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Lecture - 6 

Maximum Likelihood Estimation of Different Densities 

Welcome to the next lecture on Pattern Recognition. So, let us briefly recall what we 

have been doing so far. We looked at Bayes classifier and we seen that to implement 

Bayes classifier, we need class conditional densities. So, we have been looking at 

methods for obtaining class conditional densities from the training samples of examples. 
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As we seen last class, there are there are essentially two approaches to estimating 

densities given iid examples, parametric and non-parametric. Last class, we saw that the 

parametric method; we assume the form of a density, that is we know the, we assume 

that the density is known, except for the value of some parameters. And then estimate the 

parameters from the training samples.  

We have seen many, many ways to rate different density different estimates, such as 

unbiased estimates, uniformly minimum variance unbiased estimates and so on. One 

property we looked at is consistency of an estimator; an estimate is said to be consistent, 

if as sample size grows to infinity, it converges in probability to the true value of the 



parameter. And we have seen that maximum likelihood method is a general procedure for 

obtaining consistent estimators for parameters. 
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We looked at the maximum likelihood method; in the maximum likelihood estimate, the 

estimate is defined at the maximizer of the likelihood function. And we have seen a few 

examples. But incase in most standard density models one can analytically derive the 

maximum likelihood estimates. Last class we seen it for a couple of examples, one is one 

dimensional Gaussian estimating both mean and variance. And we also seen a simple 

discrete random variable namely, the Bernoulli random variable that takes only two 

values 0 and 1 is like I toss a coin, and find the probability of heads of the coin, estimate 

the probability of heads of a coin. For these two simple examples, we seen out of 10 ML 

estimates this class, we will see a few more examples of obtaining ML estimates and 

then close the close the pattern maximum likelihood estimation of densities, so we will 

start with a couple of examples. 
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The first example, let us take the density to be exponential, that is our feature our feature 

value, which is a scalar here, has exponential density, that is that is the assumed density 

model. Lambda is the parameter and f x given lambda, the lambda exponential minus 

lambda x; this of course 0 for x less than 0, so the lambda if the parameter theta here. So, 

we are given iid data as, I said we can represent data either by a boldface x or by the 

script D, we will this class, we will use script D.  

So, we are given n iid samples from this density, we do not know lambda and we need to 

estimate lambda given this iid examples. And for our estimation, we have to maximize 

the likelihood, so in this case the likelihood function is given by product i is equal to 1 to 

n of f x, i given lambda that is lambda exponential minus lambda x i. So, we want to find 

lambda, we are given x i is that is the data, we need to find lambda that maximizes this, 

as we said last class very often, for each of optimization we take the log likelihood. So, if 

I take logarithm of this, then the product becomes some I get log of lambda plus log of 

this will become minus lambda x i. 
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So, the log likelihood, which we will we normally denote by small l, once again that is a 

function of lambda given all the data, is this product becomes sum and l n lambda and 

minus lambda x I, so some i is equal to one to n l n lambda minus lambda x i. So, we 

need to maximize this with respect to lambda right. So for that we differentiate with 

respect to lambda the first term will give me, 1 by lambda and there this summation, so 

there will be n such term so I will get an n by lambda. The second term is minus lambda 

summation x i, if i differentiate that with respect to lambda, i get summation x I, so 

differentiate with lambda and equating to 0 I get this. Now this, I can solve right I take 

you know n by lambda on the other side and that we can solve for lambda. 
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And if, we solve our final ML estimate because, an estimate I put a hat on top is n by 

summation as equal to 1 to n x i right. Lambda once summation comes on that side 

lambda goes there and n comes down. So, the final estimate is n by i is equal to 1 to x i. 

This of course is is intuitively very clear because, you know for the exponential density 

expectation the mean is 1 by lambda right. So, because a a good estimate for mean is 

sample mean a good estimate for lambda is 1 by sample mean, this is simply 1 by sample 

mean right, 1 by n summation x i sample mean. So, n by summation x i is 1 by sample 

mean that is the maximum likelihood estimate for lambda. 

 In general if the parameters of the density are related to movements of the random 

variables and all movements of x are expectations. So, if we take the corresponding 

sample mean approximations for the expectations, very often, they turn out to be the 

maximum likelihood estimate for the parameters. We already seen this for example, the 

maximum likelihood estimate for mean of a normal random variable happens to be a 

sample mean. Now the maximum likelihood estimate of for lambda of a exponential 

density happens to be 1 by sample mean because, the actual mean is one by lambda. We 

will see a few more examples, so for we seen only the scalar case for continuous random 

variables and one scalar case for discrete random variables. So, let us look at one vector 

case. 
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So, let us look at a multidimensional Gaussian density, here x is a vector x is in d 

dimensional real space, x is a d component vector. This density is the d dimensional 

Gaussian density. So, if x is a x 1, x n, x d then joint density of all those features is given 

by this. I am assuming everybody has seen the multidimensional Gaussian density earlier 

this is 1 by root of 2 pi to the power d into determinant of sigma exponential minus of x 

minus mu transpose sigma inverse x minus mu, as I said our notation is that all vectors 

are column vectors. 

