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No Free Lunch Theorem; Model selection and  

model estimation; Bias-variance trade-off 

Hello and welcome to this next lecture in the course of pattern recognition, this talk will 

mostly discuss a few issues related to assessing what we learn correctly or not bother any 

specific algorithm for learning classifiers. So, let just step back and take a look at what 

have we done so far. In this course what we have done so far is that we discuss many 

different learning algorithms, various techniques starting from perceptron or starting 

from Bayes classifier with estimated densities. We had seen various learning algorithms 

various methods for learning classifiers. 
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We given so many methods and let us say on a specific problem we got some examples 

and we use one of the methods to learn a classifier. Then one thing that is certainly 

needed is we need to know how to estimate the accuracy of the final learnt classifier. So, 

we learning from some finite data, so while may be many of the algorithms have some 

kind of optimality proof there is mostly asymptotic. So, we somehow need to estimate 



whether what we learnt is good enough for our application or not.  
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Now, that is one aspect that we look at. How do we assess the correctness or otherwise or 

assess the level of performance of the learnt classifier? But before going there we look at 

some general issues in classifier learning that we nothing to do this specific method you 

are using no matter what method you are using there some generic issues. Now, the first 

question that we may want to ask along the general issues is what a good method is, we 

we studied many algorithm. We started with Bayes classifiers, then we said if you know 

the class conditional densities then Bayes classifier is the best you can get. But then we 

said of course, we do not know the class conditional densities who will give to us. 

We said, but we have data, so we can estimate class conditional densities, we studies 

various method for estimation. Then we said, but the estimated densities may have lot of 

errors and do not know how those errors effect the goodness of Bayes classifier. Then we 

said can we directly estimate classifiers we will looked at discriminant function both for 

classification regression. We looked at linear techniques, we looked at perceptron LMS 

least square methods Fisher discriminant.  

Then we went on to look at non-linear classifiers neural networks SVM’s. Now, it the 



quote a progression from simple methods to more difficult methods, the loss classifier 

algorithm we learnt is the best classifier algorithm, then what is the purpose of learning 

the others? So, in general you know, but having studied, so many different techniques 

before the quote is over we should ask, what is a good method? So, for example, as you 

saying can we say that SVM always learns the best classifier.  

Now, of course whenever we considered different methods, we discussed many practical 

tips about when different methods are suitable? When would I use a know least squares 

Bayes linear regression? When do I use a non-linear regression method? When may I 

want to use SVM’s? When may I want to use neural network. But these are some level of 

practical tips and we have discussed this enough through the course. But one thing would 

like to emphasis because you are teaching the n is that in a fundamental sense no method 

is best for all problems.  

The reason we studied so many methods is that each method as if so niche where it will 

perform well. Well it is very difficult to completely characterize that niche and say for 

that if in this PR problem use this method. Of course, if you could characterize that there 

is no scoop for you know scientist for regression. But while each method each algorithm 

as its own niche in the abbreviation space.  

In a very fundamental sense we can never say one method is the best or one method is 

definitely better than some other method and so on so for. And this in a very fundamental 

sense, so we first start from here, so that we will not think that you know there is a god 

given method or a (( )) for all pattern recognition problems. There is no single algorithm 

that will do on all problems.  



(Refer Slide Time: 05:07) 

 

So, we can talk of this as inherent superiority of a method a method could be a, you 

know an SVM with the specific kernel function with specific values of parameters and so 

on. So, far we can say a classifier learning algorithm we will is inherently superior to 

another algorithm if the first one always learn a better classifier than the other. If you 

think always is a little to straw this a most of the time in most pattern recognition 

problems (( )) for most pattern recognition problems if one method always learns 

superior classifiers to the others.  

Then we can say this method is inherently superior to the other as it turns out there is no 

algorithm that is inherently superior like this. What is that mean, if an algorithm does 

better on some pattern recognition problems? Certain kinds of application problems, if it 

is doing very well compare to another method if if works much better it learns, but a 

classifiers. What did we mean is there would be other instant sub pattern recognition 

problems where it would do worse than average because even on most problems it 

cannot do better than any other method.  

So, what we now going to say is why there is a there is a very formal way of saying this 

we will at least look at the statement of this formal theorem. We will not be able to prove 

this, but we look at the statement of the formal theorem that captures this thing that no 



classifier is inherently superior. So, what we going to do is that there is no way I can say 

one classifier is inherently superior and we will say it in a very formal sense as a matter 

of fact we will say it as a theorem. 
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So, now how do we compare methods we will agree to compare methods, so maybe we 

will give the same training data to two different methods and each method will all put a 

classifier. And then we can compare the methods we asking the classifiers output by the 

two method, how they perform on patterns outside the training set. This seems fair 

enough because both methods are given the same training set. Then they can view the 

training say training which way they want and then they will come out with a classifiers.  

Once they come out with classifier were saying we will test the classifier on all patterns 

outside the training data training set and the that is how we will compare the a errors of 

classifiers learn by two different methods. So, let us put some notation let as earlier script 

D denote the training set and let say n is the number of training examples we will keep n 

fix throughout the discussion. And let say F denotes the target function let the training 

example actually come classifier through F.  

