
Pattern Recognition 

Prof. P. S. Sastry 

Department of Electronics and Communication Engineering 

Indian Institute of Science, Bangalore 

 

Lecture - 5 

Implementing Bayes Classifier; Estimation of Class Conditional Densities 

Let us get on with the next lecture, welcome to this lecture, just to recap what we have 

been doing so far, we were looking at the statistical way of looking a classifiers and we 

spent almost 2 lectures, discussing Bayes classifier and risk minimization. As we will see 

through the course, risk minimization is a, is the one generic technique, that is used again 

and again in for pattern classification and regression or functional learning. 

So, Bayes classifier, as you have seen is optimal for minimizing risk, so and risk 

minimization is a good objective, is seen how we can get Bayes classifier for various 

special cases. 

(Refer Slide Time: 01:08) 

 

So, given all the class conditional densities, we can derive the Bayes classifier for any 

given loss function, we have derived it for different class conditional densities. And also 

last class, we saw a special example where the loss function is special in the sense, the 

actions of the classifier are not just class labels. But classifiers also allowed to reject a 

class pattern, that the classifier has k plus 1 options, whether there are only k classes. 



That examples should convince you that given any loss function, one can find a 

minimum risk classifier using the the Bayes classifier technique. 

As I also said in the last class, risk minimization is only one of the many possible 

objectives, there are ways other than a loss function risk minimization, to think of 

classifiers. Essentially, one way of looking at loss functions is that, it assigns different 

amounts of loss to different kinds of errors say, classifier can make. So, when you take 

the risk, which is some expectation of loss so that, is a kind of weighted loss, the final 

risk through the loss function values tells you, how to trade one kind of error versus 

another. 

So, given a loss function, which defines our acceptable trade-off risk, this minimization 

is one objective but there are ways other than through a loss function to trade off 

different kinds of errors. And one such example, we considered last class is the Neyman-

Pearson classifier, where instead of saying you know, this error is so many times more 

costlier than that error and hence, minimize the total weighted error rate, we saying that, 

one kind of error should have probability below some alpha and then minimize the other 

kind of error. 

So, there are different ways, in which I may want to trade one kind of error with another 

and Neyman-Pearson classifier is one good example of this trade-off. Another thing that 

we briefly considered last class is the, so called receiver operating characteristic curve, 

which is another way of explicitly affecting such a trade-off, so since we we went 

through ROC very fast let us, go over that again. 
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A receiver operating characteristic curve is, as I said another way to visualize trade-offs 

so as an example let us say, we have we have one dimensional feature space, 2 class 

problem, with the classifier being h(X) is class 0, if x less than tau. So, there is a single 

threshold and if X is less than tau, the threshold then I put in class 0 otherwise, I put in 

class 1. 

We will consider equal priors and Gaussian class conditional densities with equal 

variance so we know, tau is the midway between the two means and since h(X) equals to 

0 when x less than tau, we are assuming that, the mu 0 mean, for a class 0 is less than mu 

1, the mean for class 1. Now, given the single threshold classifier, we can easily write the 

expression for probability of error, which we done in the general case, a couple of classes 

ago. 
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So, what is the probability of error, pairs are equal so both prior probabilities is 0.5 so 

what are the two kinds of error, if a pattern of class 1 will come with densities f 1 comes 

below tau, I would have said is class 0 say, this is one kind of error. So, this is the 

probability, that a feature vector of class 1 will have value less than tau that is why, 

minus infinity to tau f 1(X) dX. And similarly, a feature vector of class 0 comes with a 

value more than tau so that is why, tau to infinity f 0(X). 

Since both f 1 and f 0 are Gaussian, f 1 with mean mu 1 and f 0 with mean mu 0 and both 

variance being sigma, this integral is nothing but phi of tau minus mu 1 by sigma. This 

integral nothing but 1 minus phi of tau minus mu 0 by sigma, where phi is the standard 

cumulative, the distribution function of standard Gaussian. When f 1 and f 0 are 

Gaussian, is easier to represent this integral in terms of standard Gaussian distribution 

function. 

So, what we can see from this expression is, as I vary tau, probability of one kind of 

errors may increase and probability of other kind of error will decrease so essentially 

varying tau allows us to trade one kind of error with another. The Bayes classifier 

because there is one loss associated with one kind of error and another loss associated 

with another kind of error, fixes tau based on this weighted sum of loses.So, Bayes 

classifier is one way, in which I can fix the tau, and as we said tau allows you to trade 



one kind of error with another in that sense, we can say, the loss function defines the 

exchange rate between the two kinds of errors that is, one way of trading-off. 
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But, actually look at in more general terms as follows, the so called receiver operating 

characteristic, I will I will shortly come to you as to where, this name comes from, is 

another way to conveniently visualize this trade-off. 
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When we have 2 class classifier, there are 4 possible outcomes of classification decision 

I can call, either 0 or 1 and the true class can be either 0 or 1, so there are 4 possibilities. 



Two of them are correct decisions and two of them are wrong decisions let us say, e 

subscript i denotes the probability of wrongly assigning class i. What does that mean, e 0 

is that, I actually call 0, class 0 but the feature vector actually belongs to class 1 so e 0 is 

the probability of wrongly assigning class 0 and similarly, e 1. 

Now, we can write e 0 that is, I said, I say class 0 but it is actually class 1, what is the 

probability of that, it’s probability X less than tau that is, when I will say class 0, given 

that X belongs to c 1. Similarly, e 1 when will I say 1, if X is greater than tau so it’s 

probability X greater than tau, given X belongs to c 0, 1 minus e 0 and 1 minus e 1 can 

be written as complements of these probabilities. 