So, x minus mu is a column vector, so x minus mu transpose sigma inverse x minus mu 

is a quadratic form which is scalar. So, here the unknown parameters theta are 

constituted by the mean vector mu and the matrix sigma, for this density. So, if x a vector 

x has the above joint density then this mu obviously, because I am taking x minus mu, 

mu is also in r d the d dimensional vector mu is the mean vector of this mu that is the 

expectation of that x will be in mu. And the sigma is a d by d matrix, which is the 

covariance matrix defined by this expect value of x minus mu x minus to transpose 

because, x minus mu is a column vector. x minus mu, x minus mu transpose is a d by d 

symmetric matrix. 

That this is the covariance matrix and I suppose all of you know that the diagonal 



elements of the covariance matrix are the variances of the various components. And the 

off diagonal elements are the co-variances. And because this is a a covariance matrix, 

this is also positive definite even though, that fact does not concern as in this estimation. 

So, our job is given iid data from this density to estimate mu and sigma. 

(Refer Slide Time: 08:13) 

. 

So, to find ML estimate, we have to maximize the log likelihood. Once again log 

likelihood is say likelihood is product effect say given theta. So, log likelihood is some 

effect say given data, where d consists of the iid sample, we have x 1 to x n. 
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So, if I substitute for this effect say right into this expression i am i am sorry about it this 

is log. So, they will l n here the l n is missing. l n effect say, x i given theta. 
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So, if I take the log log likelihood, I get summation i is equal to 1 to n, I have to take log 

of this. So, log of this will give me, log of this term that is minus half 2 pi to power d into 

determinant of sigma. Log of this term will be simply minus half into that quadratic 



form. 

So, that gives me this at the log likelihood function, summation i is equal to 1 to n minus 

half l n, 2 pi to power d into determinant of sigma minus half x i minus mu transpose 

sigma inverse x i minus mu; once again mu and sigma constitute the parameters to be 

estimated. So, to get this estimates, I have to differentiate the log likelihood, with respect 

to mu and sigma and equate at to 0 right, now mu is a vector sigma is a matrix. So, to 

differentiate with respect to vector that is you have to find the gradient of this function 

with respect to mu. 

So, if I am differentiate this with respect to mu the first term is independent of mu. So, 

that will go to 0, the second term is a quadratic form in mu. So, it is derivative will be 

simply sigma inverse times x i minus mu. So, if I differentiate like that this is, what I get. 

If I if i take derivative with respect to the vector mu and equate to 0, what I get is 

summation i is equal to 1 to n sigma inverse x i minus mu is equal to 0 right. The the half 

does not matter because, I am equating it to 0, the quadratic forms derivative is sigma 

inverse x i minus mu, so that is how I get that. 
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Now I can solve this, the the sigma matrix is non-singular right, so I can multiply both 

sides with sigma. So that gives me summation i is equal to 1 to n x i minus mu is equal to 



0. So that gives me summation x i is equal to n times mu or mu is 1 by n summation x i. 

So, that gives us our final ML estimate for mu as one by n summation i is equal to one to 

n x I, once again, even in the vector case here, of course x i’s are vectors and mu is also a 

vector. So, even in the vector case that is even for the multidimensional normal 

distribution the ML estimate for mean, is the sample mean now what about the ML 

estimate for the sigma matrix. Now, that is a little more tricky because, I have to 

differentiate this expression with respect to a matrix, that is algebraically little more 

involved. 
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So, we would not do the details but, one can show that, the ML estimate for sigma turns 

out to be 1 by n summation i is equal to 1 to n x i minus mu hat into x i minus mu hat 

transpose, while all the algebra escaped, I hope you can see that the final estimate is 

intuitively obvious. Why do I say intuitively obvious, we know how the sigma matrix is 

defined for the given density the sigma is nothing but, expected value of x minus mu x 

minus mu transpose say, we want to estimate it. 

I want to take sample mean of this expectation, that will be x i minus mu x i minus mu 

transpose summed over i is equal to 1 to n divided by 1 by n but, I do not know mu, so I 

have chose mu hat. So, intuitively this is what we should expect the ML estimate for 

sigma to be and it turns to be that even though because, the algebra is rather involved or 



just skip the algebra. 
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So, let us look at one more example, before we finish m l estimate. This time let us look 

at a discrete random variable again. We looked at a few continuous random variables. So, 

suppose we have a discrete random variables z, now this time let us not take a specific 

discrete random variable any generic discrete random variable. Every discrete random 

variable takes let us say is the discrete random variable taking only finitely many values. 

Let us say a 1 to a m are the values that the random variable takes and the corresponding 

probability say p 1 to p m. 

So, what is that we have to do, we are given data in the form of  iid realizations of this z. 

And we want to estimate the parameters p i. ofcourse, The parameters p i have to satisfy 

p i defined the mass probability mass function of z p i’s are probabilities. So, pi is have 

to be greater than or equal to 0 and summation p i is equal to 1 because, summation of 

the mass function should be equal to 1. So, the parameters have to satisfy this extra 

constraints. 
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Now, for deriving our ML estimate, we will, we represent our random variable in a 

slightly different style. So, I will represent our discrete random variable z as an n 

dimensional vector random variable x. Instead of thinking of if it is a scalar taking m 

different values, we think of it as a vector of M components, what is the idea. The idea is 

that if z takes the ith value say, a i then we will represent it by x whose ith component is 

1 and all others are 0. So, a z that takes value a i is represented as a, so, to say ith 

coordinate vector in the m dimensional space. 

So, what it means is that the random variable x actually takes only m possible values. 

