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Estimating Bayes Error Minimax and Neymann - Pearson Classifiers 

Hello, let us continue with the next class just briefly recapitulate last class, we have 

studied the Bayes classifier in detail. 

(Refer Slide Time: 00:29) 

 

We have derived the Bayes classifier for the general loss function and we have also 

proved the optimality of the general Bayes classifiers, optimality in the sense that no 

other classifier can achieve lower risk than Bayes classifiers. So for risk minimization, 

we showed that the Bayes classifier is the optimal classifier and we have also seen 

several special cases of what the classifier looks like, for example for 0,1 loss function 

how it looks like and also for special classes of lass conditional density such as normal 

and so on. We have analytically derived the Bayes classifiers, so we seen some examples 

of how one derives Bayes classifier. So, this class we will start with another simple 

example of deriving Bayes classifier in a slightly different setting. Then we will look at 

Bayes error, how to calculate the error of Bayes classifier and then, we will move on to a 

few other criteria for classification. 
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So let us start with an example, let us say we have K classes and as I said when, we did 

the Bayes classifier last class that the actions of the classifier need not necessarily have 

to be class labels they can be more than the class labels. So, let us take an example 

where, the classifier is allowed the option to reject a pattern that is you look at the pattern 

and say no I can not classify and let us assume that this is done by the classifier assigning 

a class K plus 1 to the pattern. 

So, this K classes, so class label takes values 1 to K where, the classifier actions take 

values from 1 to K plus 1 and will interpret the action K plus 1 of the classifier as the 

classifier rejecting the pattern. It is rejecting the pattern because, may be is does not have 

enough confidence to classify, so now for this case let us put some loss function. So, as 

you know the loss function has 2 arguments, the first argument is what I call, i here is the 

actions of the classifier, second argument of the class labels. So, I can take values 1 to k 

plus 1 where as, j takes vales only 1 to K. So, is this is something like a 0, 1 loss 

function. So, if I did correct, so if both i and j belong 1 to K, that means, the class the 

classifier has classified the pattern to one of the classes and if i is equal to j then loss is 0. 

Similarly, if i is 1 to K that is the classifier has decided to call a particular class. But, i is 

not equal to j then, we have misclassified let us call that cos rho m, m for 

misclassification and there had irrespective of j, if i is K plus 1, that is the classifier has 

decided to reject the pattern the loss is rho r. So, this is the loss function, so if I 



misclassify a pattern i i i suffer a loss of rho m, if I reject a pattern i suffer a loss of rho r, 

ofcourse, correct classification is 0 loss given this can we now derive the Bayes classifier 

in terms of the posterior probabilities as usual.  
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Recall that the general Bayes classifiers is given an X, the Bayes classifier will say alpha 

i or i, if the risk of that action is less than the risk of all other actions, where risk of that 

action given X is defined as, L of alpha is C j q j X, where j the or C j are the class labels. 

So, j goes from not 0 to 1, I am sorry 1 to K, it is not 0 to K, but 1 to K, I am sorry about 

that. So, that K classes now, we have we we will calculate this risk for various actions 

and say, when is classification pattern and when is reject pattern. 
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When the classifier wants to take actions 1 to K that means, classify into one of the 

classes then the loss is rho m, if i misclassify, otherwise it is 0. So for i i between 1 to K 

the risk of i given x is rho m, q j z not equal to I, because when i correctly classify there 

is nonono loss, otherwise all other misclassifications have the same loss rho m.  

So, now rho m comes for this examination and it becomes rho m into 1 minus q i X on 

the other hand, if classifier takes the action K plus 1, then for all class labels j the loss is 

rho r, so the risk will be summation over j rho or q j, rho r comes with a summation and 

summed over q j is equal to 1, so this becomes rho r. Here because, this summation over 

j is not equal to i, summation q j will become 1 minus q i, here this is for all j, so 

summation q j becomes 1. So, this becomes rho r. 

So, what does it mean, when can I call a particular class or i given x, should be better 

than r j given x, for a all other class labels j and it is also should be better than r K plus 1 

given x right. So, my my new my best classifier can say i for one of the class labels, if 

the risk associated with i, that is rho m into 1 minus q i should be less than or equal to 

risk associated with any other class label rho m into 1 minus q j, also risk associated with 

action i should be less than the risk associated with the action K plus 1, which is rho r. 

So, both these have to be satisfied for me to call class i. 
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So, let us simplify this, so the Bayes classifier will, now say a class label i, if rho m into 

1 minus q i X is less than rho m into 1 minus q j X for all j as well as rho m into 1 minus 

q i X is less than rho r. The first inequality, I can cancel rho m from both sides and first 

inequality becomes same as q i greater q j. So, let us simplify the second also, so I can 

call i, the first inequality says q i is greater than or equal to q j and the second inequality 

says I will i will bring rho m this side this is 1 minus q i less than rho r by rho m or if you 

bring q i the other way q i is greater than 1 minus rho r by rho m. 

So, if both these conditions are satisfied then i can call a class i, obviously there will be 

some i for, which q i is greater than or equal to q j, which ever is the highest posterior 

probability class. But, earlier when I did not have reject the Bayes classifier simply puts 

it in the class corresponding with the highest posterior probability, but no that is not 

enough for me to call a class because, I am allowed reject not only, I should be the 

highest posterior probability class. But, the probability of the highest posterior 

probability class itself should be greater than some threshold, if this is not true then it is 

better to call reject. Otherwise, h B X will be K plus 1, because this inequality are not 

satisfied, which means the least risk will be for the action K plus 1. 
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So, let us try and understand it again. So, in the reject case my new Bayes classifier will 

say a class label i, if this is true where, the highest posterior probability is greater than 1 

minus rho r by rho m and then, I will call the highest posterior probability class. 

