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Bootstrap, Bagging and Boosting; Classifier Ensembles; AdaBoost 

Hello and welcome to this next lecture on patter recognition, we have been discussing 

last class on model selection, model assessment. Mainly techniques that can use training 

data itself to estimate test error, and you know we discuss various issues such as bias, 

bias dilemma. How one can think of test error and so on, but in cases where training data 

is small, which is the majority of applications. We have been looking at various 

techniques so, that we can use all the training data for learning a classifier and as well as 

for estimating final errors, for models selection everything. The one method that we 

considered in detail is the cross validation. 
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So, the cross validation as we seen is a very popular method for doing this essentially, 

using the same training data. We learn a model as well as make an estimate of the true 

test error. So, the idea for cross validation is the following we divide data into k parts 1, 

2, 3, 4 k. So, first time we use parts 2, 3, 4 all the way up to k for training and then test 

this classifier find the classifier error on part 1. Next, time we sue parts 1, 3, 5, 7 and so 

on and then test that classifier on the left out part and so on. So, essentially we divide the 



data into k parts, then learn k models by each time leaving over 1 part from the training 

data which is what is used for testing.  
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So, using this the final cross validation error estimate, the estimate under cross validation 

for test error would be the average of errors which learnt model, on data points not used 

in the training of that model. So, each model in each model we are using k minus 1 parts 

for training one part we are not using in training that model. So, we test each model on 

the path that was not used in training that model, and we take average of all this and that 

is our final cross validation of the estimate. So, specifically this is what the cross 

validation estimate is.  

So, f of minus rho i rho of i denotes the part number into which X i is put. So, f minus 

rho i is the model that is learnt on part rho i that is when we left out part rho i. So, the 

training data at X i is tested on that particular f as we have seen in last class, this is very 

popular method for model selection. Essentially what you do is when we want to do 

model selection there will be some alpha some parameter of the model class right. So, for 

different values of the model class parameter, we calculate the cross validation error 

estimate, and then choose the best model class based on the cross validation error 

estimate.  

As we seen model class parameters could be essentially, parameters learning algorithm 

you know step size is the c value in s v m, or the number of hidden nodes in the neural 



network and so on so forth. So, generally cross validation is very often used for model 

selection and it is also used for final model assessment. So, this is one way of estimating 

the true risk model by using the training data itself so to say. So, here like in cross 

validation we are using all the data for training and also for testing right. When data size 

is small we want each data element to pay. So, this, these are very attractive techniques. 
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This another technique which you also briefly considered last class, which are called the 

bootstrap methods. Bootstrap estimates provide another general technique for doing 

similar kind of estimation, like in cross validation in bootstrap. Also we learn many, 

many models, but essentially in cross validation deterministically we are separating over 

data into k training sets different training sets. Of course, here large number of things, 

but also each training sets are some part of its own right, because every time we are 

leaving one of the k parts. But here in bootstrap we generated many training sets by 

simply random sampling with replacement from the given data.  

We have got data points 1 to n, so every time we want a data we want a new training data 

set, what we are do is we keep generating random numbers between 1 and n. Whichever 

number comes up we pick up that particular point of course, some points may be picked 

up twice some points may not be picked up like this. So, essentially we generate many 

multiple training data sets by sampling with replacement from our one given training 

data set. So, if given n original data set of n points, we first generate n random numbers 



each uniform distribution between 1 and n that gives me one training data set. Once 

again I repeat it, I get another training data set. I can like this get as many training data 

sets as I want. 

So, we generate let us say capital V number versus trading data sets each will be of size n 

by random sampling from the given data set. So, they may have of course, many things 

in common some of them may be some of the points may be unique data set. Essentially, 

the variation in different n eta sets is coming because of the random sampling here. Then 

like in the cross validation case we learn model in each of the training data sets, with 

beta training data sets. Let us say so we learn b models each capital B models each one 

on one of the training sets. So, now we have b of f hat learnt b number of f hats learnt 

each one from its training data set. Now, we have the original data set anyway so, I can 

choose the final error as the average of errors of all the models on the original data set I 

have. 
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So, basically a what is the difference between cross validation bootstrap unlike in cross 

validation here we can have as many training sets, as we want and all of them of the 

same size right because the variation comes by random sampling in cross validation 

because I am actually, partitioning data at most I can participation to n parts the leave on 

out cross validation be on that I cannot partitionate, but here because I am random 

sampling, I can generate as many training data sets as I want. All of them will have size 



n the few of set of course, is that while I can generate thousands of them many of them 

might be very similar because I am just sampling with replacement from the same 

underlying data.  

So, maybe they might all be similar any case, let us first look at the error estimate let us 

say f at be at small b. Denote the model learnt using the b-th bootstrap sample b takes 

values 1 to capital B that many bootstrap data sets are there. So, let us say f at b denotes 

the one leant on the b-th one then my error estimate is very simple I will call it e 1 boot 

the one because we will have another error estimate later on, so this is bootstrap error. 

So, if I take the inner term 1 by n summation i is equal to 1 to n l of f at b X i y i this is 

the average error on the original data set of the b th model that is learnt. 