Obviously, because z can take only M possible values and the values are 1, 0, 0, 0 or 0, 1, 

0, 0, 0, 0, 0, 1, 0, 0, 0 and so on right, each of the coordinate vectors are the only possible 

values for this vector x. So, we are going to represent values of z by this this is nice 

because essentially in estimating p 1 to p or p m the actual values a 1, a 2, a m do not 

make any difference to us right. 

The values assumed by z are a 1, a 2, a m; so if a is a different the actual data as we see it 

will be different, but the specific numerical values of a 1, a 2 do not make any difference 

to the probabilities, the probability say p 1 is the probability of z taking, it is first value 

say a 1. Hence this kind of representation allows us to look at Ml estimate a parameters 



of the discrete random variables. Any Discrete Random Variables in a Uniform 

Framework, it is often, called 1 of m representation for discrete random variable taking 

M values. So, there are few things about this representation now, we we are thinking of a 

random variable as a m component vector. 
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And this representation satisfies the following, so each each value of z is a value of x. 

So, x is a m vector but, the m vector satisfies each component of the m vector is either 0 

or 1 and some of the components is 1. So, these two together tell you that exactly 1 

component is 1 and all others are 0. So, this is what our representation satisfies, also 

probability x i is equal to 1 is given by p i, when will the x superscript i be 1 x, 

superscript i is the ith component of x ith component of x is 1; only if z has taken the ith 

value namely a i and the probability with if z takes that value is p i. 

 Just one classification you may be wondering why I am representing the components of 

a vector as superscripts. Normally when we take components of vector, who are 

represent of subscript I cannot represent them as subscripts because, we already agreed 

that our data is x 1, x 2, x n. Where x subscript 1 x subscript 2 is the representation for 

different data items, irrespective whether x is Scalar or Vector. So, even for this vector x 

the different iid data will be represented as x 1, x 2. And hence for components, we are 

representing it as superscript. 



So, given this now I can i can write the mass function of this vector random variable x as 

follows, f of x given p p is my parameter vector consisting of p 1, p 2, p m is product i is 

equal to 1 to m p i to the power x i, because x takes only these values, x can take the 

possible values of x or x as an m component vector the components being x superscript 

one x superscript m. Each of the component say is a 0 or 1 and some of the components 

is one meaning exactly one component is 1 all others are 0.  

So, if x for example, takes value 1, 0, 0, 0 then f of x given p will be p 1 to the power 1 

and all others to the power 0, so this is p 1. So, this is exactly what is probability, this is a 

mass function. So, probability x is equal to 1, 0, 0, 0 is p 1 probability x is equal to 0, 1, 

0, 0 is p 2 and so on. So, this is the right expression for the mass function of x, so given 

this mass function of x, and iid samples of x, we need to estimate the parameter vector p 

1 to p m. 
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So, what is the problem now, for the problem for estimating the parameters p i is you are 

given iid data of x’s. So, whatever z data, we have we can recode them into the 

corresponding samples x, knows that each x i here is a vector right. So, each x i has m 

component, so the first component of x i is x i superscript 1, the second component is x i 

superscript 2 and so on. So, x i is an m vector with, each component being either 0 or 1 

and for each i summed over j x i superscript j is equal to 1 for all i. So, given data like 



this this is the iid realizations of z on which we are estimating p's. We know the 

probability mass function of x that is what, we written in written just now. 
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This is the probability mass function of x, the parameter the parameter p  
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So, even the probability mass function of x, we need to derive the ML estimates for the 



parameters p i. 
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So, what we have to do log likelihood function, so what is my log likelihood function, l p 

given data is i is equal to 1 to n, l of f of x i given p. 
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Now, x i given p is given by this right, so let us substitute that. 



 (Refer Slide Time: 19:24) 

 

So, that is l n of x i given p is product j is equal to 1 to m p j x i j. Now because, of the l n 

the inner product also becomes sum. So, my log likelihood now becomes i is equal to 1 

to n j is equal to 1 to m x i j l n p j. So, this is my log likelihood as a function of p and 

this is what i want to maximize to find my p's. 
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So, we want to find the parameters, so values for p i to maximize the log likelihood l p 



given d. But we should understand that is not an ordinary maximization problem is not 

an unconstrained maximization. By unconstrained maximization, I mean I do not want to 

maximize this over all possible m triples of real numbers p 1, p 2, p m right. Why 

because, we need to maximize my log likelihood over only those m triples or numbers p i 

that satisfy this constraint because, this p i have to be a distribution. 
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So, the maximization of log likelihood now is not an unconstrained maximization 

problem but, it is a constraint maximization problem. So, the ML estimate now becomes 

a constraint optimization problem. 
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What is the constraint optimization problem now, We want to maximize l p given d, 

which is given by, this expression subject to summation i is equal to 1 to M p i is equal to 

1. So, I hope all of you know about constraint optimization problems, so constraint 

optimization comes as not simply maximize some function but, maximize some function 

subject to something and because, what we have is an equality constraint. We can do it 

using what is called Lagrange multipliers. 

So, we are going to solve this Lagrange multipliers there is just one point, I want to draw 

your attention to. When we said this becomes a constraint optimization, we said p has to 

satisfy two constraints, p i greater than equal to 0 and summation, p i is equal to 1. But, 

when I formulated the constraint optimization problem, I have not explicitly included the 

non negativity constraint the reason is that it is easy to solve the constraint optimization 

problem. If I have only equality constraint then Lagrange multiplier method always gives 

me exact analytical solution much more easily. 