Otherwise I will call K plus 1 to understand this let us look at few special cases. 

Suppose, cost of rejection is greater than cost of misclassification, what does that mean, 

if I misclassify a pattern, I suffer less loss than, if I reject a pattern thenthen, it should not 

be there should be no condition under, which reject is good. Now that is what this will 

tell me, if rho r is greater than rho m then rho r by rho m will be greater than 1. So, 1 

minus rho r by rho m, will be negative and hence q i being a probability will always be 

greater than this. 

So, then it boils down to whole thing for some i is of that q i X is greater than q j, I will, 

call that i, I will never ever call K plus 1 right, so I never reject a pattern. Now consider 

the other extreme case, suppose cost of rejection is 0, cost of rejection is same as cost of 

correct classification. So, what should I do, I might just reject everything what does my 

derivation say if rho r is 0, I will call one of the class labels only if q i X is greater than 

or equal to 1. 

So, what does that mean, if cost of rejection is 0, I always reject a pattern unless of 

course, I am absolutely sure if q i X is equals to 1, then I can call I, unless I am 

absolutely sure it is better to reject a pattern because, rejection cost me nothing. So, these 



are just extreme cases for us to understand that the senice, so this is another example of 

how I may derive a Bayes classifier, where classifiers actions may be different from class 

labels. Here, we have one extra action namely the reject option, so with this example, we 

will stop discussing examples of Bayes classifiers. 
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Let us move to one other important issue with Bayes classifiers, how do I find the Bayes 

error from all the examples, we have considered, so far given class conditional densities 

the Bayes classifier is easily computed right. For various loss functions, we know how to 

compute it, now we may also want to compute the Bayes error, because that tells me, 

what is the expected error of the classifier, what is the expected risk of the classifier. 

Now for example, if the expected risk is not within acceptable limits accept accept 

expected error rate is not within acceptable limits, then I may have to rethink my whole 

problem in the sense, I may want to get better features because, with these features this is 

the best performance I can get. So, estimating or finding Bayes error is useful for me to 

know whether my classifier will meet the specification requirements. So for the 0, 1 loss 

function, we have already seen when, we derived the optimality of Bayes classifier, that 

this is the error. So, we have to integrate minimum of p 0, f 0, p 1, f 1 over the entire 

feature space to find the error rate of the classifier, this is the probability of 

misclassification by the Bayes classifier. In general it is a very difficult integral to 

evaluate, because it is a mean inside the integrand. 
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First let us look at a very simple case, let us consider one dimensional feature space, 2 

class problem 0, 1 loss function, assume equal priors assume normal class conditional 

densities with equal variance. This is about the simplest special case, you can consider 

and for notational convenience, let us assume the mean of class 0 is less than mean of 

class 1.In this case, we have already known, because the both variances are same the 

threshold for the Bayes classifier is midway between the 2 means. So, if X is less than 

mu 0 plus mu 1 by 2, I will call class 0, it it is greater than that, I will call class 1, this is 

the Bayes classifier. So, what will be the error of the Bayes classifier.  

So, for X less than mu 0 plus mu 1 by 2, I will always call 0. So, the probability of class 

1 patterns coming with X less than this is 1 half of the error. So, probability that X 

belongs to class 1 and X is less than mu 0 plus mu 1 by 2 is this probability this integral, 

integral of the f 1 the class 1 class conditional density over this range. Similarly, the 

other error occurs, when a class 0 pattern comes with X greater than mu 0 plus mu 1 by 

2. So, this is the Bayes error in for normal density, it is easy to evaluate, so let us 

evaluate it. 
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So, this is the error integral f 1 is normal with mean mu 1 and variance sigma f 0 is 

normal with mean mu 0 on variance sigma. So, using the standard substitution by change 

the variable X in this integral to Z, where Z is X minus mu 1 by sigma, then this density 

assume the form of the standard normal density. Similarly, for this integral because, f 0 

is normal with mean mu 1 on variance sigma, if I use the substitution Z is equal to X 

minus mu 0 by sigma. 

This becomes a standard normal density integral, now what happens to the limits, when a 

put Z this, when X goes up to mu 0 plus mu 1 by 2, Z goes to mu 0 minus mu 1 by sigma 

and similarly, here. So, this becomes an integral of the standard normal density over 

minus infinity to mu 0 plus mu 1, mu 0 minus mu 1 by sigma and this becomes from mu 

1 minus mu 0 by sigma to infinity of another standard normal. 
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The error density is this, where phi is the distribution of the standard normal density. So, 

the first integral is from minus infinity to mu 0 minus mu 1 by sigma. So, that is phi of 

mu 0 minus mu 1 by sigma, second integral is from mu 1 minus mu 0 by sigma to 

infinity. So, this is 1 minus phi f mu 1 minus mu 0 by sigma, Because, the distributional 

function standard normal is symmetric phi of 1 minus phi x is equal to phi of minus x 

right, what is in this big brackets here is same as this. So, the 0.5 goes away, so the error 

becomes this. So, for equal variants both class conditional densities being normal, this is 

the Bayes error. 

So, essentially a Bayes error depends on mu 0 minus mu 1 by sigma, as you would 

expect, when sigma is same, I am just putting the point midway. So, how much error I 

make depends on how much the means are separated, if means are separated by a large 

amount then, I will make less error, if means are separated by a small amount, I will 

make more error and small and large amount is relative to the variants of the distribution 

right. 