The the entire terminology comes from, as I mentioned earlier, much of this bayes 

decision theory was developed during second world war to make right decisions based 

on radar signal. The idea is looking at the radar signal, I have to call out, whether there is 

an enemy aircraft or not so calling 0 let us say, is that there is there is no threat, calling 1 

means, there is an enemy aircraft and there is a threat. So, if I call 0 that is, I I put in 

class 0 whereas, it actually comes from class 1 is called a miss say, missed detection. 

Similarly, if actually there is no enemy aircraft, but I call out a threat then that is a false 

alarm, when there is a enemy aircraft and actually, you call enemy aircraft there is a 

correct detection. If there is no enemy aircraft and I say there is no enemy aircraft that is 

a correct rejection so those are the four names. And the receiver operating characteristic 

name also comes, because all this decision theory is is you know, embedded into the 

radar receiver right. 

And choosing tau is like choosing an operating point, for the receiver that is why, this is 

called receiver operating characteristics. Coming back, given these numbers e 0, e 1, 1 

minus e 0, 1 minus e 1, if I, for any fixed class conditional densities, as we vary tau, 

these numbers keep changing. So, if I choose the point e 1 comma 1 minus e 0, for 

different tau’s, I have different values of e 1 and e 0 and hence, different values of e 1 

and 1 minus e 0. 

So, if I look at e 1, 1 minus e 0 space, which is R 2 and for each tau I note down, which 

is the point then for fixed class conditional densities, as we vary tau, the point e 1, 1 

minus e 0 moves along a smooth curve in R 2. See, e 1 is a false alarm rate, 1 minus e 0 



is correct detection so essentially plotting the false alarm rate on the x axis, correct 

detection rate on the y axis, and for different tau’s, you will have different points. 
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So, the the curve will look something like this, so on the x axis, you have e 1, on the y 

axis, you have 1 minus e 0, this is the false alarm rate, this is the correct detection rate. 

For different taus, you get different values and it actually moves along a smooth curve of 

course, the curve does not always have to be like this, the curve can can have many other 

characteristics such curves are called receiver operating characteristic curves. 
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Now, the the choice of coordinates is arbitrary but this curve when you, for various tau, 

you put the point e 1, 1 minus e 0 is called a receiver operating characteristic curve. 
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For any fixed tau, we can estimate e 0 and e 1 from the training data, I can fix a tau, I can 

calculate from the training data, how many are correctly classified, how many are 

wrongly classified. I can detect all the two kinds of errors and hence, I can get the 

fraction of errors and that is, my estimated probabilities. So, I can estimate e 0 and e 1 

from the training data right then I can decide, as a varied tau, I will get different values 

of e 0 and e 1. 

And I can decide, which tau is best for me right even, if I do not want to, even if I do not 

know the class conditional densities, as long as the classifier is a threshold based 

classifier. Simply by estimating e 0 and e 1, and plotting them for various values of the 

threshold, I can get the whole curve and then decide on which point on the curve, I want 

to be. This can be done for any threshold based classifier, irrespective of the class 

conditional densities. When the class conditional densities happen to be Gaussian with 

equal variance, this procedure is particularly helpful as follows. 
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From our earlier error integrals, we know phi of tau minus mu 0 by sigma is 1 minus e 1 

similarly, phi of tau minus mu 1 by sigma is e 0. So, I can write, tau minus mu 0 by 

sigma is phi inverse 1 minus e 1 and the other one, phi inverse 1 minus 1 minus e 0. 

Now, if I know the numbers e 1 and 1 minus e 0, which are the coordinates of the ROC 

then I can calculate phi 1 phi inverse of 1 minus e 1 and phi inverse of 1 minus 1 minus e 

0. 

Let us say, those numbers are a and b and the interesting thing is no matter, what tau I 

have used, if I can correctly estimate this a and b then the absolute difference between a 

minus b is mod of mu 1 minus mu 0 by sigma, which is the discriminability right. So, 

whether or not I know the class conditional densities exactly, whether or not I know mu 

1 and mu 0, for I just take some tau, estimate e 0 and e 1. 

Hence, calculate these numbers a and b using the standard Gaussian distribution function 

then the difference between a and b is the discriminability mu 1 minus mu 0 by sigma, 

which gives me very nice method of tweaking. In case of Gaussian class conditional 

densities, I can start with some tau, I can get my e 1 and e 0, once I have e 1 and e 0, I 

have e 1 and 1 minus e 0 and hence, I can calculate the discriminability d. 

As we have as we have derived last class, d completely specifies the Bayes error so you 

know for this problem, what is the optimal Bayes error then I can ask, is the tau I am 

currently using achieves this error rate. If it is not, I can keep changing tau, till I achieve 



the Bayes error rate, no matter whatever I chose to the extent. I can estimate a and b, 

correctly I can estimate discriminability correctly, and hence I can estimate Bayes error 

rate correctly. Once I know Bayes error rate, I can keep tweaking tau, till I achieve the 

Bayes error rate, this is one way I can use ROC in in case, the class conditional densities 

are Gaussian. 
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Of course, you can use ROC in many other cases or suppose, I have a linear discriminant 

function h X is a sign of W transpose X plus w naught. If I have somehow, estimated W 

so I know the right direction in, onto which to project X then I can lend w 0 by using an 

ROC. Here, it does not matter, what class conditional this W transpose X has, just by 

plotting the ROC, I will be able to fix a threshold w 0. So, this this is another way, apart 

from Neyman-Pearson classifier to trade-off one kind of error with another right. So, that 

completes our general discussion of classifiers, in 2 class clear there are 2 errors loss 

function is one standard way, to trade these errors and risk minimization hence, is a very 

good objective. There are also methods such as, Neyman-Pearson classifier using the 

ROC curve whereby, one kind of error can be traded with another kind of error. 
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Now, let us move back to asking all this is fine, if I know the class conditional densities 

so if I want actually to implement Bayes classifier or implement Neyman-Pearson 

classifier, we need the class conditional densities in prior probabilities. So, let us stick to 

Bayes classifier so how do we implement Bayes classifier in practice, how do I get class 

conditional densities in prior probabilities, that is the next question. 