Now, I take average of all the b models the average errors of all the b models that is my 

final error estimate. Seems quite reasonable except that there is only one problem see 

essentially, this is like for each model f b. I am using the entire original data set as a test 

set, because this is like a test like error on the entire original data set, and then I am 

taking average of these errors. 
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So, here we are using the original data set as a test data set so to say, but for leaning f at 

b we used some of the same data points. So, obviously because f at b as used some of the 

X i y i used some of the X i y i for learning f at b this error estimate is likely to be put 

matter of fact, it can be very poor. Let us take an example, let us take an extreme case 



where the feature in the class label are independent. That means, I get some feature 

vector, but the class label for each feature vector each pattern is independent with 0.5 

probability is class 1, 0.5 probability the other class. 

Now, then if I am using a 0-1 loss function my true error rate is just 0.5 because class 

label is not correlated at all with the feature vector. So, because class label is random the 

best I can do is 0.5. Now, let us say I am using a nearest neighbor classier one nearest 

neighbor classier. So, my classifier would be I take my training data set stored it as my 

prototype every time I get a new pattern, I look for the nearest neighbor in my training 

data set further. Give the same class in the like k near is the one nearest neighbor nearest 

neighbor classier. 
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Now, what happens because you are using the same x 1, x 2, x n for testing on any X i 

the classification with f hat would be correct, if X i is in the b th bootstrap sample, if X i 

is in the b th bootsrap sample. Then X i will be one of the prototypes f hat b. Now, when 

you are testing using X I, I ask what is the closest pattern to X i it will be X i itself and I 

give the correct class label. So, on any X i the classification by f hat b would be correct if 

the particular X i happen to be in the b th bootstrap data set. If it is not there then 

obviously there will be something like that is nearest.  

But it is really does not matter because class labels are random I can get correct class 

label with probability only 0.5. So, for my one nearest neighbor the bootstrap error 



expected bootstrap error would be 0.5 times, the probability that a random X i will not be 

in the random bootstrap as an arbitrary bootstrap sample. Let us we can calculate this 

probability let us say I want to calculate the probability for some i and some b. 

Probability X i belongs to bootstrap sample b. How do I generate the bootstrap sample, I 

keep the sampling uniformly over the 1 to n samples. 

So, the only way is first let us ask when will X i not belonging the bootstrap sample. So, 

when I made 1, when I did 1 sampling from the data a specific X i not coming is 1 minus 

1 by n. I did n such samples, so the specific X i not coming is 1 minus 1 by n into the 

power n. So, X i coming is 1 minus 1 minus 1 by 1 by n to the power n it is clear, 

because each sample can come with probability 1 by n. Whenever I sample once a 

specific X i not coming is 1 minus s 1 by n.  

So, when I do n time sample the specific X i not coming on all the n times is like getting 

n heads in n tosses of a coin. So, 1 minus 1 by n to the power n and if I want the 

probability X i is in it is 1 minus 1 minus 1 by n to the power n. If n is large we know 1 

minus 1 by n to the power n goes to e so goes to e to the power minus 1. So, this is 

roughly 1 minus e power minus 1, which is about 0.63. So, it does not depend on i or b 

for any i and b probability of X i belong to bootstrap p is about 0.63 for large this 

approximation of this e to the power minus 1 is fairly good. So, which means, the 

expected value of our e 1 boot is because this is 3, 6, 2 X i not being in the bootstrap 

sample is 0.378. 
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0.638 and into 0.5 will give me about 0.184 that is we see in that if it is not if it is in 

anyway do not make error, if it not in I will make error to probability 0.5, because it is 

not being in the bootstrap sample is about 0.36. So, that into 0.5 is about 0.18 this is the 

expected value of e boot. This is my estimate, the expectation of the estimate is 0.184 

whereas, true value of the error rate is 0.5. 

So, the expectation of e boot is very far from the true value. So, we have large amount of 

bias so, e boot e 1 boot is a high bias highly biased estimator of the true risk of the 

classifier and is biased down. Obviously, so it is underestimating the error rate. We can 

actually reduce this bias by using what we did in cross validation that is test each model 

only on those data samples, which are not used in learning it. Now, of course, because 

the data samples are obtained randomly just notationally or writing this is a little 

complicated, but let us write it anyway. 
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Now, we will define another error estimate this time I called it e boot that one is not 

there. So, for each i I can test i on all f hat b in which it is not used. So, let us define c 

minus i the set c minus i to be the indices b bootstrap sample indices, bootstrap data 

sample indices such that X i is not in that bootstrap data set. So, c minus i gives me the 

set of all boot strap the indices of all bootstrap data sets in which X i is not there. So, for 

each of this little b in c minus i, I can take the error on X i so because I want average, I 

divide it by the number of elements in c minus i. This is the contribution to the final error 

estimate of X i and I sum it through over i equal to 1 to n, and divide by 1 by m hop its 

clear.  

Essentially each X i can be used to test f hat b for all b such that such X i is not used in 

training f hat b. So, the set of b on which X i is not used in training f hat b is c minus i. 