So, that is what this expression denotes, the quantity mu 0 minus mu 1 by sigma, where 

mu 0 minus absolute value of mu 0 minus mu 1 by sigma is called the discriminability 

this, when this quantity is large right, note that, we are assuming mu 0 less than mu 1. 

So, when discriminability is large this should be phi of some large negative quantity, so 

close to 0.  



So, if mu 0 and mu 1 are separated by a large amount relative to the variance, then I 

make very small error, if they are separated by a small amount, then I will make a large 

error the Bayes error. So, that is why, this quantity is called the discriminability, now this 

is for a very special one dimensional case, you know normal densities with equal 

variance. 
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What about the general case, in general, we have to evaluate this integral as the already 

said mean inside the integrand is often difficult to evaluate. But, 1 can use, 1 very 

standard and useful inequality, for any 2 real numbers a and b mean of a comma b can 

always be bounded above by a to the power beta into b to the power 1 minus beta, for 

any beta between 0 and 1. I here, we are assuming that both a and b are positive 

numbers, this bond is not difficult to prove.  

So, let us prove this, let us suppose a is less than b, now what is a power beta into B 

power 1 minus beta, I can write it as a power minus 1 plus beta, that is divided by a and 

then multiply by a. So, this becomes b by a, whole to the power 1 minus beta into a, now 

I am assuming b greater than a. So, b by a is greater than 1, so b by a to the power 1 

minus beta some quantity greater than 1. So, when you multiply that with a, I get some 

quantity greater than 1 and a is ofcourse mean of a comma b.  

So, this shows that mean of a comma b is bounded above by a power beta into b power 1 

minus beta. So, I can reduce this integral to, I can write this mean bound this mean by 



this to the power beta and this to power 1 minus beta, that becomes p 0 to the power beta 

p 1 to the power 1 minus beta integral of f 0 to the power beta and f 1 to the power 1 

minus beta ah. This is slightly easier integral to evaluate than, this because, I do not have 

mean inside, it is the normal density raised to some fractional power. 
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Even then it is a difficult integral to evaluate, but suppose, if I assume that f 0 and f 1 are 

some multidimensional Gaussian densities f 0 has mean mu 0 and covariance matrix 

sigma 0. F 1 has mean mu 1 and covariance matrix sigma 1, then one can show that this 

integral can be bounded above by e power minus K beta, where that K beta is some 

involved expression like this essentially some kind of a quadratic form, involving mu us 

and sigma 0. But, anyway this can be shown it is say just say algebraically difficult, but 

otherwise, this derivation is straight forward. So, 1 can show this. 
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So, what does this mean, that P error is less than or equal to p 0 power of beta p 1 to the 

power 1 minus beta exponential minus K beta. 
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Where, the K beta term is given by this, which I can calculate, if I know mu 1 mu 0, 

sigma 0 sigma 1. 
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Now, how can I use this bound, this bound is true for all beta between 0 and 1. So, for 

example, I can ask, which beta will give me the tightest bond. So, we can choose a beta 

and calculate a bound from this expression. A bond calculated like that is often called 

Chernoff bound, we can get a tighter bound by choosing beta, that minimizes this 

expression.  

Such a bound is called a Chernoff bound, if you do not want to do all that work, in 

practice a beta that often works is beta is equal to 0.5 and the bound and the Bayes error 

obtained through this expression, where I choose beta to be 0.5 is known as the 

Bhattacharya bound. There is another bound on the Bayes error. Of course, in general 

this bound can always be used though, for general class conditional densities, I would 

not have this exponential minus K beta, I will have that actual integral and we need to 

know how to evaluate it. But, even for normal class conditional density as you can see, 

we can only bound the Bayes error, it is not easy, to actually compute the Bayes error. 

But, this this is a this is one way in, which I can estimate the Bayes error, either using 

Chernoff bounds or the Bhattacharya bound all right. 
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Let us move on from Bayes classifier, Bayes classifier is optimal for the criteria of risk 

minimization. But, risk minimization is only 1 criteria right, we can have many other 

criteria, what does risk there is one thing about Bayes classifiers, it depends both on the 

prior probabilities and class conditional densities. Now very often, I may not know prior 

probabilities, out there in the field, which patterns will come I may not know though, I 

may be able to estimate the class conditional densities, were sometimes, we may want a 

classifier that does well against any worst kind of prior probabilities. So, without 

knowing what is the prior probabilities is I do not want my Bayes classifiers to depend 

on priors.  

Because, one day I might have to work with predominantly 1 class patterns, another day 

I may have to do work with predominantly another class patterns. So, I can ask 

minimizing risk is not what I want, I want a classifier that has the best risk against the 

worst possible prior probabilities. Now, this ofcourse, would not be the Bayes classifiers, 

because I do not know the priors, let us just intuitively see, what this will mean. 
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So, let us say, we will take a 2 class case as earlier let us say R i h denotes the subset of 

feature space, where the classifier h will put things in class I, that is R 0 is the region of 

class 0, R 1 is the region of class 1 and by region, I mean not the actual region of class 1 

or class 0 feature vectors. But, that subset of the feature space, where the classifier h will 

put the patterns in that particular class.  