So, what we can do is we can incorporate only this constraint find what is the maximum, 

if that also satisfies non negativity. We are done, then we even if we include the 

constraint, would have would have still have got the same solution. So, let us only put 

the summation i p i equal to one constraint and then solve it. And then we will verify that 



what, we get also satisfies the non negativity constraint. 
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So, how do I solve the constraint optimization problem, haw to find the Lagrangian. 

(Refer Slide Time: 22:05) 

 

So, constraint optimization problems comes as, maximize some objective function 

subject to some constraints. So, you form the Lagrangian by adding the constraint 



function, which here happens to be summation i is equal to 1 to m p i minus 1, we have 

to add that to the objective function right with a Lagrange multiplier. So, that becomes 

the Lagrangian for this problem. This is the objective function and this is, what we are 

trying to maximize; and this is the constraint function. 1 minus summation p s equal to 0 

and lambda is the Lagrange multiplier. I have just changed the summation index from s 

to j because, we have been thinking of p j’s as the parameter. Because this j and i are 

dummy indices they are indices of the summation. 
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So, my first term in the derivative, will be x i j by p j summation i is equal to 1 to n. 
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So, that while differentiating we would not get confused, I have just changed the dummy 

index j to s in this expression. Now, what do we have to do I have to take partial 

derivatives of this expression and equate it to 0, say let us say I take partial derivative 

with respect to p j for some j. So, the derivatives goes inside the first summation i is 

equal to 1 to n in the second summation only when s is equal to j is this expression a 

function of p j. Otherwise it is not a function of p subscript j. 

So, when I take the derivative of this the the first term with respect to p j it becomes, i is 

equal to 1 to n and the derivative of this when s is equal to j that will be x i j by p j right. 

What is the the second term derivative, I have to differentiate this with respect to p j this 

is a constraint. So, this is lambda times p 1 plus lambda times p 2 and so on. So, i 

differentiate with respect to p j i get lambda. 
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So, I equate the derivative to 0. I get summation i is equal to 1 to n x i j by p j minus 

lambda equal to 0 j is equal to 1 to m. So, these are the all the j differentiating with 

respect to all all the j's. So, I can solve this to get my p j's as 1 by lambda summation i is 

equal to 1 to n x i j ofcourse. Lambda is a Lagrange multiplier I still do not know it is 

value, I have to find the value Lagrange multiplier to complete my estimate. So, If i sum 

this up summation over j one by lambda summation, i is equal to 1 to n x i j should be 

equal to 1 and they can take lambda on that that side. The constraint is you sum this 

expression over j that becomes 1. So, then I am taking lambda the other side to get this. 
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So, how do I get the value Lagrange multiplier by using my equality constraint, I have 

summation j p j is equal to 1 as my constraint. Now this is a double summation both are 

finite summations. So, i can change the order of the summation. So, first sum with 

respect to i then sum with respect to j now that becomes equal to n why this inner 

summation as you seen our x i j’s are such for any in any vector x i exactly one 

component is one all others are 0 right. So, this summation always gives me one and 

because of the auto summation i get n. So, the last step follows because summation j is 

equal to one to m x i j is one for all i. So, this is the value of lambda if. So, that constraint 

gives me lambda is equal to summation over j is equal to 1 to m summation of i as equal 

to 1 to n x i j i hope this is clear. 
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Now, plug in the value of lambda I get my final m l estimate for p j as 1 by n summation, 

i as equal to 1 x i j here this is been quite an optimization problem. We have actually 

formulated the constraint optimization problem used Lagrange multipliers and solve it. 

But, at the end what we get is very very intuitively obvious expression, p j is the 

probability with which the random variable takes jth value right. 

If I sum i is equal to 1 to n x i j that sum will be exactly the number of time the jth value 

is taken jth value is taken x i j is 1, otherwise it is 0. So, the final estimate is the fraction 

of times the jth value occurs. The probability of the random variable taken the jth value 

is simply equal to the fraction of times the jth value occurs right it is no more than. If I 

want to estimate the probability of heads of a coin then a good estimate is the fraction of 

heads out of n tosses right. 

As a matter of fact, we have seen that that density in the last class the Bernoulli density, 

that is a that is a discrete random variable taking only two values 0 and 1. This is actually 

generalization this is a discrete random variable taking m different values right. So, If I 

take m is equal to two this gives me the same thing at the Bernoulli random variable.We 

considered last class only thing is when, when m is equal to 2, I do not need to keep p 1 

and p 2 because p 1 plus p 2 is equal to 1 any one of them will do. 



So, we will take probability of the first value as the parameter, when you have m we keep 

the constraint that summation p i is equal to 1 and estimate all the p i. So, in that sense 

this is a generalization of the binary Bernoulli random variables we had taken. 
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So, let us sum up this example this example is not just an example. It is its actually much 

more than a simple example. Because, the distribution that is the probability mass 

function of any discrete random variable that takes finitely many values is simply 

specified by some m numbers p i right. The numbers have to satisfy p i greater than or 

equal to 0 or summation p i is equal to 1 except for that every discrete random variable 

mass function is simply specified by this parameters p i. 

Hence what we have just now got is a general procedure for estimating the distribution of 

any discrete random variable right; not one specific discrete random variable like 

Bernoulli here. Binomial or Poisson or any Poisson ofcourse, takes infinitely many 

values. But, this is a general procedure for estimating the distribution of any discrete 

random variable also when we consider discrete random variables there is really no 

distinction between parametric and non parametric ways of estimating. 