So, I sum this over this b belonging to c minus i, and divide by the number of elements in 

c minus i that gives me the amount of error estimate contribution from X i, I get it from 

all the training samples. Of course, there is a possibility that for some particular X i c 

minus i is null, if c minus i is null I just do not take that X i because you know I cannot 

abide by 0.  

So, I will just omit that particular i for omit that particular i I make it 1 by n minus 1 

right, but if b is large this is unlikely to happen, if b is large that I have been doing many 

large sampling. There is a particular X i which never comes into any of the samples is a 



is a very rare event. So, if capital B sufficiently large this case may not happen and in 

case this kind of a bootstrap estimate is sometimes called leave one out bootstrap 

estimate error of error. So, bootstrap is another good way to estimate test error. 
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Basically, to contrast with class validation, in class validation we divide data into at most 

n parts and hence, there can be only n different models you can learn. On the other hand 

in bootstrap we can choose b as high as we want right, and still have proper size of 

training sets. Now, because we average it to about so many models we are likely to get 

low variance in the error estimate, but on the other hand the training sets that we can get 

by like this by sampling with replacement are all, are all quite similar right.  

See for example, in cross validation we said we like to do 5 or 10 fold cross validation 

so, that you know we can keep the variance variation in the training data set. If we leave 

one out the variation deferent training data sets is very small. So, the models learnt may 

be similar so, the estimate may not be very good, the same thing may happen here. 

Another way of looking it at is that from what we calculated, any X i being in any 

particular bootstrap sample is about 0.63, which roughly means that each bootstrap 

sample would have about 0.632 n distinct samples. 

So, this is like a three fold or two fold cross validation right. So, it contains about 60 

percent of the 63 percent of the total number of samples. So, if I three fold cross 

validation, each training data will contain 66 percent of the original data. Two fold cross 



validation contain 50 percent of. So, essentially for the biases and so on, it will be here 

will like this, but of course, because I am generating many b’s it will be not just like 

three fold cross validation, the averaging because of b’s can give me a better estimate 

than a three fold cross validation. So, there are both plus s and minus s for bootstrap in 

relation to cross validation. This also has very general statistical technique can be used 

for estimating many quantities of data. This has also been used as a set of variance 

reduction technique in your estimate. 
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Next, we consider what is called bagging of the estimates, let us take bootstrap of course, 

what I am saying about bootstrap is also true of cross validation, but in bootstrap we are 

generating many different training data sets by sampling from the original datas. So, we 

have one set of n examples X i y i. Then we generating many different training data sets 

by sampling with replacement from the we are doing this essentially. So, that we learn b 

number of models f hat b because we it because b data sets. What is the purpose of 

generating all these models?  

We use all these models together to get a good estimate of the expected error, this could 

be for model selection. So, we want to know how good a model class parameter alpha is 

so far that class alpha I learn so many models, and then I know how good it is? 

Ultimately, I can find what is the best alpha to use or I may use a use it for final model 

assessment and same thing is true for cross validation also. There unlike here b being 



arbitrary that may not be arbitrary, but ten fold cross validation or whatever we are 

learning many different models. 

Now, I got a error estimate I finished all this let us say I did model selection, I got the 

particular alpha for that alpha. I have many f hat b alphas or I have anyway learnt many f 

hat b’s. Finally, did my model assessment, but along the way I have learnt so many 

models. So, which particular model should I use as the final model, should I use as the 

final model should I throw up all these all away. Once again, relearn after all there is no 

difference from learning with one more training data set.  

Say for example, cross validation any one of the models can be used as the final model, 

which model should I use a good idea is why cannot we use all this models to improve 

the prediction right. Any way I have learn so many models from so many different data 

set, why should I throw some of them away when you give me new patterns. From now 

on, I can use all the models and may be somehow combine them to get a better 

prediction. Now, this is the basic idea of bagging, bagging is one way of improving the 

prediction of the final model. So, instead of using any one of them if I use all of them 

then I may get a better prediction. So, what is the simplest way of using all of them? 
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Average that is what simplest bagging estimate is so, actually bagging is a kind of word 

derived from bootstrap aggregation. That is I aggregate all the bootstrap models and also 

is a nice term, because I have a bag of classifiers bag of models. So, bagging stands for 



bootstrap aggregation, the idea of bagging is to average over the predictions of all the 

models. So, given all the bootstrap models that we have learnt small b is equal to 1 to 

capital B. The bagging model prediction at a new point x is given as f hat bag of x is the 

average of all the f hat b of x. Of course, the actual theoretical definition of the bagging 

estimate is not like this. It is the expectation of f hat b x, where B is a random bootstrap 

model that we obtained. 

So, which means this expression actually is itself an estimate of the bagging estimate. An 

estimate derived as a sample mean because I do not know, how to find the distribution of 

how different bootstrap samples behave? So, for a random bootstrap sample what the 

model error is what bagging estimate is. So, to get that I just average over many specific 

actual bootstrap samples that i derived. 