Then, if from what we derived earlier the risk integral is the probability that a class 0 

pattern comes into a region where, h will put in class 1 and the probability that a class 1 

pattern will come into a region that h will put in class 0, this is the same integral of that 

we got earlier. Now, what we want to do is we want to manipulate this expression. So, 

that it becomes independent of the prior probabilities. 
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We can do that because, we know that p 0 is 1 minus p 1 or p 1 is 1 minus p 0, so we can 

eliminate one of them. So, this is my risk integral over R 1, it is L 1 0, p 0, f 0, over R 0, 

it is L 0 1, p 1, f 1, now I can eliminate one of p 0 and p 1 let us say I will substitute p 1 

is equal 1 minus p 0, so that is my risk integral. Now, this integral has one term, which is 

constant L 0 1 into integral of f 1 over R 0 and another term that depends on p 0, p 0 into 

this the this first integral minus the second integral. 
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So, I can write the risk as 1 constant term plus p 0 times difference of 2 integrals. Now, 

for a classifier, we chooses the regions R 0 and R 1 in such a way that, this expression is 

these big brackets goes to 0, that classifier is risk is independent of priors right. The way 

the risk is written, if there is a classifier, which chooses class 1 and class 0 decision 

regions R 1 and R 0 in such a way that this expression becomes 0 right. The the the the 

second term in this expression has becomes 0, for that classifier the risk will be 

independent of the priors right. 
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So, consider a classifier, which chooses any classifier, what do you mean by design of a 

classifier, once we design a classifier, I have designed a function from the feature space 

to the set 0 1, because we are considering a 2 class problems. So, which means each 

classifier, simply assigns some subset of the feature space where, it will if a feature 

vector falls in that subset, I will call class 0, similarly, the remaining substrate, I will call 

it class 1.So, if design of every classifier is simply choosing a region R 1 where, I will 

call class 1 and choosing a region R 0 where, I will call class 0. So, a classifier designed 

in such a way that the regions R 0 and R 1 are so chosen. So, that this equation is 

satisfied. 
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Where did I get this equation from this is nothing but, the term here right. I wanted to 

make this term 0. 
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So, that term will become 0, if this equation is satisfied for such a classifier the risk 

would be independent of priors, this classifier is known as minmax classifier, because it 

can be shown it is enough to see that, we are minimizing the maximum possible risk or 

all possible priors, because we are canceling out the prior dependence and risk. So, we 



are budgeting for the maximum possible risk where, maximum is over all possible priors 

for the same class conditional densities. 

Of course, finding analytically a classifier that satisfies such expression is not easy, in 

general finding minmax classifiers is an analytically complicated issue. But, the purpose 

of mentioning minmax classifier here is just to say that risk minimization is not 

necessarily the only criterion, we can have when, we are looking for classifiers, here is 

another example of a classifier. Which is different from Bayes, but it has it is own 

optimality criterion the minmax classifier, which minimizes the maximum possible risk, 

where maximum is over all possible priors. 
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Let us look at 1 more criterion, this is also a very famous criterion called Neyman 

pearson criterion. To understand this criterion, let us go back to Bayes classifiers again 

Bayes classifier minimizes risk, what is risk, risk is expectation of loss. So, each loss is 

what, I pay for an error and because, in expectation it is some weighted sum of the errors 

right, weighted sum of probability of errors weighted sum of losses. So, if i if i classify a 

class 0 pattern as class 1 pattern, there is some cause associated with it class 1 pattern as, 

class 0 pattern, there is some other cause associated with it I find weighted sum of all 

such cause and asking, which classifier minimizes it and that happens to be the Bayes 

classifiers. 



But, the 2 kinds of errors may not always be tradable, this assumes that, if cost of 1 kind 

of error is 3 times cost of another kind of error, we are saying it is better to make 2 errors 

of 1 kind than, 1 error of this kind right. That is the trade of we are doing in minimizing 

risk. But, there would be situations where, we may not want to trade, 1 type of error with 

another type of error.  

So for example, instead of trading errors, we can say for a fixed constraint and type 1 

error minimized type 2 error, recall that type 1 error is wrongly classifying a class 0 

pattern, why would this may be possible, let us suppose you are in a biometric 

application, suppose you are authenticating identity of somebody. So, there are 2 kinds 

of errors, when somebody is an imposter allowing him access is 1 kind of error, a 

authorized person not being allowed access is another kind of error. 

Now, these 2 kinds of errors are qualitatively different and I may have do not want to 

find optimal by saying, so many time this error plus, so many time that error should be 

minimized. On the other hand I may say that I do not want more than 1 percent more 

than 0.1 percent of the time, an unauthorized person gaining access, while maintaining 

that can you give me, the best possible error rate for the other kind right.  

So, I will put a particular threshold for type one error, that is I do not want more than 1 in 

1000 more than once in 1000 times an unauthorized person should gain access. And 

among all classifiers, that meet this specification, I want a classifier, which minimizes 

the error of throwing away an authorized person, because, throwing away an authorized 

person is only an irritation. 

So, there are applications where, you do not want to trade errors of kind with another, I 

may want to put a threshold on the error of 1 kind, that is I want error of one kind should 

not exceed a probability of error of 1 kind should not exceed something and given that I 

want to thenthen minimize the error kind of error. So, it is as I said it is generally useful 

in biometric applications where, as I said I may want to put an absolute bound on how 

often, I may allow an unauthorized person to gain access and while, I am satisfying this 

specification. I want to minimize the number of times, I will throw away an authorized 

person. 
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So, type 1 error is let us say wrongly classifying class 0 pattern and let us say upper 

bound andprobability of type 1 error is alpha. So, the Neyman pearson classifier is a 

classifier, that achieves a bound of alpha and type 1 error, that is the probability of type 1 

error by Neyman pearson classifier is less than or equal to alpha. And in addition, it 

minimizes the other kind of error. A matter of fact neyman pearson classifier can also be 

expressed as threshold on likelihood ratio as we have seen in Bayes case, it is simply a 

ratio on the posterior Probabilities are class conditional densities. We have put a 

threshold on this ratio Neyman pearson classifier can also be expressed and we will see 

how. 
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So, let us first define the Neyman pearson classifier, the Neyman pearson classifiers let 

us call it h N P, we were calling Bayes classifier as h b, so we will call a Nayman 

pearson classifier h N P. So, given any alpha in 0 1, this is the upper bound on the type 1 

error what does h N P have to satisfy. Firstly, probability h N P X is 1 given X belongs to 

c 0, that is wrongly classifying a class 0 pattern is bounded above by alpha right.  