Because a discrete random variable taking finitely many value the the most general 

distribution is still specified by m numbers. So, when I say, I am estimating the m 



numbers. I am not constraining the random variables distribution in any way right. In the 

continuous case, when I am assuming the density to be normal or exponential is an 

assumption is a distinct to assumption, the real data may or may not satisfy the 

assumption of the distribution. That I have assumed on the other hand when, I am when i 

am estimating the distribution of a discrete random variable taking finitely. 

Many values this procedure, we just now laid out simply. I assume that the distribution is 

specified by m numbers p1, p 2, p m all of them are non negative. And they sum to 1 and 

that does not constraint the mass function as a discrete random variable in anyway which 

means, what we have here is a way to estimate the probability mass function of any 

discrete random variable if you are given iid samples. 
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Now, discrete random variables are also important in many pattern recognition problems. 

Even though many pattern recognition problems also come with continuous random 

variables. But, discrete random variable taking finitely many values or particularly 

important is some of the recent problems which are, mostly web based search and 

ranking, document classifications, spam filtering and so on right.  

For example, If I want to classify HTML pages as advertisement pages or information 

pages, ultimately the features. I measure is the number of links it has kinds of words it 



has and so on right. So, the most of these features will take only finitely many values. So, 

for example, If I want to do document classification. What the typical document 

classification problem let us, say something like Google news. 

It gets feeds of lot of stories new stories and let us say it want to classify each story as 

entertainment or some movie story or sports story, politics whatever. So, there are so 

many classes given the document. I want to say the document being a a a a new story. I 

need to put a category to it. So, a very good feature vector is to ask for different words 

how many times the word occurs. So, If I get words like elections constituency Rajiv 

Gandhi, Rahul Gandhi then I would think it is a politics story on the other hand If I get 

words like balls, goals, kicks and so on. May be it is a sports story and so on. 

So, as a matter of fact this word count at the feature vector is very often used in 

document classification which is called a bag of words representation. What we have is 

we choose some dictionary of words so. Me one to say twenty thousand words and then 

each document is represented by, a twenty thousand dimensional vector. Where each 

component of the vector tells you how many time the corresponding word occurs in the 

document. So, which means each feature then would be a discrete random variable right. 
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In such cases, each feature is a discrete random variable the procedure. We have just now 



given, will tell you all such problems. We know how to estimate the mass function of 

individual features, because we only considered a single discrete random variables. That 

means, you can get marginal distribution of each of the features in all such problems. Of 

course to implement the Bayes classifier we need the joint distribution of the feature 

vector. That is the that is the class conditional density we want. So, very often what we 

will assume for simplicity is that features are independent. If I assume features are 

independent the marginal distribution tells me everything right. Then the joint mass 

function is simply the product of the marginal mass functions right. As a matter of fact 

this kind of Bayes classifier where the feature vector consists of number of features each 

feature is a discrete random variable. 

Then I estimate the marginal distribution of each of these features right. Just by the 

procedure that we just now outlined and then assume that the joint mass function is 

simply the product of the Marginals and then use that as the class conditional density 

right. Here I simply assume the different the the the covariance between different 

features is 0. 

A Bayes classifier implemented with such class conditional densities is often called the 

Naive Bayes classifier. The the connotation naive to say is that when, I have say in the 

bag of words model, I may have hundred thousand features now estimating all the 

Covariances is such a time consuming method, I simply neglect them. So, that is why it 

is called naive Bayes and in many of search and retrieval document classification and 

similar web based applications. A Naive Bayes classifier performs quite well as a matter 

of fact for the information retrieval people Naive Bayes classifier is a very important 

classifier. And the last example we considered in maximum likelihood estimation is how 

you can estimate the mass function of any of this any of such discrete features which, 

take only finitely many values. 
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So, let us sum up what we have done about ML estimation. So, far ML estimates of 

parameters of a density are obtained as the maximizers of the log likelihood function log 

likelihood function is simply the product of the density or mass function at the values of 

the data. So, I take the product and then either likelihood or the log likelihood. I take I 

find the maximizers of the parameters and that is my m l estimate and once the m l 

estimate for parameters is given now class conditional density is completely known we 

have seen many examples, of how we can analytically derive m l estimates. 

We have seen one-dimensional Gaussian density, we have seen multidimensional 

Gaussian density. We have seen simple example of discrete random variables. such as, 

Bernoulli simple examples of continuous random variables. Such as exponential right 

and we have also seen how in general to estimate the mass function of any discrete 

random variable taking finitely many values right. 

So, in all these cases, we can analytically derive the ML estimates and what is also 

interesting is the derived ML estimates are often intuitively very satisfying see very often 

in any density model. The parameters are related to moments of the density all moments 

have some expectations and we know from law of large number. That sample means or 

good the I mean sample means understood in a generalized term or good approximations 



of expectations and that is what turns and it turns. 

So, that all ML estimates versus sample means for example, the actual mean of a normal 

density the ML estimate for it is simply the sample mean for an exponential density. The 

parameter is lambda and lambda is related to the mean of the density by expected value 

of x is 1 by lambda and hence ML estimate for lambda transferred to be one by sample 

mean and so on right.  