So, to be technically correct, I have to say that this is a sample mean estimate of size b of 

the true bagging estimate, but that is any way just a minor mathematical operation 

problem. Where essentially, a bagging estimate is to average out all the models you 

liked. So, often bagging can improve performance of the final model, instead of using 

any one of them if you use all of them and average out. Of course, I have to ask what 

averaging means in a classifier context, in a regression context I can immediately see 

what averaging means in a classifier context, what should I do? 

Then maybe you know essentially, if it is a two class problem I can take f hat b to be plus 

1 minus 1. Then I take the sign of this average, but if I am taking sign of course, that one 

by b makes no difference. So, there is various ways of doing this, but essentially, roughly 

at this point of same simply say average, for regression models average is what all of us 

think as average, you just true average because you are anyway predicting a real number. 

For classification currently average simply means majority, you look at all the 

predictions and take the class label that it that is output by the majority of a models, that 

is what averaging would mean for classification. 
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Now, essentially the bagging estimate you wanted to use is one way of using multiple 

classifiers instead of one. So, far we have just been saying given one training data set 

how do I will learn one classifier? Now, bagging you just all models learnt from different 

bootstrap samples to predict on new data. So, we can think of bagging is an example of a 

method that combines multiple classifiers to improve accuracy. Now, intuitively instead 

of using one classifier if you use many classifiers, one should improve accuracy. If I this 

is like I asked many experts for something, if I am preparing for an exam I do not know a 

question.  

I do not understand something I can go to one of my classmates and ask him to explain it 

to me well I do not know which one to chose all other might be as bad as I am. So, 

instead of asking one if I ask 10 of them, may be you know together, they will give me 

all the things that are there to learn, this is like going to multiple experts. In many 

situations this is a nice strategy, a simple example which all of you would have seen is 

the audience poll in [FL]. [FL] there are when you would know the contestant does not 

know answer to the question, one of the lifelines is the audience poll.  

Whereby you ask all the people in the audience of course, nobody in the audience is any 

great expert to know the answer, each of them may have only 50, 55 percent 60 percent 

chance of knowing the answer, which is same as the contestant’s chance, but if you ask 

enough of them and go by the majority very often it works, right? 



So, even if each individual classifier is not very good, may have only 55, 60 percent 

chance of being correct. If I have enough of them right like in the [FL] audience poll, it 

looks like I might be able improve my accuracy much better, then asking anyone of them 

in the audience poll. Suppose, instead of polling the audience, the contestant is allowed 

to chose a particular person in the audience and ask.  

It would not work any of them is not particularly great is very difficult to choose 

somebody, whose likely to be correct on this one question, but if you have sufficiently 

many randomly chosen people there then averaging often gives you the answer right. 

This is the basic idea of combining classifiers, so that is what we are going to consider 

next in this course. So, that is more or less the last topic of the course. So, how does one 

combine classifiers.  
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One basic technique for doing this is what is called boosting, boosting is a procedure that 

many what can be called weak classifiers to produce a better one. Weak in a sense low 

classifier individually is a great expert at classification. It may not get very high 

accuracy. Technically weak means, that there expected error is only is just less than 0.5, 

it may be only 0.5 minus epsilon, right? 

So, there may not be many great classifiers, but if you are sufficiently many of them. The 

idea is that we can combine them to get a classifier with high accuracy. So, this is 

method of combining classifiers sometimes called an ensemble method, ensemble 



classifier method because it uses an ensemble of classifiers. So, classifier combinations 

classifier combiner ensemble classifier, all these essentially mean the same thing. In all 

these cases the method used is multiple classifiers, and given any pattern the class label 

that it outputs is some combination of the class labels given by all the classifiers. 

Boosting is one such method ah one of the most important methods in classifier 

combination. 

So, in this sense boosting is like bagging of course, bagging is also a classifier 

combination is simply says take n models and take majority, or average depending on 

you doing classification regression. So, in that sense boosting is similar to bagging, but 

there are some very important differences between the basic approach of boosting and 

what we seen in bagging. We just taking you know b random classifiers b classifiers 

train and random data sets and taking their average, but boosting is not quite that. 
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In bagging the different classifiers are trained on data sets, which are just randomly 

sampled from given data. So, any variation in different training datasets essentially 

comes out of this random sampling, there is nothing else there is no purposive variation 

in different training data set. We are not purposively looking for variation in the training 

data set just this random variation, which comes because of random sampling is the only 

variation present in different training data sets, and hence in different classifiers. We 

have not actually taken any care to see the different classifiers in the ensemble 



complement each other. See for example, if you are going for a quiz competition you 

send a team, it is like a classifier ensemble instead of having one person a team. 

When you choose a team, you do not choose three people who all of whom performed 

very well, and some written test at the school conducted that may not be the best thing 

because all three of them, the have only one strength say sports that would not work. So, 

if even if somebody got a little less marks in that entrance test conducted, if he has 

complement test skills. Let us say he can cover music which nobody else knows, he is a 

very valuable member for the team.  