This is 1 thing that h N P has to satisfy, then what is it have to satisfy, wrongly 

classifying a class 1 pattern, that is the other kind of error h N probability h N P is 0 

given X belongs to c 1. That should be, less than the probability of wrongly classifying a 

class 1 pattern by any other classifier h. But, this is not for all h, but only those h, which 

also meet the bound on the type1 error because, N P minimizes the second kind of error 

while satisfying the bound on the first kind of error.  

So, among all classifiers h, that satisfy the bound on type 1 error. So, if h is such that 

probability h X is equal to 1 given X belongs to c 0 is less than or equal to alpha, that 

means, this classifier h also satisfies the type 1 error bound. Then the probability of the 

type 2 error by h N P is less than or equal to probability of type 2 error by h right, I hope 

it is clear. So, the Neyman pearson classifier is characterized by firstly, it is type 1 error 

is bounded by alpha and it is type 2 error, that is wrongly classifying class 1 pattern is 

less than the type 2 error of any other classifier h, if h also satisfies the bound on the type 

1 error. 
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Now this is what the Neyman pearson classifier is let us suppose the bound is alpha as, 

we are saying then the h N P classifier is the Neyman pearson classifier is defined by it 

will assign class 1 to X. If f 1 X by f 0 X is greater than K, otherwise assign class 0 

where, f 1 is the class conditional density for 1 and f 0 is class conditional density for 

class 0 where, the K itself is obtained by under the distribution of class 0, that is the 

another distribution f 0. The probability that, this ratio is less or equal to K is bound 

above by is equal to 1 minus alpha. 

So, I choose a K see Bayes is some probability involving the random variable X under 

the distribution f 0, you think of this f 1 and f 0, simply as some functions. So, f 1 by f 0 

is some other function g of X. So, this is probability g of X less than or equal to K. Under 

the condition that X is distributed as f 0, X belongs to f 0 means X is distributed as f 0 

right. What does this ensure, this ensures that my type 0 error is equal to alpha, when 

will I wrongly classify a 0 pattern. I will call class 1, if this ratio is greater than K, when 

X belongs to c 0. This ratio will be greater than K the probability of the ratio is greater 

than K is equal to alpha because, K is chosen to satisfy this equation, the ratio is less than 

or equal to K is 1 minus alpha.  

So, the probability ratio is greater than K is equal to alpha right. So, by construction the 

Neyman pearson classifier satisfies the bound on type 1 error ok. We will we will see the 

see it once more, just for completeness is sake the way, we stated this, we are assuming 



that f 1 and f 0 are true density functions. That is probability X belonging to any lower 

dimensional subspace, for example, a sub space the characters be f 1 X equals to K f 0 X 

this is 0. So, because, we are assuming that the ratio is either greater than K or less than 

equal to K. 

So we we we will we will not allow any any kind of derived delta part in the f f 1 and f 0, 

this is only a technical condition, those of you do not understand this, do not worry about 

it simply assume that f 1 and f 0 are nice smooth density functions then this will be all 

right. So, now let us prove that the classifiers that, we put here right. This is this is the 

specification this is the this is how Neyman pearson classifier will classify a new pattern 

X, this classifier is actually the Neyman pearson classifier that is it satisfies, the 2 

condition that, we shut down for then a Neyman pearson classifier. 
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What are the 2 conditions, first is type 1 error should be less than or equal to alpha, for 

the type 1 error h N P X equal to 1 given X belongs to c 0. 
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When will h N P X be 1 by by definition h N P X is 1, if f 1 by, f 0 is greater than 1 K. 

So, probability h N P X equal to 1 is probability f 1 by f 1 X by f 0 X is greater than K 

and when X belongs to c 0, this where the K in the Neyman pearson classifier is obtained 

by this equation. So, this equation ensures that probablity f 1 by f 0 greater than K is 

equal to alpha right. 
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So, the probability of type 0, type 1 error by Neyman pearson classifier is alpha. So, it 

satisfies the first crietrion. So, now we have to show there is type 2 error is less than that 

for any other classifier, which also satisfies the constraint on the type 1 error. 
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So let us prove this, so let h be any other classifier, which also satisfies the constraint on 

the type 1 error that is probability h X is equal to 1, when X belongs to c 0 is less than or 

equal to alpha. Then to complete the prove you have to show that, the type 2 error of h N 

P, that is probability h N P X equal to 0, when X belongs to c 1 is less than or equail to 

probability of h x equal to 0, for when x belongs to c 1. 