Now, prior probabilities may not be so difficult, I may know prior probabilities, I may 

want to assume prior probabilities of 2 classes to be same or I can simply estimate prior 

probabilities as the fraction of examples from each class. I have got some n examples, if 

n 1 of them are from class one class and n 2 of them are from the other class then n 1 by 

n and n 2 by n are good estimations for prior probabilities. 

Then, how do I get class conditional densities, examples are i i d and class labels of 

examples are known, I can take the full example set and then separate them in 2 

examples of class 0 and examples of class 1 right. Let us stick to to 2 classes of course, 

this will also work for many many more classes but so give me an example say, give me 

training data set where, some of the patterns will be class 0, some of the patterns will be 

class 1. So, I separate them out, so ultimately what I have is iid samples of class 0, iid 

samples of class 1. 

What does that mean, if class 0, as density function f 0 I have some samples, which are 

drawn from a density function f 0 in a independent manner and then given to me. So, I 



have x 1, x 2, x n all of them are drawn from a particular density function. So, the 

problem now turns out to be given some x 1, x 2, x n, which are drawn in an i i d 

manner, according to some distribution, let us say, the class conditional density f 0, 

estimate the density correctly. 

So, now, I do not have to look at the 2 classes together, if I can estimate the class 

conditional density of one class, I can estimate for the other class. So, my problem 

simply is, given a density function and I have I I know there is a density function and 

then I have got n samples drawn independently from the density function, how do I 

estimate the density function. 
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So, the 2 main approaches for estimating density function from iid samples like this, 

these are called parametric and non-parametric approaches. What is the parametric 

approach, I assume that I know the density function except for some parameters that is, I 

know that, the class conditional density, from which I got the samples is normal. But, I 

do not know the mean and variance right, I may know that the class conditional density 

is exponential but I do not know the lambda parameter and so on. 

So, in the parametric approach, we assume that the data given to us or iid realizations 

have a random variable X, whose distribution is known except for values of some 

parameters. Then we need to estimate the parameters from the density of the parameters, 

of the density from the samples available, this is the parametric method. In the non-



parametric method, we do not assume any form for the class conditional density right, 

without any form for class conditional density, we want to estimate the density. Very 

often, it is estimated as some convex combination of densities using the sample data 

have, we will look at both the approaches but first we will look at the parametric 

approach. 
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In the parametric approach, let us say, we are getting data from the density f, we will 

write that, density as f x given theta where, theta is the parameter vector right. So, given 

theta does not has any mean theta as a random variable at this point but simply that, we 

will write f x given theta to denote that, the theta is the unknown parameter vector. So, 

for example, my theta could be a vector of 2 parameters theta 1 and theta 2, and the 

density f x given theta that is, specified in terms of theta, is 1 by 1 by I am sorry about 

the type, this should be root 2 pi, it is not 2 pi but it is root 2 pi. 

1 by root 2 pi, root theta 2 exponential minus, x minus theta 1 whole squared by 2 theta 2 

here, this is the normal density with theta 1, as the mean and theta 2, as the variance. So, 

f x given theta is normal with mean and variance, constituting the two parameters so this 

is what, we mean by specifying the parameter vector. That is the density is known except 

for the parameter vector, this means that the density is normal but I do not know the 

mean and variance. Those are given by the unknown parameters theta 1 and theta 2, once 



again I am sorry this should be root 2 pi now, estimation of density is same as estimation 

of the parameter vector. 
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So, let us first get some notation in place to discuss about estimation, let us say, X is 

some random variable, which has density of x given theta that is, I know the density of x 

except for some parameters theta. From now on, we will not make any distinction 

between vector and scalar quantities so whether x is one dimensional, x is d dimensional 

whether it is a feature vector, whether it is a single feature, we use this same x, we do not 

use any boldface. 

Things will become clear from context so X is a random variable, which could be a 

vector with density f x given theta. An iid sample of size n, consists of n iid realizations 

say, random variable X, you get n values, n iid values of the random variable X. So, we 

denote this as x 1, x 2, x n once again each of these x i’s themselves may be vectors, if X 

is a random vector. 

The entire set of data x 1 to x n, we denote by either a boldface x or a script D, this is the 

sample data, this is the data I have from the density, we sometimes denote it by this 

script D or sometimes denote it by the boldface x. When we want to think of it as a 

vector, we always think of it as a column vectors of x 1 to x n of course, with will be a 

vector, only if x i’s are scalars. 



If xi’s then the if the random variable x itself is a vector, which is often the case because 

we have feature vectors then each of these x i’s themselves are vectors. We can think of 

the data as a as one realization of the sort of random variables x 1 to x n where, each x i 

has density of x given theta and x i are i i d right. This sample can always so be thought 

of, as a realization of the the the the set of random variables x 1 to x n where, x i are iid 

and each of them have the same density x given theta. 
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Now, a statistics given data is any function of data so if I am given data samples x 1 to x 

n, any function the data samples are x 1 to x n is called a statistics. So, essentially when I 

want to estimate a parameter, it is a statistic, given the data I am say, I am giving you 

what the parameter value is. So, the estimate essentially is a function, that maps the 

samples to parameter values, we generally denote estimation, such an estimate by putting 

a hat on the quantity. 