So, the F is the target, so we will think of it as classifier or regression it really does not 



matter there is a target function that we will learning. Let P subscript k of h of X given D 

denote the probability that the classifier learnt by the k th algorithm using training data D 

would say h of X on a pattern X. When for the k th algorithm if you give training data D 

it will learnt some classifier on that classifier when X x would say h X right. 

That is the probability of it happening essentially what it means is let say P k h given D 

is the probability that the k th algorithm learns the function in h given data D. So, if this 

is the probability of k th algorithm learning h than P k h X X given D with be the 

probability that will say h of X and X. Now, of course, given an X my learning algorithm 

will say h of X with this much probability where as the true output is F of X 
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So, how can I define the error so let us say J k F coma D k is for the k th algorithm the 

target function F is fixed that training data set D is fixed. So, for a particular target 

function F given a particular training data said D with the k th pattern recognition 

algorithm. Let us say J k F coma D be the expected error of the classifier learnt by the k 

th algorithm using training data D with target function F. Now, how, how can I give this 

so J k F D on X and I said we already agreed to first letters consider the under 

summation.  



We already agreed to measure the errors on X which are not in the training data. So, I 

sum over all X naught in D a particular X will come with probability P of X on X my 

algorithm will say h of X with probability P k h of X. And this tells you it is right or 

wrong delta a comma b is one if a is equal to b 0 otherwise. So, if F X is equal to h X 

there is no error if F X is equal to naught h X there is error this is like a 0 or loss 

function. So, and I am summing over h because my k th algorithm I learnt different h 

with different probability.  

Of course, if the learning algorithm is deterministic what all the learning algorithms will 

consist, so far or mostly deterministic then given a particular training data such the 

because the learning algorithm are just a computer program. Now given the same data set 

it always learn the same function which means given a D my what I called P k h given D 

that is probability of the my algorithm learning h is non 0 only for one h because given 

the same D it will always learn the same h. 

So, P k h given D is non 0 for only h that means on a particular D a k th algorithm learns 

only one particular h. So, this h summation say can actually go but writing like this is 

much more general even if the algorithm with the same D with different probabilities its 

output different h’s is then also this expression is right. But because most of our 

algorithms are deterministic I do not need the summation with respect to h. This, then is 

enter prated as given D I used that h here in this in this expression, which will be learnt 

by the k th algorithm. To say that I used that h, which would be learnt by the k th 

algorithm is what this 0 on factor is P k h (( )) this is what deterministic algorithms.  

So, any case k th algorithm learns h with probability P k of h given D on with training 

data D so on an X the probability as at my be classifier learnt with k th algorithm we will 

say h of X is this. This is the error of saying h of X 1 minus delta F X for multiply weight 

by the probability of X that is my error summed over all X naught in the training set and 

I have to summed over h because of this probability. As I just, now said if the learning 

algorithm is deterministic for only h this is non 0. Hence effectively the summation the 

out a summation will reduce to only 1 h. 

 



(Refer Slide Time: 12:52) 

 

Now, the formalization of the fact that there is no inherently superior classifier is called 

no free lunch theorem. This an American color (( )) that no free lunch means, if 

somebody is offering you free lunch it certainly means that he want some work from 

you. He or she want some work from you, so there is no such thing as a free lunch you 

you do not, you never get in this life you never get something for nothing. So, that is 

what this theorem says and once we complete the statement theorem we will come back 

and see why it is called no free lunch.  

The no free lunch theorem is a formalization of the fact that no learning algorithm is 

inherently superior. What is the theorem? The Theorem says the two partial theorem the 

first part is for any two learning algorithms we will call them 1 and 2 we will talked 

about k th algorithm. So, let us say any two learning algorithms 1 and 2 this quantity 0 

what is this quantity? It is product of one time is probability D given F for a given target 

function.  

What is the probability of generating a data set D into J 1 F comma D minus J 2 F 

comma D. This is the difference in the error rate of the two algorithms, when given D 

weighted by getting D for getting D for training summed over all d right. This is the 

expected error overall possible training data sets that I may get if I fixed the target then I 



summed over all F, which means uniformly over all F. If I assume that all possible target 

functions all possible pattern recognition problems are equally likely then this outer 

summation will have some whatever because every problem is at the same weight.  

The weight does not matter, so summed over all possible F. This is 0, so let us say it 

words averaged we have as I said we always keeping my training set size fixed then all 

this discussion. So, as I noted here, so averaged over all size n training sets and 

uniformly averaged over all targets F this uniformly is very important because there is no 

weight for different F’s all F's are the same weight. Averaged over all size n training sets 

and uniformly averaged over all targets the difference in the expected errors of any two 

algorithms is 0 no matter what is the two algorithms. If I averaged the expected error 

over all possible target functions uniformly averaged it uniformly then the expected error 

is 0 a matter of fact second part says that it is nothing to do with the training data set per 

say. 
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 I can even keep D fixed if I want for a particular training data set uniformly averaged 

over all possible target function meaning all possible pattern recognition problems the 

expected difference in the expected error of any two algorithms is 0. So, if we uniformly 

averaged over all problems all algorithms are same no one algorithm is any better than 



other. That is what it means because this is the expected error of algorithm one. This is 

the expected alpha algorithm two.  