So, this is what we will next show, we actually wont show it in this form the way, we 

will show it is, we will show the compliment of this event. So, we will show that the 

probability h N P X is equal to 1, when X belongs to c 1 is greater than or equal to 

probability of h X is equal to 1, where X belongs to 1. So, instead of showing probability 

h N P X is equal to 0 is less than probability h X is equal to 0, when X belongs to c 1 

instead of showing this is less than this, we are showing that the compliment event h N P 

X equal to 1 is greater than probability h X is equal to 1. 
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To show this let us consider the integral I, which is the integral over the entire feature 

space of the product of 2 terms, the first term is h N p X minus h X, second term is f 1 K 

f 0 X, where K is the threshold used in the n P classifier. Recall that h N P and h in this 

case as binary valued functions h N P takes value 0 or 1, h X also takes value 0 or 1. So, 

h N P minus h X is some real numbers as, a matter of fact it can be only either minus 1 0 

or plus 1, what we are going to show first either this integral will always be positive and 

then, we show that, that completes the proof of the h N the classifier that, we gave is the 

Naymen pearson clasifier. Let us first know that I can split this integral into 2 parts, 

integral over all X. So, that f 1 x is greater than K f 0 X and integral over all X. So, that f 

1 X is less than or equal to K f 0 X this spites R N into 2 parts and we are going to show 

that, for each half the integral is positive. Positive means greater than or equal to 0, but 

this is non negative. 
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So, first let us consider all X. So, that f 1 X is greater than K f 0 X, recall that h N P X 

says h N P X equal to 1, if f 1 by f 0 is greater than K. So, for all X as that f 1 X greater 

than K f 0 X, we have h N P X is 1, which means h N P X minus h X will be 1 minus h x 

is always greater than or equal to 0, because h X can be either 1 or 0 right, no matter 

what classifier h is h X is either 1 or 0.  

So, for all X either f 1 X minus K f 0 X, f 1 X greater than K f 0 X, h N P X minus h X 

will always be greater than or equal to 0, which means h N P minus minus h into f 1 

minus f 0 is positive, because both terms here are positive. Now, let us look at the other 

way around let us look at al1 has the f 1 is less than K f 0 X, now h N P X will say 0 

right, the those x are put in class 0 by Neyman pearson classifier. So, h N P X is 0. So, h 

N P X minus h X will be 0 minus h X, which for any classifier h X is less than or equal 

to 0, because h X can be either 0 or 1a. So, once agin the product h N P minus h into f 1 

minus K f 0 is positive, because both factors here are negative, which means the integral, 

we started with is always positive. 
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So what we have shown, so far is that this integral is positive. So, now let us expand this 

integral by multiplying these 2 terms. So, multiply with with f 1 first. So, I get h N P into 

f 1 minus h into f 1 right, the those are the first 2 integrals, take the other terms on the 

other side. So, this is greater than or equal to K times, h N P into f minus h into f 0, 

because these, because I have taken them on the other side, now h N P term will become 

positive right. I just multiply this term and put 2 integrals on this side 2, integrals on this 

side. 
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Since h N P and h are binary valued functions for any given X h N P X is either 0 or 1 

similarly, h is a 0 or 1. So, if I take an integral or entire feature space R N h N P into f 1 

X d, it is simply integral of f 1 over the region, over the set of all X., so that h N P X is 1 

right. Because them integrating mode of 1, this integral is nothing integrating with f 1, 

here the integral is nothing but, conditioned on X belongs to c 1 probability that h N P is 

1 right. 

Because h N P is a 0, 1 valued function integral of h N P into f 1, over r N is same as 

integral f 1, over x at that h N P X is 1, which is same as because, I am integrating f 1, 

which is same as probability h N P X is equal to 1, conditioned on X belongs to c 1. 

Similarly, for h because h is also 0, 1 function integral h into f 1 is probability that h X is 

1 conditioned X belongs to c 1. similarly, the integral with respect to f 0. 
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So, which means each of these integrals this can be retained as, probability h N P X is 

equal to 1 conditioned on X belongs to c 1. This is h X is equal to 1 conditioned on X 

belongs to c 1. Similarly, this is h N P X is 1 conditioned on X belongs to 0, h X is 1 

conditioned on X belongs to 0 right. 
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So this inequality can now be written as probability h N P X is equal to 1 given X 

belongs to c 1, minus probability h X is equal to 1 given X belongs to c 1 is greater than 

or equal to K times. Probability h N P X is equal to 1 conditioned on x belongs to c 0 

probability h X is equals to 1, conditioned on x belongs to c 0, let us also remember that 

this factor K will always be positive right. 
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Because, two ways of looking at it, K is defined by, the reference of Neyman pearson 

classifier. This is the reference of Neyman pearson classifiers, both f 1 and f 0 are 



density functions, they are always positive. So, this ratio is always positive, so, if say K 

is negative is forever satisfied, because so, that is the 1 way looking at it, any case 

because, this is some positive function of and, we want it less than or equal to K has to 

have some positive probability K has to be a positive number right. 
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Given that case a positive number, let us look at what is there in the in the brackets here, 

this is h N P X equal to 1, conditioned X belongs to c 0 minus h X equal to 1 conditioned 

as X belongs to c 0. Now this is the type 1 error of h N P X of the Neyman pearson 

classifier, which by construction is alpha, this is the type 1 error of the classifier h and 

because, h is something that satisfies the conditions on type 1 error this is less than or 

equal to alpha. So, this factor is greater than or equal to 0 right. 