Somehow, if you want a want a team of classifiers an ensemble of classifiers to do better 

than individual ones. Somehow each one the different classifiers in the set, have to 

complement each of the, each one has to cover for the other peoples deficiencies. Only 

then the team would be more than sum of the individual parts. So, that is what one would 

normally like right. So, for example, in my [FL] example if I put in the audience peoples 

who are clones of the same person it is of no use. In practice it works because they come 

from different works of life, they are randomly chosen from different socio-economic 

background different educational backgrounds.  

So, they are there is lot of variability in the individual classifiers somehow, we have to 

have that variability so that the team will combined by. So, basically in boosting we like 

to introduce such variation in the classifier n samples, instead of just generating random 

data sets, and training classifiers of course, we still generate random data sets, but we 

want to purposively introduce some variation in the classifier ensembles. Now, how can I 

introduce variation? Essentially, the only way I can the only difference I in different 

classifiers is the training data sets on which they are they are trained. So, I have to 

somehow create different training data set, which are different which are the right 

variation. 
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So, let us look at a very simple intuitive example to convey this idea of boosting. Let us 

say I am wanting to create a classifier ensemble with three component classifiers, for a 

two class problem. So, let us say we have a training data set with n points, let us call that 

script D. So, I have to now generate three separate training data sets to train my three 

component classifiers in the ensemble. What I do first? One is no problem, I have to just 

generate some training data set. Let us say I randomly select some n 1 points, n 1 less 

than 1 from D i, I put them in a set called d u 1 and then I train my first component 

classifier and D 1 this is fine. 

So, I just of course, this is not completely fine I have to know how large or small n 1 

should be compared to n that is very much problem specific, and this is only any one 

example to give you some idea of you know, boosting trying to do some variation. So, let 

us stick to that let us say I chose some n i data points. So, we learn our first component 

classifiers, classifier call it h 1 using training data set D 1. Now, our idea is for learning 

the second component classifier h 2, I do not want some other random n 2 points from n 

1. Then I cannot really intuited that h 2 has right variation compared to h 1.  
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So, I want to ask, what is a good data set to train h 2, one way of saying this is the data 

set say call it D 2 the use on which I want to train h 2, on which I want to learn h 2 

should be such that, given the classifier h 1 that data set is most informative for 

classification. Most informative means; that data set is completely surprising for the 

classifier h 1. If the classifier h 1 can easily explain away the data set then the training 

another classifier on that set makes no sense, because h 1 is doing well on this. 

So, is not that on the data set h 1 should very well or very poorly, but that data set should 

be somehow surprising to h 1. What do I mean by this surprising to h 1? The 

performance of the h 1 on D 2 should be no better than pure guessing. If suppose, h 2 

gets 0 character on it that means, I know all of them are very hard problems that may be 

simply complements of the (( )) such things. The other hand h 1 does very well also is 

useless, but essentially is most informative, when a D 2 the performance of h 1 on D 2 is 

essentially, like pure guessing. Meaning roughly about half the points in the D 2 are 

correctly classified by h 1 and half the points are incorrectly classified by h 1. 

So, h 1 does not you know making errors, some it gets right some it gets wrong, but it is 

completely suspiring to it because it looks like, the particular characteristic of data h 1 

length does not apply to D 2 because on that characteristic, how the points are classified 

correctly? Half the points are classified incorrectly. So, in that sense D 2 has the most 

surprise for h 1. Now, can I generate this yeah I can generate this what do, I make D 2 by 



choosing form D 1 with probability half the remaining points in D 1, which are correctly 

classified by h 1 probability half points incorrectly classified. What does that mean? 

I first take away all the n 1 points from D. Now, in the remaining points I start from the 

beginning I keep looking, I first toss a coin I first generate a random number, the random 

number comes less than 0.5. That means, the coin falls heads then I am now looking for 

something that is incorrectly classified by h 1. So, I keep going down the points in the 

the the points in so to say d minus D 1. Till I find a point which is incorrectly classified 

by h 1 put that in D 2. 

Now, once again toss the coin suppose this time coin falls tails that means, this time my 

random number goes more than 0.5. Then I now looking for a point in this set in the set 

D minus D 1, which is incorrectly classified by which is correctly classified by h 1, and 

so on. So, I keep choosing points removing points from D minus D 2 like this. So, that 

with probability 0.5 I am choosing points, which are correctly classified by h 1 and with 

probability 0.5, I am choosing points which are incorrectly classified by h 1. 