So, theta hat is an estimate of theta and theta hat is always a function of data so we 

should write it as, theta hat of x 1 comma x n, when the data is cleared from context, we 

will simply write it as theta hat. This theta hat is obtained from n samples that is, the only 

thing that is really important to us so sometimes we write theta hat n to denote that theta 

hat is an estimate of theta, obtained from a sample of size n. 

So, whenever is important to remember the sample size, we put that as a subscript of the 

estimate and once again, estimate is a statistic that is, a function that maps data to 



parameter values. So, here is an example of an estimate so an estimate obtained to n 

samples could be theta hat and could be defined as 1 by n, i is equal to 1 to n, x i. This is 

of course is the well known sample and as all of you know, this is a good estimate for the 

actual mean of the random variable so all estimates or functions of data like this. 
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How could there can be different estimates, that are intuitively reasonable here are some 

examples suppose, X is a Poisson random variable with parameter lambda. Given the 

sample, the sample mean as well as sample variance seem to be reasonable estimators, 

for lambda for the actual Poisson random variable, both the mean and variance are 

lambda. So, if you give me a sample, I can take the sample mean as estimate of a lambda 

or I can take the sample variance as the estimate of a lambda right so both are equally 

reasonable. 

If X is normal let us say, with some mean mu and variance unity, as you know because 

the normal density is symmetric, both mean and median are the normal densities mu. So, 

should I take the data mean or should I take the data median, both of them seem to be 

good choices for estimating mu. These are just some example, there are many many such 

questions, one can ask, so one would like some criteria to choose estimators. What 

should be a good way to choose estimators so let us look for some figures, I have made it 

for estimators. 
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Ultimately, we need good estimators right, what does good mean, good is based on a 

criteria so to decide what is good, I need some criterion right. Some criterion for 

goodness and of course, you know say, a criterion for goodness should somehow, allow 

me to obtain such estimates for various kinds of densities right otherwise, the criterion is 

useless. 

So, let us ask for some simple criterion but anyway before you go to criterion, the 

methods that we use in this course, that only 2 methods that we discuss, one is called a 

maximum likelihood estimators other is called the Bayesian estimators. There are many 

other methods of obtaining estimators but these are the only two things that, we will 

consider in this course. 

So, before we get into our methods, we will look at some general issues in the estimation 

so we will first discuss, what kind of properties do we want from our estimators. So that, 

we can decide, what are good estimators then we will ask what kind of methods will give 

us good estimators right, so to start with, we will just discuss general issues in 

estimation. 
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An estimator theta hat of a parameter theta is said to be unbiased, if expectation of theta 

hat is equal to theta right, this this seems to be a nice thing to ask for. So, when I am 

estimating theta hat right, theta hat from data I obviously, make errors so the expectation 

of theta hat is equal to theta means, sometime I make errors on one set, sometime I make 

errors on the other set so that, all errors will cancel out right. So, at least in an expected 

sense, theta hat is same as the actual parameter I want to estimate because we have be 

little careful in understanding what this expectation means. 

When we are saying expectation of theta hat, that is because theta hat is random that is, 

theta hat is a random variable, why is theta hat a random variable because theta hat is the 

function of data right. X 1 to X n theta hat is the function of X 1 to X n, these are iid 

random variables so theta hat is random because theta hat is a function of X 1 to X n. 

Because, theta hat is a function of X 1 to X n, when we say expectation theta hat, we 

mean the expectation with respect to the joint density of X 1 to X n right. 

Because, the joint density of X 1 to X n is nothing but unfold product of the density of X 

i, which is f x given theta. We we are assuming that, the density of each X is f x given 

theta and X’s are independent so the joint density is simply a product of the marginals. 

So, this expectation here refers to expectation with respect to the joint density of X 1 to 

X n, which is same as the unfold product of the density model, we are using. 



But then here is the catch, if X i is distributed as f x given theta then to do that 

expectation, we need the value of theta right. Because, theta hat is a function of X 1 to X 

n, I have to do that expectation with respect to joint density of X 1 to X n by the joint 

density of X 1 to X n, n was theta. So, what we mean by expected expectation of theta 

hat is equal to theta is the following, if I take any parameter value theta at the 2 

parameter value and then take expectations of the random variable theta hat then that 

expectation should be equal to that particular parameter assumed. 

So, to denote this, under this expectation we will put a subscript and say E theta, E theta 

is expectation with respect to joint density of X 1 to X n where, we assume the unknown 

parameter has actually value, this theta. Now, this equation makes sense in the following 

way, for any given parameter value, in the parameter space if I assume, that is the right 

parameter and take expectation, I should get back that parameter value. 
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So, an unbiased estimator theta hat satisfies expectation of theta hat is equal to theta 

where, that expectation at the subscript theta, as I explained just now, what that subscript 

means. So, once we understand it, to give the notation, simple we will remove that 

subscript, we will just talk about expectation theta hat knowing this. So, a theta hat is an 

unbiased estimator, if for every density in the class of densities, we are interested in that, 

is a every value of the parameter in the parameter space, the expected value of the 

estimator is the true parameter value. 
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Here, are some examples suppose, f x given theta is normal with mean theta, the variance 

really does not matter but anyway I assume, variance as unity. And let us say, I define 

the estimator theta hat n that is, a estimator obtained from n samples as 1 by n 

summation x i. So, what is expectation theta hat, is 1 by n summation x i so if I assume 

that x i as distribution f x given theta with parameter theta, the expectation x i is theta so 

1 by n summation expectation x i is equal to theta. 