So, for all h under consideration all h, that satisfy the constraints on type 1 error right, 

the term on the R H S is always non negative, which means this is positive h N P X is 

equal to 1 conditioned X belongs to c 1 minus h X is equal to 1 conditioned on X belongs 

to c 1 is greater than or equal to 0. This shows that the Neyman pearson classifier has the 

smallest type 2 error compared to smaller type 2 error compared to any classifier, that 

also satisfies the type 1 error bound right. This shows that the classifiers that, we have 

actually put down as Neyman Pearson classifiers, satisfies the criteria for Neyman 

Pearson classifier. 
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So, Neyman pearson, classifiers also needs a knowledge of class conditional densities 

because, you have to calculate f 0 by f 1. Like Bayes classifier, it is also based on the 

ratio f 1 by f 0, in Bayes classifier, we say c 1, if f 1 by f 0 is greater than some threshold, 

which is which happens to be p 0, l 0 1 by p 1, l 1 0. In n p this is some other threshold 

K, which is set based on the allowed type 1 error, so both of them essentially threshold 

the ratio of the 2 class conditional densities. 
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So, let us quickly look at a simple example, of Neyman pearson classifier, let us take a 

one dimensional feature space normal class conditional densities with equal varience, 

and suppose, by now you if you are, if you have been following all the lectures, you 

know that this is always a simplest case. A 2 class problem, one dimensional feature 

space, normal class conditional densities equal varience.  

For let us assume that mu 0 is less than mu 1, mu 0 is the mean of the class 0 and mu 1 is 

the mean of class 1. So, what is the N p classifier, if X greater than tau then c 1, where 

how where how do, I choose tau, tau is simple taken by the type 1 error bound. 
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So let us derive this formally, how do how do I get this term, because both f 1 and f 0 are 

normal, it is easy to see f 1 by f 0 exponential minus X minus mu 1, whole square by 2 

sigma square plus X minus m square by 2 sigma square, the other factors 1 by sigma root 

2 pi will cancel right. Now, we can expand this the X square term will cancel.  

So, what will get minus 1 by 2 sigma square mu 1 square from here, sorry mu 1 square 

from here minus mu 0 square from here right and 2 X into mu 1 minus mu 0, I can 

absorb this minus sign. So, I can write it as mu 1 minus mu 0 by 2 sigma square into 2 X 

minus mu 1 plus mu 0. So, this is the ratio of f 1 by f 0 for the case of normal densities 

with equal variance. 
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We need to find a K, such that probability f 1 by f 0 less than or equal to K is 1 minus 

alpha, because log is a monotone function, which is same as probability log of f 1 by f 0 

less than or equal to log of conditioned on c 0 that is also good enough. 
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Now this is f 1 by f 0. So, log of f 1 by f 0 will be just simply, what is inside the 

exponent. 
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So, what we get is mu 1 minus mu 0 by 2 sigma square into 2 X minus mu 1 plus mu 0 

should be less than or equal to probility K, so I can use this. So this is some expression 

involving random variable X right. I want the probability of this event to be equal to 1 

minus alpha, I have to choose K like that. So we can do it like this, so what will this give 

me, I can first take 2 sigma square by mu 1 minus mu 0 this side right. Then bring mu 1 

plus mu 0 on this side and then, I will get 2 X here divided by 2. So, this inequality is 

same as X less or equal to sigma square l N K by mu 1 minus mu 0 plus mu 1 plus mu 0 

by 2. 
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So, what we want is let us say P, subscript 0 is the probability conditioned on X belongs 

to class 0. So, P 0 l N f 1 X by l N of f 1 by f 0 less than or equal to l N P is same as p 0, 

of X less than or equal to that quantity. Now because, this is a P 0 probability means, I 

am taking this probability under the class 0 class conditional density that is mu 0 mean 

and sigma variance. So, I can write this as this X less than, this same as, X minus mu 0 

by sigma less than or something else.  

So, just subtract mu 0 and divide by sigma, I get this expression, why did I do that, 

because I know the distribution of X minus mu 0 by sigma. Because X is under this 

probability X belongs to c 0, c 0 is normal with mean mu 0, variance sigma X minus mu 

0 by sigma is standard normal. So, this probability is given in terms of the standard 

normal function, phi of this quantity sigma l N K by mu 1 minus mu 0 plus mu 1 minus 

mu 0 by 2 sigma, where phi is the density of the standard normal. So, ultimately to get K, 

I have to equate this quantity to 1 minus alpha. Alpha is given in Neyman pearson 

criteria what I am given is alpha that is the allowed type 1 error bound. So, to get K, I 

have to equate this to 1 minus alpha. 
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So, let us equate that phi of this is equal to 1 minus alpha, now I can solve this for K or l 

N K that gives me sigma l N K by mu 1 minus mu 0 is phi inverse of 1 minus alpha 

minus mu 1 minus mu 0 by 2 sigma. Now multiply by mu 1 minus mu 0 divided by 



sigma that gives me l N K is this much, from this, I can get K. So this is the threshold, I 

want for Neyman pearson classifier. 
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Let us ask what does this classifier mean so, in Neyman pearson classifier, we will put X 

in class 1, if f 1 by f 0 is greater than K, which is same as l n f 1 by f 0 greater than l n K. 
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And the l n K is given by this expression that, we have just now derived. 
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So, I will put X in c 1, if l n f 1 by f 0, that is this expression is greater than l n k, that is 

this expression. Now I can simplify this expression 2 X minus mu 1 plus mu 0 is 

multiplied by 2 sigma square and divided by mu 1 minus mu 0, I get this right. 2 sigma 

phi inverse 1 minus alpha minus mu 1 minus mu 0, remember, we are assuming mu 0 

less than mu 1. So, mu 1 minus mu 0 is a positive quantity. So, when I divide by it the 

the inequality does not change. Now, if being mu 1 minus plus mu 0 on this side and 

divided by 2, this is same as X greater than this. 
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Which, so the Neyman pearson classifier, we will put X in class 1, if X is greater than 