So, that D 2 will roughly about 50 percent of the points correctly classified by h 1, 50 

percent of the points incorrectly classified by h 1. So, this gives sufficient variation in D 

2. Now, we learn a classifier h 2 using D 2 right next what? What do I do with, how do I. 

Now, I know I am using only 3, if I am using many I can keep doing this kind of thing, 

but if I am because I know 3.  
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h 3 is like a tie breaker now and I try to get h 1, h 2 learn as much variation as possible, 

but h 3 should be a tie breaker. So, if h 3 to be a tie break then what we can do is take the 

original data set and pick up all the points in which h 1, h 2 differ then put that in D 3 

and the h 3 and D 3. So, what did we do we made our third classifier specialize in 

resolving the cases where h 1, h 2 differ right. So, because we using only three classifiers 

we put sufficient variation for h 1, h 2. So, that h 1, h 2 cover for most of the space and 

then we made the third classifier specialize in trying to classify, those cases where h 1, h 

2 differ, right? 
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So, now how do I use this ensemble because I know how I train them, this is how I am 

going to use my ensemble. If you give me a pattern X i find h 1 x and h 2 x if h 1 x is 

equal to h 2 x that is what is the class I will get. On the other hand if h 1 x is not equal to 

h 2 x then what our h 3 x is what output right. Of course, this is actually a majority right 

if h 1 is equal to h 2 h 1 x is equal to h 2 x no matter what h 3 x is that is the majority, if 

h 1 x is not equal to h 2 x. Once again, whatever h 3 because a two class classifier, what 

our h 3 says is the majority, but it is not just a simple averaging.  

The idea is that because of the way I am trying to use this a classifier combination, I have 

trained them differently that is the basic idea, the basic idea is I put some variability in 

the training data. So, that this kind of averaging pairs well this kind of averaging gives 

me a better classifier, this is the basic idea of boosting that instead of just randomly 



generating training data sets and just averaging, try and generate more informative 

training data sets for successive classifiers. So, that is the basis intent of boosting.  
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Boosting can be seem to be one of the major ideas who have come into pattern 

recognition last 15 years. As a matter of fact over the last 20 years, the two fundamental 

advances that this field has seen, one or the support vector machines and Kernel based 

methods. Other is this idea of boosting classifier combinations right these two are really 

fundamental advances to in theory and practice of pattern recognition. So, in such 

boosting is a very important technique. 

For a general purpose boosting algorithm we need some automatic way of generating 

training sets. This what I call more informative training sets. I have to have some way of 

generating see in that method I did, I do not know how much I want to chose. So, if I 

have to chose in the remaining n minus out of the remaining n minus n 1 samples only 

for D 2. I may have sufficient may not have sufficient and now, after that I am may not 

have any more samples left for training more. 

So, that specialized thing is only an example to give me an idea for what it mean by 

choosing training data sets. So, that you know different classifiers are trained on nicely 

informative data sets, but we need some automatic way of generating training sets, from 

the given original data right. We also need some general method of combining outputs of 



different classifiers, what averaging, what kind of majorities. So, any boosting algorithm 

has to do these two.  

What we are going to do is to look at one such algorithm, which is called adaboost the 

influential one of the most important and most popular boosting algorithms. Of course, 

adaboost can be used for classification, regression, there are the different variations of 

adaboost. This is a first level course, we have to say and given that we are almost at the 

end of the course. We will consider only one simple case of adaboost; that is for two 

class classification, but it gives you the full idea of how that kind of general purpose 

boosting is done. 
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The basic idea of adaboost is following, in adaboost for the so we have the initial data set 

x 1, x 2 to x n. So, for each X i we assign a weight may be weight called w. So, we 

assign non negative weights to the points in the data set, and the weights are normalized. 

So, that they sum to one so you can think of the weight as a probability. Then the idea is 

that I iteratively the algorithm in each iteration learns a new classifier, just like the boost 

(( )) we have learn 3. So, 3 can learn as many as you want. 

At each iteration you have to learn new classier, to learn new classier I have to have a 

training data set. So, in each iteration, I generate a training set by sampling from the data 

using these weights. I use these weights as a probability distribution and generate i i d 

samples out of the distribution. That means, a particular X i is chosen is a probability of 



proportion to the weight, and a keep making many i i d realization of this to generate a 

training data set. 

So, what I mean is a data point X i y i would be chosen with probability w i were w i is 

the current weight for that point. Of course, as we said we always keep w s normalize so 

that the sum to 1. So, we generate the training data set by I first you know chose a get a 

random number, distributed as w 1, w, w n whichever one it falls in I pick that X i. Once 

again do you know repeated independent sampling like this. So, we generate a training 

data set by repeating independent data sampling using the weights. 
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Then after learning the current classifier, what do I do we change the weights. We 

essentially increase the weights for the points that are misclassified by the current 

classifier whatever, points you have my data are misclassified by the current classifier. I 

increase the weights of those points. Then using the modified weights, we generate a first 

training data set and once, again learn a new classifier and so on.  

And the final classifier we essentially, use a weighted majority voting where the weights 

are in some sense proportional to the accuracy achieved by each classifier. So, classifier 

with certainly higher accuracy would get higher weightage for their, but of course, is not 

directly accuracy we have to know we have to use the right scale to give the weights, but 

in a adaboost uses some such things. So, it gives a weighted majority for all the 

classifiers. So, this is the overall intuitive idea so, let us go for this algorithm.  
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Let us review our notation we are considering a two class case, the data is x 1, y 1, x n, y 

n and data points and we take two class, we take y i to be plus 1 minus 1. With w i k w i 

of k denotes the weight for the i th data point that is X i y i at k th iteration we are doing 

learning classifiers iteratively. So, at the k th iteration the weight assigned to i th z i point 

is denoted by w i f k we denote successive classifiers h subscript k. So, h k denote the 

classifier learnt at the k th iteration and is a classifier. So, h of h k for x for any x will be 

either minus 1 or plus 1.  