So, which means, expectation theta hat is equal to theta, for every theta and all n because 

expected value of x i is equal to theta right. So, the sample mean estimator, this as you 

can see, this is the sample mean, this is the mean of the data. So, the sample mean 

estimator is such that expected value of the estimator is the true value of the parameter 

since this seems good. But, before we can say this seems good, we we just now defined 

this as unbiased right, if this is satisfied that is called unbiased estimator. 

So, I know that the sample mean is unbiased estimator but but this is the property that 

many other estimators have, sample mean is nothing special about this right. See, take 

the example let us say, theta hat of X 1 to X n is only X 1 plus X 2 by 2, even though I 

have n samples, let us say, I throw away all but n minus 2 samples and take my estimator 

as just the average of the first two samples. 

What is the expected value of theta hat, it is 0.5 into expectation of X plus expectation of 

X 2, which is also equal to theta right. So, this is also an unbiased estimator suppose, I I 



take another estimator theta at double prime hat where, I take the estimate to be the first 

value I get. This is also unbiased right, it is like saying I want to calculate the probability 

of hats for a coin, I toss it a few times, I can take the number of hats by the number of 

tosses, for any number of tosses right, it is it is always unbiased. 

So, basically what this means is, if I look at this theta hat and this theta theta prime hat, 

this theta double prime hat, all the three estimates are unbiased. So, saying an estimate is 

unbiased in not enough right, it does not really tell me whether estimate is good or not. 

So, we can go to the other extreme and say so what is that we want to say, obviously we 

will at our gut feeling that, this a better estimator than theta prime or theta double prime. 

But, on what basis, can I say this estimator 1 by n summation X i is better than this 

estimator or this estimator right. 
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So, one way we can ask now is, we will say that, theta hat is better than theta hat prime, 

if the probability that theta hat differs from theta by some quantity that is, minus a less 

than theta hat minus theta, less than b. This probability is greater than or equal to the 

probability over the same a and b, for theta hat prime, what does that mean, theta prime 

is closer to theta than theta hat prime. 

The probability of theta hat being closer to theta is higher than the probability of theta 

hat prime being closer to theta because this has to hold good for all a b. I hope, all of you 

noticed that, I put a subscript theta on P, which means to calculate this probability, what 



this probably is respect to what, the random variable theta hat, theta hats distribution 

needs the two parameter. 

So, what I am saying is ,I for whatever theta I assume in the distribution that is, the theta 

I am going to put here. This is a very strong requirement, no matter what my sample size 

is, no matter what is the accuracy level I want, no matter what values to a and b I give, 

theta hat is always more accurate than theta hat prime. So, if you can get this, this will be 

very good and then I can always say theta hat is better than theta hat prime. But, it is very 

difficult for any estimator to establish that level of superiority over any other. This 

means, for all sample sizes, for all accuracies, one estimator is uniformly better than the 

other estimator right that, we may or may not be able to establish. 
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So, instead of asking that, the error should be better at all levels of accuracy, we will 

simply say, the expectation of this square of the error that is, this is the mean square error 

that theta hat has. Theta hat minus theta is the error, theta hat minus theta whole square is 

the square of the error, if I take the expectation becomes mean square error of theta hat. 

So, you will say theta hat is better that theta hat prime, if the mean square error of theta 

hat is less than the mean square error of theta hat prime right. 

This seems a reasonable thing to do because on the average, the error in theta hat is 

smaller than on the average, the error in theta hat prime and hence, I am willing to settle 

for theta hat rather than, theta hat prime. So, this is defined as the mean square error of a 



estimator, MSE of theta hat is defined as expected value of theta hat minus theta whole 

square. As you can see, all the expectations have theta at the subscript to say, this theta 

that I use here is whatever, the same theta I assume for taking the expectations that that 

is, when this is actually the error in theta hat. So, expected value of theta hat minus theta 

whole square is known as the mean square error of theta hat. 

(Refer Slide Time: 34:59) 

 

Here is a very interesting result, for any estimator, the mean square of the estimator is 

given by sum of two quantities V theta, theta hat and V of theta hat and V of theta hat 

square where, V V of theta hat is the variance of theta. Because, theta hat is the random 

variable, what is it is variance, variance of any random variable is expectation of X 

minus expectation of whole square. So, variance of theta hat is expectation of theta hat 

minus expectation of theta hat whole square, the whole square is inside the expectation. 

So, this is the variance of theta hat, this is the variance of the random variable theta hat 

so we call it the variance or the estimator theta hat. The bias B theta hat is called the bias 

of the estimator, bias of the estimator is simply expected value of theta hat minus theta 

right. Earlier, we we defined theta hat to be unbiased, if expectation of theta hat is equal 

to theta right. So, the difference between the expectation theta hat and theta is called the 

bias of the estimator. 

So, essentially an estimator is unbiased, if it’s bias is 0 and mean square error of any 

estimator is variance of the estimator plus square of it’s bias, this lemma is not very 



difficult to prove so let us prove this. Before we go there, we will let us remember that, if 

an estimator is unbiased so that, the bias is estimated 0 then the variance of the estimator 

is equal to it’s mean square error. So, for unbiased estimators, the mean square error is 

simply the variance. 
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How do you prove this, what is the mean square error, expectation of theta hat minus 

theta whole square, I have stopped putting theta as subscript sometimes, I will put 

sometimes, I would not put. But, all of us understand, what this expectation means so I 

can rewrite this by adding and subtracting expectation of theta hat. So, I wrote theta hat 

minus theta whole square as, theta hat minus expectation theta hat plus expectation, theta 

as minus theta whole square. 