For the Bernoulli case for discrete random variable case all ML estimates are the 

analytically are easy to analytically derive and they always have some very simple way 

to understand that right. So, ML estimates are easy to obtain for the most standard 

densities and this is a very useful method of estimation specifically, we have discussed 

how using discrete random variables we can easily construct. 
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So, called Naive Bayes classifier having said this ML estimation does have it is 

problems. Obviously, nothing is a solution for everything the reason, why we actually 

looked at ML estimate in the beginning is that, we said ML estimate is a very nice 

general procedure for obtaining consistent estimators. What are consistent estimator, 

estimates that converts to the true values as the sample size goes to infinity because, 

these are consistent, if I have large number of samples. 



I know I will get a good estimate right. That is no problem but, what happens if I have 

small estimates small sample size right. The estimates can be quite bad for example, let 

us say I am estimating probability of heads of a coin an, I do not have too much time. So, 

I will toss the coin only three times and my as my luck has it all three times it turns out 

heads. 

Then, if I want to take an m l estimate, I have to take it to be one nothing else right. That 

is the ML estimate for probability of heads right, because m l estimate is the sample 

mean we have seen the ML estimate for the Bernoulli random variable. Now that is 

obviously, not very good I know that the coin is not not bias to that extent. But I can do 

nothing because for small sample size that is how Ml estimate turn out to be what it 

means is even. 

If I have some knowledge about the possible values for the parameter in this case I may 

know that the coin is not a two headed coin both probability of heads and tails are strictly 

greater than 0. But that of course I do not know the actual probability of heads but, I 

know that the probability of heads as well as, the probability of tails has to be strictly 

greater than 0. But in within the Ml estimate I have no way of incorporating this extra 

knowledge that I have right. 

That is because, the final estimated value is simply determined by the data it determined 

by the data alone and nothing else. If I got three, I toss the coin three times and I got 

three heads the maximum likelihood procedure does not leave me any other option. But, 

to say probability of heads is equal to one. There is now way I can tell the estimation 

procedure that, I know that the probability of consistency is less than 1 right. There is 

another method of estimation, which we are going to consider of course, there are many 

other methods. But we have considered only two methods. 
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So, the second method of estimation that we will consider in this course is called the 

Bayesian estimation. It is also a parametric method to some extent, this actually takes 

care of some of these problems with ML estimate. So, that at for small sample sizes this 

actually gives you better estimates. At the top level the way, I can distinguish between a 

maximum likelihood and Bayesian estimation that is in the maximum likelihood 

estimation. 

The parameters are taken to be constants that are unknown right; while I do not know the 

value of the parameter theta. Theta is not random; theta is taken to be a constant in the 

Bayesian estimation. We think of the parameter itself as a random variable. This is the 

basic difference between the Bayesian and maximum likelihood estimation, we think of 

the parameter itself as a random variable. 
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Then because, we think of the parameters are random variable, we say that our lack see 

we we are doing estimation because, we do not know the knowledge of the parameter 

value. So, we capture our lack of knowledge about the value of parameters that is the fact 

that the parameter can take different values, because we do not know what specific value. 

It takes even though, we know the range of values it can take right. So, we capture our 

lack of knowledge about the value of the parameter through, a probability density over 

the parameter space or all possible value. That the parameter can take we put a 

probability density function and we want this density function to capture what our 

knowledge or lack of it that, we have about the possible values that the parameter can 

take such a density is called prior density of the parameter. 

Prior in the sense is before, I saw any data before seeing any data. I have some model 

some density model for the parameter. Parameter is assumed as, a random variable and 

this is my the prior density is the density of the parameter. Before, I saw any data any 

information that we have about the value of the parameter can be incorporated to this 

density model right. 

Then we view the role of data as transforming our prior density; this is our view of what 

the parameter could, take into a posterior density; posterior meaning after seeing the data 



right. So, we think of the role of data in estimation as transforming a prior density into a 

posterior density for parameters. We will see many examples of that in the next class by 

shortly, I mean may be next class but, the rest of this class, we will look at just this view 

point in a little more detail. 
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We think of the prior density of the parameter as capturing, what can be called subjective 

beliefs about the parameter value. The Bayesian approach is an approach to probability 

not just about parameters. The approach is that one can capture through probabilities is 

our subjective beliefs right. That is why we were thinking of prior density of parameter 

as capturing our subjective beliefs about the parameter value at this level. 

I will i will explain a little more presently but, what it would mean is our final inference 

about the parameter value is not completely governed by data alone as an m l estimate 

the prior subjective beliefs. I have about the parameter also play a role in making out 

final inference about the parameter value given the data. So, a final inference is not 

completely governed by, the data alone other knowledge we have also plays a role this 

view is essentially an approach. 
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So, let me put this again our final inference is not completely governed by data alone. 

Other knowledge also plays a role. This is an approach not just though we considered 

only for parameter estimation. This is an approach to probability the approach is 

characterized by, thinking probabilities, as also capturing subjective beliefs. We can 

broadly distinguish between, what can be called a Frequentist approach probability 

versus. 

What it called a Bayesian approach to probability the Frequentist approach we think of 

probability as a limiting value or the fraction of times an event occurs. If I repeat the 

random experiment there are lot of things, which we loosely talk in probabilities terms, 

which are not really that kind of repeatable random experiments. We talk of probability 

that it rains tomorrow because, tomorrow. But comes only once; I cannot in principal 

also repeat the experiment enough times.  

