mode of the 

posterior density and we can actually calculate f (x) given D. 
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Once again let us do all this suppose we want the MAP estimate what is the MAP 

estimate is the maximum of the posterior density that is we take the mode of the 

posterior density as our estimate. So, just now we shown that for a posterior density with 

parameters a and b the mode is a minus 1 by a plus b minus 2. 
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Here I have my parameters summation x i plus a and n plus b minus summation x i 

where, remember n is the number of samples we have, so these are the parameters. 
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So, which means my MAP estimate will be summation x i plus a minus 1 what was a is 

summation x i plus a and what was b is when I do a plus b what happens is now a is 

summation x i plus a my b parameters n plus b minus summation x i. So, a plus b the 

summation x i will cancel. So, my map estimate will be i is equal to n summation x i plus 

a minus 1 by n plus a plus b minus 2. 

The one thing that we can immediately see in this, is the following, if I take a is equals to 

b is equals to 1 that becomes 1 by n summation x i which is nothing but, the sample 

mean for Bernoulli also we know the sample mean is the ML estimate. So, if I take a is 

equal to b is equals to 1, we get the sample estimate no matter what n is we get ML 

estimate. Why is that so? When a is equal to b is equal to 1, the prior is flat, the posterior 

f of D given theta f of theta given D is given by the product of of a D given theta into f 

theta the likelihood and the posterior by some normalizing constant. 

So, if I am maximizing the posterior and f theta is a constant then maximizing of the 

posterior will be same as the maximizing of the likelihood and that is the ML estimate. 

So, if I take a is equal to b is equal to 1 for all n the MAP estimate is same as the 

maximum likelihood estimate as you are expect because for a is equal to b equal to 1 the 

prior is flat. So, if a a and b are different then of course, we get a different this thing. 



See this is a Bernoulli random variable. So, x i’s are 0 or 1. So, we can think of n as the 

number of trials and each x i is either 1 or 0 depending on the rate of success or failure. 

Then ML estimate is nothing but, the fraction of success. Here instead of, just making 

the fraction of success I have added some a’s and b’s right based on my initial belief. So, 

that is how my initial belief changed the final estimate, we will come to that I will i will 

explain those a’s and b’s in a minute. 
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But, let us continue this what MAP estimate would have been now let us ask what would 

be if we calculate f (x) given D as we did last time. Now, this is a Bernoulli this this x is 

a binary random variable right. So, x takes only values 0 and 1 which means, there are 

only basically these are mass function and there are only two values for it f 1 given D f 0 

given D. Let us write that as probability x is equal to 1 given D and probability x is equal 

to 0 given D. 

They sum to 1. So, I need only 1 of them right. So, to calculate f (x) given D, I need to 

only calculate P (x) x is equal to 1 given D. That is once again given by 0 to 1 P (x) x 

equal to 1 given p f (p) given D. This is the posterior integrate over P. Now, given our 

model p is equal to p probability x equal to 1 given p is p and this is the posterior. So, it 

becomes 0 to 1 p f p given D d p f (p) given D is the density over p. So, this is nothing 

but, the mean of the posterior density. 



So, if I actually calculate f of x given D that is determined by the mean of the posterior 

density and we already know the mean of the posterior density this is a by a plus b. So, 

that is I is equal to 1 to n x i plus a by n plus a plus b. So, that is the reason why I earlier 

slide I have only shown the example of using MAP estimate I did not show the example 

of using the mean because using mean or f (x) given D is the same. 
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So, if i actually calculate want to calculate f (x) given D in this case that turns out to be 

the mean of the posterior density. Otherwise, I can use the MAP estimate. So, let us take 

a look we could have we can discuss either of them. So, let us look at the mean, so this 

turns out to be simply the mean of the posterior density. So, let us look at the ML 

estimate the the two estimates, this is the ML estimate with the sample mean with the 

fraction of success, number of success by total number of trials. This is the bayes 

estimate i is equal to 1 to 1 x i plus a by n plus a plus b. Essentially the the Bayesian 

estimates value depends on a and b which are the prior parameters of the priors. So, our 

choice of prior determines the values of a and b what does that mean once again. 
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Let us take this the easy two estimates, we already know what maximum likelihood 

estimate represents, the summation x i is the number of successes. Because x’s are 1 or 0 

and n is the total trials by the total number of success by total number of trials. Now, I 

can interpret the the the Bayes as follows, I can think of. So, I have added some a to 

summation x i. So, it is like I have just added a few more successes, and added a plus b 

to total number of trails. So, it is like I have added a plus b more trials, of which I 

decided a or successes right. So, we can say before any data is seen we already have 

started with a plus b fictitious trials of which a were successes. We choose a and b to 

give some value for p like this. 

Of course I can it is not dependent only on the on the fraction of a by a plus b, because 

the the the actual shape of the density depends on the individual values of a and b but, 

essentially it is like saying that I am I am tossing the coin I want to find the probability of 

heads. If I am looking only at the data, then if I toss if i toss the coin only once then my 

only possible maximum likelihood estimates are either 1 or 0 which is ridicules. But, if I 

think that the coin is fair and I think that I need at least a sample size of five. 

Then I can take some say a sample size of six, I take a is equal to b is equal to 3. Then 

even if I have only one data, then it becomes 3 plus 1 by 3 plus 3 plus 1. So, it does not 

go too far away. As the number of trials increases right. Then no summation x a will be 

much larger than a and n will be much larger than a plus b. So, essentially, this will be 



same as the ML estimate but, for small sample case it is like we started with a plus b 

fictitious trials, of which a were successes right. 

If you remember last class we looked at the philosophical stand point of Bayesian 

approach. There I gave you the example of three scenarios, all of them the data says that 

it is perfect somebody wanted to guess, whether coin turns heads or tails five or three out 

of three times he guessed correct. In ML estimate I have to estimate the parameter as 1 

but, in the Bayesian estimate depending on my prior right till this(( ))being evidence 

right. If few lucky runs will not throw my estimate away, that is essentially how the prior 

effects my final estimate. So, this is how prior effects the final estimate. 

So, in both these examples, both in the normal example and in the in the Bernoulli 

example you can see how the prior has played a role in in shaping the final estimate in 

view of the data right. As a matter of fact, when I look at the mean of the posterior 

density at the estimate in the Bernoulli case, the the role of the prior density parameters a 

and b is particularly clear. So, we will stop here today and next class we will look at a 

couple of more examples of Bayesian estimation and then move on to other topics.  

Thank you. 