Now, I can group the first two terms and second two terms, and think of this as a plus b 

whole square and expand. If I expand it, I I get expectation of a square, which is theta hat 

minus expectation theta at whole square, the expectation of b square that is, expectation 

of expectation theta hat minus theta whole square. Now, theta is a constant, expectation 

of any random variable is a constant so expectation theta hat minus theta is a constant so 

expectation of that is also a constant. 

I do not have to take a expectation so the second term simply becomes, expectation theta 

hat minus theta whole square, the third term is the 2 a b from the square that is, 

expectation of two times expectation of theta hat minus expectation theta hat into 



expectation theta hat minus theta. Now, concentrate on this 2 a b term, this the second 

factor here, expectation theta hat minus theta is a constant. 

As we already seen, expectation theta is the constant, theta is a constant, so this constant 

can come out of this expectation. If it comes out, this expectation what is left is, 

expectation of theta hat minus expectation theta hat. Push this expectation inside, I get 

expectation theta hat minus expectation theta hat because expectations of expectations is 

itself. 

And expectation theta hat minus expectation theta hat is 0 that gives us, MSE is this term 

expectation theta hat minus expectation of theta hat minus expectation of theta hat whole 

square that, we already defined at the variance of theta hat. The second term by 

definition is, bias square of theta hat, this is the third term where, I pulled out the 

constant out of the expectation. Now, this is 0 giving us mean square of theta hat is 

variance of theta plus bias of theta square. 
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So, for unbiased estimators, low variance implies low mean square error so among all 

unbiased estimators I can choose the one, which has lower variance. So, if I go back to 

my earlier estimates, my when theta hat is the sample mean estimator. 
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When theta hat is the sample mean because X i’s are independent random variables, 

variance of a sum of independent random variable is a sum of variances. So, this will be, 

inside the summation, this variance of this sum is, sum of variances that will be n sigma 

square because they are multiplying with 1 by n, it becomes 1 by n whole square into n 

sigma square. So, this becomes sigma square by n right whereas, this becomes sigma 

square by 2 and this becomes, sigma square right, so that is basically what I am getting. 
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So, in my earlier example for the sample mean, the variance is sigma square by n 

whereas, for my other estimators, when I take this, it is sigma square by 2 right. So, 

because the variance is smaller here than here, this is a better estimate because both are 

unbiased, variance is the mean square error. So, the mean square error of this estimator is 

smaller than mean square error of this estimator, so I can say that, this estimated theta hat 

n is better than theta hat prime n. So, mean square error is a good way to compare 

estimators and for unbiased estimators, mean square error is simply the variance. 
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So, unbiased estimators with low mean square error are good estimators, for a given 

family of density functions theta hat, a specific estimate at theta hat is said to be 

uniformly minimum variance unbiased estimator, often written as UMVUE, uniformly 

minimum variance and unbiased. If firstly, theta hat is unbiased and mean square error of 

theta hat, which is same as variance because unbiased, is less than the mean square error 

of any other theta hat prime where, theta hat prime is unbiased estimator. 

So, theta hat is UMVUE that is, uniformly minimum variance unbiased, if variance of 

theta hat is smaller than variance of any other unbiased estimator theta hat prime. Now, 

this has to hold for every single n that is, what is meant by uniformly minimum variance. 

We are not saying that, at some n it is minimum, for every single n, the variance of theta 

hat n is less than the variance of theta hat prime n. 



So, for every n, for all theta, if the variance at theta hat is less than theta hat prime and 

theta hat is unbiased then that theta hat is called the uniformly minimum variance 

unbiased estimator. So, as a matter of fact, if I can get UMVUE nothing like that but in 

many cases, it is difficult to get UMVUE and also, there may not be many standard 

procedures for getting UMVUE. 
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So, let us look at some other figures of merit so everything that we looked so far, we are 

saying, for every single n something has to hold, unbiased (( )) is the expectation of theta 

hat, n is equal to theta, for all n. We have talked of UMVUE once again, minimum 

variance at all fixed sample sizes now, if I if you let go of that and only ask for, as the 

samples size goes to infinity, is the estimated good right, that is also a good way of 

looking at it, we can think of asymptotic properties of estimators right. 

So, one asymptotic property is to say, at the sample size goes to infinity thus, the 

estimator converts to the true value thus, theta hat n converts to theta. Since theta hat n is 

a sequence of random variables, as I vary n, it becomes a sequence of random variables 

so when I say convergence, I have to say convergence in what sense, is convergence in 

distribution, convergence almost truly. So, we will take convergence in probability 

because there is a convenient mode of convergence for our purposes. 

So, we will say, an estimate of theta hat is said to be consistent for theta, if theta hat n 

converges in probability to theta, as n tends to infinity, this is an asymptotic property. 



But, essentially what it what this means is because of the convergence in probability, if n 

is sufficiently large, the probability that theta hat n and theta differ by say, some epsilon, 

can be made less than delta that is what, this convergence in probability means. 