We assume that the error rate of each classifier on its training data is less than 0.5 

otherwise of course, the method would not work, but I will point it out in the exact 

algorithm, where it comes. Essentially, the idea is that I do not need my individual 

classifiers to be too big, I can chose them to be simple ones. So, if for example, if I chose 

those classifiers to be of low complex classifiers, small size neural networks or you know 

a simple decision three or you know simple linear classifier. 

Then because the model complexity is small even the small data item, within that class I 

can learn a fairly good classifier that classifier may not have great accuracy, but basically 

by boosting even though those individual classifiers, may not have very great accuracy 

there error rate is only may be 0.5 minus epsilon by having enough of them, I can do 

very well and because I do not want individual classifiers to be classifiers to be very 



highly accurate, I do not have to go for very high model complex this is how the basic 

idea of boosting based. 
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So, let us consider the algorithm. So, to start with I put weights as 1 by n beginning there 

is nothing to chose one data point or other. So, all weights are equal and as you can see 

the beginning the weights summed to 1. Then I is an iterative procedure, let us say 

capital m is number of iterations that is capital M is the total number of classifiers, I am 

going to learn right little m is my iteration count. W hat do I do, I first generate a training 

data set by sampling with these weights, using my current iteration my current weights w 

I f m, I generate a training set. 

Then I learn a classifier using this training set the classifier can be anything. You know 

as a matter of fact I can definite iterations I am, I am even allowed to learn different 

classifiers even though in a program sense, I have to decide and which iteration, which 

classifier I learn, but as far as the algorithm is concerned different classifiers need not 

have to be the same type either that is why on all even number iterations. I learn using 

linear lest squares on all odd number iterations, I may learn an (( )) or a I learn neural 

network. 

So, where essentially I learn some classifier h m using this training data set then I 

calculate X i m, which is a kind of weighted error of this classifier. So, X i y i is the data 

set. So, if y i is not equal to h m X i the h the classifier h m has made a error on X i y i. 



That error is weighted by the weight w i m mind you X i y i may or may not be in the 

actual training data set using which I learnt h m, but I do not care about that just after 

learning h m for each I. If y i is not equal to h m X i that if i made an error then I add w i 

m for that data error. 

So, the cost of error is not errors are not simply counted there weighted by the current 

weights that is the error rate right. The idea is if a particular I has high weight it is likely 

to be represented more than once in the training data set of h m, and h m would have 

certainly taken care of that. So, that is the whole idea. So, we assume that this j m is less 

than 0.5 in practice what it means is after I generate a data set and learn a classifier, if my 

j m does not happens to be less than 0.5. I just throw it away run the iteration again. I 

once again get another data set by randomly sampling with the current weights only and 

learn again very often many of these classifiers are reasonably good. 

So, even at high data sets they can give greater than 50 percent accuracy. So, we mostly 

always get j m less than 0.5. Then we calculate alpha m which is log natural logarithm of 

1 minus xi m by xi m. Because we assume xi m to be less than 0.5, 1 minus xi m is 

greater than xi m, which means, alpha m is always positive. So, we calculate these 

weighted error, this is what we call error rate of n th classifier, and then we calculate this 

alpha m. Now, that we have learnt the classifier, the next step is I have to now find the 

next set of weights. 
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This is my weight update. So, first give w i m i calculate w i prime m plus 1 the whole 

idea is w i prime i plus 1 is not normalized. So, to get w i m plus 1 I normalize w i prime. 

So, first w i prime m plus 1 is calculated by w i m into exponential alpha m into i f y i 

not equal to h m X i by the by i indicate this. But i this i is an indicator function I of a is 

1 if the event a is true is 0 if a false. So, i of y i not equal to h m X i is 1 if y is not equal 

to h m X i 0 to pi is not equal to h m X i. So, that I how w i prime m plus one is 

calculated and then i normalize w i prime to get weights of the next iteration.  

So, this is what I keep doing for m is equal to 1 to n right a, b, c, d, e once I finish it my 

final classier, mind that each of h m’s are plus 1 minus 1 right if sum is not there as we 

already seen if alpha m is not there, this is simply a majority vote. So, I am weight 

weighing the (( )) by alpha m. And alpha m is some measure of the accuracy so, but 

anyway we come back to this later. So, this is the final classifier. So, this is the adaboost 

algorithm. 

So, I generate training set by sampling with the weights learn a classifier then calculate 

the error of the classifier, which is equal to weights of all the data that are misclassified 

with the classifier. Then I calculate alpha m which is l n 1 minus xi m by xi m we 

assuming xi m less than 0.5. So, alpha m is always positive the I update weights like this 

that is it, I do it iteratively for m and then use all the m classifiers. 
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Let us look at some of the characteristics of this algorithm m is a parameter first. So, I 

can choose any m because I keep sampling with weights, I can continues this process for 

arbitrary number of iteration. So, there is no limit except computational resources and 

things like that and how many classifiers, I could use to make combination? So, in that 

sense it satisfy my first requirement for a general purpose boosting algorithm, it should 

be able to keep automatically generating as many training data sets as they want. 