this. Which is same as X minus mu 0 by sigma and bring phi inverse this side phi of X 

minus mu 0 by sigma is greater than 1 minus alpha right. What is phi of X minus mu 0 

by sigma that is the the distribution of the standard normal density. So, what does this 

mean, this means this threshold X greater than tau, if I think of this as tau, the integral of 

the density function of class 0, starting from this tau to infinity will exactly be equal to 

alpha right. Because phi of this is greater than alpha, what is remaining in the integral 

will be equal to alpha. 
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So let us let us look at this what it means, so if this is my f 0. I am choosing a tau as my 

threshold, such that this area. Area from tau to infinity is equal to alpha that is the 

allowed type 1 error. 
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So, the Neyman pearson classifier ultimately that that ratio being some greater than K, 

turns out to be same as, X greater than tau, where tau is chosen, so that tau to infinity f 0 

X d X to alpha, this is what, we want. Because, in in that normal and equal variance 

ultimately, the classifier is a threshold and type 1 error, because we are assuming mu 0 is 

less than mu 1, type 1 error is simply integral from tau to infinity of the class 0 density 

function. 
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So, like the Bayes classifier, the Neyman pearson classifier also needs knowledge of 

class conditional densities and this classifier isis only for 2 class case, we did not defined 

for multiclass case and is often difficult to define it, for extinctive multiclass case. Just as 

general information, it is more important in certain statistics problems called hypothesis 

testing problems. More than classifier though for 2 class case is also used, especially 

when, you do not want to trade 1 kind of error with another rather than, that you want to 

put a bound onone kind of error and given that, bound is satisfied minimize the other 

kind of error. 
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Actually, as we have seen in the Neyman pearson classifier is for for trading one kind of 

error with another kind of error. So this kind of thing happens in many other ways a a 

good way of looking at it is what is called the receiver operating characteristic. If you 

consider a one dimensional feature space, 2 class problem with h x equal to with with a 

particular threshold tau. Now, if I if i think of class conditional densities once again as 

normal with equal variance 0 1 loss function. 
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We can write the error as a function of tau, I am below tau, I am putting class 1 above 

tau, I am putting class 2. So, this is my error integral as, we have already written earlier 

right. So, my error integral is point, because priors are equal 0.5 times probability that 

class 1 pattern comes below tau and 0.5 times probability that class 0 pattern comes 

above tau right. 

Once again I can if because, f 1 and f 0 are normal. I can write the standard normal as, 

we vary tau essentially, we are trading 1 kind of error with another, when I change tau 1 

kind of error may increase and other kind of error will decrease. So, varying tau allows 

us to trade 1 error with another and hence atleast a threshold Bayes classifier, we can 

actually sit and decide, how we want to do the trade of right, risk function is 1 way of 

doing the trade of where the loss function gives me. 

 So, to say the exchange rate how much of 1 kind of error, I can trade for how much of 

other kind of error that these the relative values of the 2 losses. Neyman pearson criteria 

gives me another way of trading these errors right. I want this error below some alpha 

and and minimize the other error, but I can choose my own trade of right by using what 

is called a receiver operating characteristic. 
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The receiver operating characteristic curve is 1 way of conveniently visualizing, this 

trade off for a 2 class classifier. There are 4 possible errors right, 2 are correct 4 possible 

outcomes of a classification decision. 2 are correct and the other 2 are wrong, let e i 

denote the probability of wrongly assigning class I, that is e 0 is wrongly assigning class 

0, at calling 0, when it is actually 1, let us say e 1 is wrongly assigning class 1, which 

means calling 1, when it is actually class 0. 
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So, actually I can define these like this e 0 is the probability that, when X is actually in 

class 1, X is also less than tau. So, I call class 0, it is called a misse, e 1 is wrongly 

assigning class 1, that is even though, X is actually in for comes from c 0, because X is 

greater than tau. I call class 1 it is called a false alarm right, thethe 1 minus e 0 and 1 

minus e 1 probabilities are called the correct detection and correct rejection.  

For fixed class densities, If we vary tau, the point e 1 comma 1 minus e 0 moves on a 

smooth curve in r 2, ofcourse, I could have chosen any 2 of these numbers the choice of 

co ordinates is arbitrary. But, this curve, which plots the false alarm rate verses the the 

correct detection rate that is e 1 verses 1 minus e 0 right. For various values of tau right, 

that is on the e 1 1 minus e 0 plane, for each tau there is 1 value of e 1 1 value of 1 minus 

e 0. So, as I vary tau it becomes a smooth curve and such a curve is called the receiver 

operating characteristic. This is another way of trading 1 kind of error with the other kind 

of error ok. 

(Refer Slide Time: 56:04) 

 

So, let us close down today is class with a summary, the Bayes classifier is optimal for 

minimizing risk, we have seen that in last class and we have seen a couple of more 

examples, this class. We can derive Bayes classifier, if we know class conditional 

densities and for various kinds of loss functions, we can derive. There are criteria other 

than minimizing risk as we have seen minimizing risk is not the only way, we can we 

can run this problem.  



For example, minmax classifier, Naymann pearson classifier are some examples of 

criteria other than minimizing risk. All of these are essentially trying to trade of errors in 

a way different from the trade of that to the Bayes classifiers does, Bayes classifier trades 

of errors, using the loss function of the exchange rate. Where as, there are other ways of 

trading of errors and receive a operating curve characteristic curves allow us to visualize 

the trade of between different types of errors, as we vary a threshold. We will once again 

briefly look at the receiver operating characteristics next class.  

Thank you. 