So, a consistent estimator is good because for large sample size the estimator will be 

close to the true value of the parameter. So, an estimator theta hat is said to be consistent, 

if theta hat n converges in probability to theta. We know, the sample been estimator 

converges to (()), sample estimator 1 by n summation X i now, by law of large numbers, 

sample mean converges to the population mean in probability, with law of large 

numbers. So, a sample mean estimator in addition to, being unbiased in addition to, 

being minimum variance is also a consistent estimator. Our interest in the consistent 

estimators come from the fact, before we go there, a consistent estimator does not have 

to be unbiased. 
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Consistency is an asymptotic property so even if the estimator is biased, it may still be 

consistent right. 
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For example, let us instead of taking sample mean, I will take 1 by n plus 1 summation X 

instead of, 1 by n summation X n, is obviously biased because expected value of theta 

hat n is not equal to theta but it is n by n plus 1 theta. So, there is bias but as you can see, 

as n goes to large then whether you divide by n or n plus 1 may may not make much 

difference. And one would expect that, theta hat n will converse to theta and we can 

prove that right, this is not an unbiased estimator. 
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But, we can prove the following, expectation of theta hat and minus theta whole square, 

this will because it is a this gives me the mean square error of the estimator. So, this is 

theta hat n, theta hat n is 1 by n plus 1 x i so I wrote theta as n by n plus 1 theta. If I push 

this summation side, I will get n by n plus 1 theta and the remaining, 1 by n plus 1 theta I 

wrote separately, square. Now, you can square this because x i’s are independent, when I 

squared it, all the cross terms will cancel, when I take the expectation side. 

So, that will ultimately give me 1 by n plus 1 whole square into only the squares of x i 

minus theta whole square will be there. So, there will be n sigma n such sigma comes, 

which are sigma square, this will give me 1 by n plus 1 theta square. And the 2 a b term, 

which is 2 theta by n plus 1 whole square into expectation of x i minus theta, which is 0 

because if I put the expectation inside, expectation x i is equal to theta. 

So, which just gives me 1 by n plus 1 whole square n sigma, n by n plus 1 whole square 

sigma square, 1 by n plus 1 whole square theta square, as n tends to infinity, this goes to 

0. So, expected value of theta hat and minus theta whole square goes to 0, as n tends to 

infinity, which means theta hat n converges to theta n quadratic mean and hence, it will 

also converge in probability. 
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So, this theta hat n what we saw earlier, even though it is a biased estimator, it is a 

consistent estimator right, because it as n tends to infinity converges to two value. 
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So, this goes to 0, as n tends to infinity hence, theta hat is the consistent estimator though 

it is biased. 
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But, the good thing about consistency is that, we have a general procedure for obtaining 

consistent estimator, maximum likelihood estimation is a general procedure for obtaining 

consistent estimators. It is a parametric method, we estimate parameters of a density 

based on iid samples and the nice thing is, if the density satisfies some simple regularity 

conditions then the maximum likelihood estimates can be proved to be consistent. 
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This is how, we do maximum likelihood estimation once again, x 1, x 2, x n be the 

samples, the likelihood function, we defined a likelihood function, which is the function 

of x and the parameter vector theta. As L x theta is product, j grown 1 to n, f x j given 

theta so far, we have always been talking of f as density but it really does not matter. If 

the samples are from a discrete random variable, f is taken to be the mass function, if 

they are taken from a continuous random variable, f is the density function, in both cases 

we define this product as the likelihood. 

Intuitively, if it is the density function, if it is the mass function, this product gives you 

the probability of obtaining the sample. This density of course, is not a probability but 

even then it is called the likelihood. Of course, the the reason for calculating likelihood is 

not about calculating about x j because x j’s in any, when I am estimating, I have got 

specific sample and I am estimating theta. 
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So, we often would like to think of likelihood, not often we always think of likelihood, as 

a function of theta, with the sample being known, the sample is data. So, to emphasize 

this, we often write theta as the first variable or more more often, we write it as L of theta 

given x or L of theta given D. Because, D is the notation for samples, we always write 

the likelihood function as L of theta given x, L of theta given D because likelihood 

function is viewed as a function of theta. 
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So, the maximum likelihood estimate is the value of theta that globally maximizes the 

likelihood, I said we will look at likelihood function, as a function of theta. So, theta star 

is MLE that is, maximum likelihood estimate for theta, if L of theta star given x is 

greater than equal to L of theta given x, for all theta. So, the value of theta that globally 

maximizes the function L theta given x is called the maximum likelihood estimator. So, 

finding MLE is essentially an optimizational problem, if I am given the function L theta 

given x, as a function of theta, how to find it is global maximum, this is an optimization 

problem. 
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Very very often for convenience in the optimization, we take what is called the log 

likelihood, take the log of the likelihood function, the reason is, likelihood function as 

you as you have seen as the product so if I take log, it becomes summation. So, log of L 

theta given x is summation of log of f x, x j given theta and we represent the log 

likelihood by little l given theta x, likelihood as capital L and log likelihood as small l. 
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Now, the ML estimate would be maximize of the log likelihood because log is a 

monotone function, whatever maximizes, the likelihood will also maximise the log 

likelihood. So, for many densities, we can analytically calculate the maximize and if you 

cannot of course, you can always use a numerical technique, if you know the likelihood 

function to obtain the MLE estimate. 
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So, let us consider one example, let us say, one dimensional case let us say, x is normal 

with mean mu and variance sigma square, so there are two parameters theta 1 and theta 



2, theta 1 is mu and theta 2 is sigma square. So, we take a theta to be sigma instead of, 

sigma square, we could have taken second parameter to be sigma square or sigma, we 

have taken to be sigma. Then the density becomes 1 by theta 2, root 2 pi exponential 

minus x minus theta one whole square by 2 theta 2, square. 

So, what is my likelihood, L theta given x is product over j is equal to 1 to n, f of x j 

given theta, f of x j given theta is the same expression where, x is now replaced by x j. 