Now, for a particular i if h m X i is equal to y i then this indicator is false, then w i prime 

m plus 1 is equal to w i prime because the exponential 0 is 1. On the other hand if this y i 

is not equal to h m X i then this is one this exponential alpha m, alpha m is positive. So, 

exponential alpha m is greater than 1. So, w i prime m plus 1 is greater than w i m if y i 

not equal to h m X i meaning the i-th sample is misclassified. So, if i-th sample is 

correctly classified h m X i is equal to y i.  

Then w i prime plus 1 is equal to w i m, on the other hand i h m X i is not equal to y i 

then y i m prime plus one is greater than w i m and because is normalization, which does 

not change this relative. If i-th sample is misclassified then w i m plus 1 is greater than 

m. So, as I told you beginning intuitively, our equations ensure that is the present 

classifier misclassifies the pattern. Then the weight of that pattern for the next iteration is 

increased. 
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Of course, this by itself is not enough if you keep arbitrarily increasing weights of 

misclassified patterns, then the subsequent training sets can be pre-dominantly only 

misclassified pattern. As we said that is not enough that is not the right variation right, to 

have right variability, we want the pattern sets to contain about half the samples 

misclassified by the current classifier half the samples, correctly classifiable by the 

current classifier. 

So, I cannot just arbitrarily increase weights, but this algorithm is a very nice weight 

increase formula, which ensures at every iteration that after update the weights, if I add a 

weights at the next iteration of all i, which are misclassified by h m that will be same as 

the weights of all i, which are correctly classified and so, both of them be equal to half. 

So, half the weight is for patterns correctly classified by h m half the weight at the m plus 

1 iteration is for patterns incorrectly classified by h. 

So, when I am sampling my data, my training data set sampling from training data at the 

m plus iteration. Likely that half the patterns will be once, which are currently classified 

of h m of the pattern, incorrectly classified by h m. So, let us just prove this, this is a very 

surprising result, but is worth proving and then we will we look at more details of this 

thing again. 
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For the proof let us remember weight update formula I once again wrote here, j m is 

given by this alpha m is given by this and this is my weight update formula we will come 



back to this again and again. So, by definition see j m is this so, I can actually convert 

this onto index. So, sum over only those i for which y i is not equal to h m X i. 
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So, I can write j m is sum over i th that h m X i is not equal to y i w i n. Now, since w i m 

are sum over all i of w i m is always 1, if instead of summing over i such that h m X i is 

not equal to y i. If i sum over h m X i equal to y i, I get 1 minus j i also alpha m is l n of 1 

minus j m by j m. So, exponential alpha m is 1 minus h m. 
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So, what does this mean if h m X i is not equal to y i then w i prime m plus 1 is w i m 

into 1 minus xi m by xi m if h m X i equal to y i then w i prime m plus 1 is w i m. 
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Now, we can use this as follows suppose, w i m all the w i primes then I can sum over all 

i’s such that h m X i is not equal to y i, i such that h m X i is equal to y. So, this sum over 

all i of w i prime split into two sums, those i’s such that h m X i not equal to y i and the 

remaining i. Now, for those i such that h m X i not equal to y i, I know what the value of 

w i prime m plus 1 is w i m not no prime here w i m into 1 minus j m by j m.  

For the once where h m is correctly classified w i prime i is simply w i m. Now, this is 

not dependent on i and sum of w i m such that h m X i is not equal to y i. We just now 

calculated, that is x i m, xi m by definition is sum of w i m such that h minus x not equal 

to y i. This we already seen is equal to 1 minus xi m, right? So, which means, the sum 

over i of w i prime m plus 1 is always 2 into 1 minus x i m. 
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Given this, let us say I want sum of y i m plus 1 summed over all, i which are 

misclassified by h m right that is for the once, which classifier we just now seen w i 

prime m plus 1 is w i m into m minus x i m by x i m. So, w i m plus 1 is w i prime m plus 

1 by the normalizing constant, the normalizing constant we have just now seen is 2 into 1 

minus xi m. So, this 1 minus xi m will cancel with this 1 minus xi m this gives me 1 by 2 

xi m into sum over i such that x m not equal to y i of y i m right. This we already know x 

i m this is half. 
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So, we have shown that sum over i such that X i, y i is misclassified by h m, the weights 

at the next iteration is half. So, the weight update is such that at the next iteration half the 

weight of the pattern, misclassified by the current classifier and the remaining half of 

half is for patterns correctly classified by the current classifier. So, this is very interesting 

weight update in the next class, we will look at few more interesting facts about this 

algorithm, which is what it makes it a very great boosting algorithm. Then show that we 

can actually, look at it as a very interesting risk minimization under a special kind of loss 

function. So, next class we finish we will look at adaboost algorithm again, and give you 

an overview of a view of adaboost algorithm as a risk minimize.  

Thank you. 

 