So, whatever probability, I talk about probability of rain tomorrow is more like a 

subjective belief of course, might be based on know some data and some sound scientific 

principles but, it still something that captures my belief or my ignorance about whether 

or not it rains tomorrow. So, the idea is that probabilities can also capture lack of 

knowledge through, whatever you know subjective inference that we can make apart 



from only capturing situations of repeated random experiments. 

Yeah may be at this stage, I can give you to a classical example of Bayesian approach 

among this of course, given by a Bayesian statistician. So, it is heavily tilted for the 

Bayesian approach but, still is an instructive example, consider three situations of time to 

make inference based on gathering data based on making an experiment. The first 

situation is there is a musician, who says if you just show me the notes not the words not 

the full score but, just a line of notes of a of a song. I can tell you whether or not, it is 

composed by some famous musician, let us say whether or not, it is composed by 

Tyagarajan. So, we do some test. So, we just write one line of notes give it to him. So, let 

us say in a experiment conducted three out of three. He correctly guessed, whether or not 

what is given to him is composed by Tyagarajan. 

Now, situation two there is a lady who says, if she tastes, if she tastes tea. She can tell 

you whether, you pour decoction into cup containing milk or milk into a cup containing 

decoction. Once again you conduct an experiment three out of three times, she guessed 

correctly my third situation. There is a man a drunk, who says when he is fully drunk, he 

can correctly predict whether a fair coin comes heads or tails you conduct an experiment 

let us assume. Once again three out of three times he he he guessed correctly now, what 

is the inference, if I go by data alone like in the maximum likelihood.  

I have to either grant all three claims or not grant any of them saying data is insufficient. 

But, what most of us tend to do is that may be grant the first claim dismiss away the last 

claim as a lucky, a lucky, a lucky run and shrug our shoulders, about the middle right; 

which is simply based on our subjective belief of what is possible and what is not 

possible. Of course, I had to think to make it interesting, let us say the experiment is five 

out of five times. They guess correctly, even then we will certainly, when it becomes five 

out of five we were much more confident in granting the claim of the musician. 

We will still dismiss away the last claim as a lucky as a lucky run after all, you know 

there have been many cricket series, where Captain always wins all the tosses. So, they 

can be lucky runs of five where you call, call a coin correctly and we may still shrug our 

shoulders about the lady really had that ability or not. So, the idea is that data can speak 



only so much right. There is also our subjective prior belief on the situation, which 

modulates our inference from the data of course, in this particular example. If I increase 

the data to hundred then, I have to grant my third person is extra sensitive perception if it 

indeed. So, happen that he can correctly guess right. So, the idea is that this our 

subjective belief can modulate what the data is trying to speak to us now this is the basic 

Bayesian approach right. 
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So, we have So, in terms of the estimation of parameters, what it means is I have a prior 

subjective density. Over the parameters and the data transforms my prior density into a 

posterior density. So, coming back this will make sure that our final inference is not 

blindly only about data but it also depends on the prior density. 
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So, let us leave all the philosophy behind and come back to only the parameter 

estimation problem. So, as earlier let theta be the parameter that we need to estimate and 

skip D be the data. Data as usual is n iid realizations x 1 to x n the set of iid are and each 

x i has density f x i given theta, f x i given theta is the assumed density model. Bayesian 

estimation is also a parametric estimation. 

So, there is an assumed density model f x i given theta. So, x 1, x 2, x n are the datas. So, 

what we have extra now is there is a prior density and theta. So, f theta is a density over 

the random variable theta. So, our theta is viewed as a random variable, which has a prior 

density we represented by f and the posterior density is the density of theta conditioned 

on d after seeing d my density becomes theta. 



(Refer Slide Time: 49:14) 

 

So, now how do I get the posterior density we use Bayes rule; so using Bayes rule. I am 

assuming everybody knows Bayes rule for density functions just like Bayes rule for 

probabilities. So, f of theta given D is given by, f D given theta into f theta by 

normalizing factor integral f D given theta f theta D theta the theta in the denominator 

ofcourse, is a dummy variable because, I am integrating with respect to theta, I could as 

well have called the theta prime. So, the denominator is a constant. So, the posterior 

density f theta given d is propositional to the product of f d given theta into f theta this is 

the Bayes rule. What is f d given theta because, D is x1, x2, x n and their iid it is simply f 

of x i given theta this is the data likelihood right. 

So, the posterior density is given by, the product of the prior and the likelihood function. 

As I said in the expression, the denominator is not a function of theta. So, we remember 

that is only a normalizing constant. So, whenever we do not need the details of 

expression we simply replace it by some constant let us say capital Z. So, what happens 

is even in Bayesian likelihood, we will calculate the likelihood function there, we were 

simply asking which theta maximizes this instead of that we are obtaining our prior 

density.  

At that density, which is proportional to the product of the likelihood our obtaining our 



posterior density at the density, which is propositional to the product of the likelihood 

and the Prior density. Of course to make it a density, we need a normalizing constant that 

is given by this. So, we essentially given data on our model, because I know f x i given 

theta. I know how to calculate f D given theta, I am given a prior density. So, I take the 

product and turn it into the density that is my posterior density. 
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So, in the Bayesian estimation my posterior density is the final Bayesian estimate. We 

will see of course, how do I find the posterior density and you know there are many other 

issues with it. But today’s class we will just look at you know the broad outlines. So, we 

take the posterior density as, the final estimate then come to the problem how do I 

calculate this. If this is some density over theta, and I multiply this; so for every given 

value of theta may be I can calculate this. But I cannot represent it as an infinite table 

because, theta is a continues value right. 