Now, what will be the log likelihood, you take log of this. So, log of with they will be 

sum and log of this, log of this will be log of the first term plus log of second term. Log 

of exponential will be only, what is inside the exponential, so that becomes the log 

likelihood. Sum j is equal to 1 to n, log of this will be minus log theta to minus half log 

two pi and then what is inside. 
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So, minus log theta 2 minus half log 2 pi minus x j minus theta 1 whole square by 2 theta 

2 square, so this is the log likelihood function. We can simplify it, push the summation 

inside so there n log theta 2 minus 0.5, 1 log 2 pi minus summation, j is equal to 1 to n x 

j minus theta 1 whole square by 2 theta 2, square. This is my log likelihood function, I 

am asking which values of theta 1 and theta 2 maximize the log likelihood right. So, how 

do I maximize, there are two which is a function of two two variables, theta 1 theta 2, we 

will find the partial derivatives and equate them to 0 right. 
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So, what you do, dou l by dou theta 1, dou l by dou theta 2 equate them to 0. 
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What will be dou l by dou theta 1. If I differentiate this with respect to theta 1, derivative 

of this is 0, derivative of this is 0, derivative of this will be half, summation of this half, x 

j minus theta 1 by 2 theta 2 square right into minus 1, that minus will cancel. 
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So, if I equate that to 0, this is what I will get, j is equal to 1 to n, x j minus theta 1 is 

equal to 0 right. That half will also go and 1 by 2 theta 2 will square will also go because 

equal equate it to 0. Now, if I crunch this, I get n times theta 1 is equal to summation x j, 

which means theta 1 is 1 by n summation x j. 
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So, that is what, I get as my estimator of theta 1 similarly, partial derivative with respect 

to theta 2. 
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So, I have to differentiate, this is theta 2, this give me n by theta 2, this will give me x j 

minus theta 1 whole square that is a constant now we can define, 2 will also stay here. 

So, 1 by theta 2 square will give me minus 2 by theta 2 cube, 1, 2 will go away so minus 

n by theta 2, that minus has gone, 1 by theta 2 cube into this equal to 0 right. So, if I take 

this term on this side, multiply by theta 2, so I will get 1 by theta 2 square into something 

and then equate to 0 and solve. 
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I get theta 2 hat is 1 by n x j minus theta 1 whole square so by solving del l by del theta 1 

is equal to 0 and del l by del theta 2 is equal to, dou l by dou theta is equal to 0 and dou l 

by dou theta 2 equal to 0, we get the maximum likelihood estimators. The estimator for 

theta 1 is the sample mean estimator for theta 2 square, not theta 2 hat, the estimator for 

variance is the sample variance. 

As some of you may know, 1 by n x j minus theta 1 whole square is not an unbiased 

estimator variance, if I want to get unbiased estimator, I have to get 1 by n minus 1. So, 

these are the ML estimator mean and variance of a normal density and ML estimator of 

variance is not unbiased. So, as we have already seen, consistent estimators need not 

have to be unbiased and ML estimation only guarantees consistency sometimes, we may 

land up with unbiased with biased estimators. But for one dimensional normal density, 

these are the estimators, a maximum likelihood estimators for mean and variance. 
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We can do this same thing for a discrete random variable also let us say, X is a Bernoulli 

distribution that is, x takes values 0 and 1, with probability p and 1 minus p. So, I can 

write the mass function of x parameter, as p has power x, and 1 minus p power 1 minus 

x, x takes only 0 and 1. So, f of 0, the mass function at value 0 will be 1 minus p, mass 

function value at 1 will be p so this is the Bernoulli density right, this the mass function 

Bernoulli takes values 0 and 1, takes value 0 with probability 1 minus p, 1 with 

probability p. 



(Refer Slide Time: 55:26) 

 

So, the mass function has only one parameter namely p of course, we must ensure 0 less 

than p less than 1. So, if I simply maximize this, over all p is not what I want, I have to 

maximize this over maximize the likelihood, over p between 0 and 1. But, as it turns out, 

if we just unconstraintly maximize, you will anyway get p between 0 and 1. 
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So, what is the likelihood function so j is equal to 1 to n so this is my thing so I put x j 

here. So, p x j, 1 minus p, 1 minus x j because the product, it is p times summation x j, 1 

minus p times summation 1 minus x j. If I write x bar at the sample mean then 



summation x j is nothing but an x bar so this becomes p times n x bar, 1 minus p times, n 

minus n x bar. So, the log likelihood will be n x bar log p plus n into, 1 minus x bar, log 

1 minus p, this is very simple thing to differentiate. 
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If we differentiate, we get this and from there, you get p once again as the sample mean 

because x j’s take only values 0 and 1, summation x j by n will be between 0 and 1. So, 

even though, I have maximized likelihood in a unconstrained manner, I am still getting p 

between 0 and 1, so that is all right. So, this is the maximum likelihood estimator for the 

parameter of a Bernoulli random variable. 
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So, let us summarize today’s lecture, to implement Bayes classifier, we need to estimate 

densities. Parametric methods assumed that, form of density is known and then obtain 

the parameters from the data. An estimate for a parameter is a function of the data, for all 

estimation we assume we have iid realizations of the random variable or iid data from a 

density and an estimate is a function of this data, is a statistic, is the the function of this 

data. So, estimate is the function of the iid data, an estimate is unbiased, if it’s 

expectation is the true value. The mean square of an unbiased estimator is it is variance 

and uniformly, minimum variance unbiased estimators are very good to have, if you can 

have them. 
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A consistent estimator converges the true value in probability, as the sample size goes to 

infinity right, maximum likelihood estimation is a general procedure, that can find 

consistent estimators. MLE is a maximizer of the likelihood function, often one 

maximizes the log likelihood, just for convenience in maximization. And for many 

standard densities, one can obtain Bayes likelihood through simple analytical means.  

Thank you. 