So, there is a problem of how do I represent the prior and posterior density right. So, the 

important question because, we want to take posterior density as the final estimate is how 

does one represent the prior and posterior densities. It would be nice if these can be 

represented in terms of parametric form. So, then we will simply store the corresponding 

parameters values for these densities. For that what we would like is that the prior and 

posterior densities should belong to this same parametric formulization. The prior is say 



Gaussian density, we would like the posterior also to be a Gaussian density. Otherwise, 

every time, I get more data, I may get a different density. 
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So, this means I should choose my prior carefully a form of the prior density. That results 

in the same form of density for the posterior is called conjugate prior right. The 

conjugate prior is a density for the prior; that result in the same form of density for the 

posterior. Now the posterior depends on the product of prior on the likelihood and the 

form of likelihood depends on the form of the assumed model f x given theta. 

So, ultimately, what is a conjugate prior depends is determined by the assumed model of 

the data likelihood. So, for a given model and hence a given data likelihood a different 

for a for a given thing. There will be some given density for p theta that becomes 

conjugate; so when we do Bayesian estimation, we will chose the right prior. So, that it is 

a conjugate prior, we will see many examples of this next class. 
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But the main issue here is when we use a conjugate prior. Both prior and posterior belong 

to the same family of densities. So, prior might be some normal with mean mu 0 on 

variance sigma0 and posterior will be, also normal only thing that may change is mean 

and variance. So, may be mean sigma n and mean mu n and variance sigma n. So, then 

calculating the posterior is essentially updating the parameter density given the data. And 

hence the data likelihood and the prior density meaning give me mu 0 on sigma 0. Then 

the calculation simply involves, how to calculate mu n and sigma n namely the 

parameters of the posterior density, because we know prior and posterior will be of the 

same family. 

This is what, happens when you use conjugate prior and that is the reason, why when we 

do Bayesian parameter estimation. We will always assume conjugate prior but, conjugate 

prior is not a single density for a particular model there is, when I am estimating mean of 

a Gaussian something may be conjugate prior. When I am estimating a Bernoulli density 

parameter of a Bernoulli density some other density may be a conjugate prior and so on. 

So, for each case we have to find out what the right. Conjugate prior is we shall see 

many examples on how this is done that is, when it becomes more clear. 
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Now, you want to take the posterior as your final answer that is the, that is the end of the 

estimation. So, what does that mean if I have the posterior density. Over theta how can I 

use it in a classifier. My classifier actually needs, class conditional densities right. 

Ultimately somebody has to give me class conditional densities. So, that is the reason m l 

estimate gives me a particular value of a theta. 

I plug in that that theta in my model that is my final class conditional density. But, once 

we will think of parameter as a random variable and our posterior densities. There is 

more than a one possibility for this. One method is can I use the posterior. So, that I 

finally, get some density of x based on the data, which is not dependent on any other 

unknown parameter this is possible. 
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Once I have the posterior density f theta given d. Now I can write the density of x 

conditioned on D as density of x, and joint density of x, and theta conditioned on D 

integrated with respect to that this is that. I am obtaining the density of x by 

marginalizing or theta of the joint density of x, and theta. Now I can write the joint 

density at the product of conditional, I can write this as a x given f of x given theta D into 

f of theta given D and x. Given theta D is same as x given theta because. 

I know once given theta there data, does not is not needed to find the density of x. The 

only thing unknown is a density of x is theta. So, f x given theta d becomes x given theta. 

So, this integral becomes integral f x given the f of x given theta into f of theta given d d 

theta. So, if I know the posterior, I know this model. I can integrate with respect to theta. 

I get something that is only dependent on data right theta is now gone. So, this is what I 

can use actually as, a class conditional density based on the data D of course. This may 

not always be possible, only if this model is nice and if this prior density is nice. We may 

be able to this integral to get this into a nice form that, can be implemented when when it 

is possible there is one way of using, the Bayesian estimation for getting class 

conditional densities. 
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Otherwise, we simply have to take some specific value of theta based on the posterior 

density for that also there are multiple possibilities. One is we can take the mode of the 

posterior density that is the value of theta at which p theta, given D is maximum right. 

The posterior density is maximum the value of theta that maximize the posterior density 

is one value. That I can take this is often called the map estimate maximum aposteriori 

probability estimate. 

The map estimate is also something that is very specific. Only to Bayesian estimation, 

because it depends on the mode of the posterior density; so it is actually the mode of the 

posterior density or we can simply take the mean of the posterior density as the 

parameter value this is also possible; so essentially looking at the posterior density. We 

take some specific value of theta obtained from the posterior density and add the final 

value of theta plug. That in and get our class conditional densities all these are used. So, 

this is the general introduction to the Bayesian estimation. So, next class we will look at 

a few examples of how this whole thing is done how in specific situations. 

We get conjugate priors, how we may be able to find f of x, given D how we may be able 

to find map or expectation of the posterior at the estimates. We will once again do for the 

same densities for normal density for Bernoulli for general finite value discrete random 



variables and so on. So, that we can compare the what the answers we get with Ml 

estimation with the answers, we get with Bayesian estimation.  

Thank you. 