You take the difference and uniformly sum it over all F whether you can either fixed the 

training data set or weigh the weight with respect to training data set like k. But in either 

case, if you uniformly averaged over all possible functions f the difference in the 

expected error of any two algorithm that really does not matter. What is the methods are 

of course, one of the algorithm met be arbitrary, right? It may always give you the same 

function irrespective to the data, I am not saying anything about what kind of method 

this is? No matter what the two methods are, the expected error that is the difference in 

error is 0 for uniformly average over all problems. All algorithms are same, no one 

algorithm is any better than the other.  

That means no inherently superior classifier design strategy exists, there is no method 

which allows you to learn a classifier. That is inherently superior to any other way of 

learning a classifier, any other meaning an arbitrary way of learning a classier is not 

inferior. Not inferior in our inherently superior sense is not inherently inferior to any 

other algorithm that we already know or would have discovered. So, what is this mean 

means a specific learning technique may be good if we are interested only certain subsets 

of PR problems.  

If if you think of a set of all possible PR problems if in some subset one algorithm does 

much better than others then it must be doing much worse than others in some other part 

of the space of all possible problems. The only way I can do better on certain class of 

problems is by doing worst on certain other problems. If all problems are were equally 

then averaged over all possible problems the error is, one algorithm is no different from 

any other algorithm. So, any specific algorithm essentially as in space and it is exploiting 

the characteristic of that sub set of pattern recognition problems.  

To do better on them and the price we pay for it is that because you are, we are tuning the 

technique for some special property special structure. That that class of pattern 

recognition problems may have we would be doing badly in some other part of space of 

all possible pattern recognition problem. This the it is in this sense is call a no free lunch 



theorem if an algorithm is able to do better than other algorithms on certain problems it 

is able to do like that only by doing worse than another algorithms on some other 

problems. You cannot get good performance on certain problems without paying the 

price a bad performance on other problems that is why there is no free lunch. 
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As I said we conclude the theorem, but we can look at some, some comments on what it 

could mean and also we will look at it in a for example, setting of Boolean features. So, 

which you get a sense of why it happens at this stage it may look a little counter intuitive 

at the end of a tough pattern recognition course. If I tell, you, you know no algorithm is 

better than nearer algorithm not only that, no algorithm is better than near the algorithm 

all the algorithms I am teaching or no better than any arbitrary method anybody can think 

of.  

Then what is the purpose of all this? Well, remember that no algorithm is inherently 

superior when uniformly average over all problems; no algorithm is inherently superior 

in terms of expected error only when we uniformly averaged over all the problems. If 

every possible every conceivable pattern recognition problem is a equal importance to us 

only then no no algorithm is inherently superior space of all PR problems. If the 

algorithm does well in some region it is compensated by bad performance, some other 



region that is all the theorem says does not say that an algorithm cannot do better than 

others in one particular region.  

Now, when if you think every problem is equally important then obliviously there is 

nothing to learn from examples. Let think of a two class problem, every pattern 

recognition problem is simply one particular subset of real line. If on different days I am 

asked to learn different subset of real line and every subset of real line is equally 

important to me, then I cannot have any general strategy of learning we already seen that. 

Only for example, I am learning axis parallel rectangles then I can make a very nice 

efficient algorithm, but those good only if I know beforehand that I am interested only in 

axes parallel rectangles. On the other hand if I am interested in learning every 

conceivable subset of real line R 2 then obviously it is very difficult to learn from 

examples. This is something you already know roughly but, in the no free lunch theorem 

nails it down completely that is in terms of expected error if we average over all possible 

PR problems no algorithm is better than any other algorithm. 
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Let us see what it means in a very simple setting then it does not look, so counter 

intuitive, let us say we consider a problem with just three binary features. The three 



features x 1 x 2 x 3 a feature vector dimension three and all features are binary. So, 

essentially my space has only eight possible feature vectors. Let us say this is my 

training set, so I am shown some five patterns. So, these are 1 0 0 0 0 0 1 whatever these 

five patterns I am shown this is the values of the target function and let us say some h in 

in my space had the same value, I have a h that is consistent on the training sample.  

Now, obviously I am use some method to learn, of course I may output a function; that is 

consistent may output function consistent but I know the target function value. Let us 

assume there is no noise. Now, what is it I am interested in? I am interested in asking if I 

learn this h. How will it perform on unseen data? So, some pattern that is not in the 

training set. Of course, my F X has some value what will my h say. I am not really 

bothered about values in training set, of course here I am, I may choose that they are 

same, but I am essentially interested in how will h perform on unseen patterns. 

In this particular case that three unseen patterns, so five are in the training set. So, only 

three unseen patterns are there I am asking every h I am we are going to evaluate based 

on how well the predictions of h match the predictions of F. But it is not that were going 

to average this error or all possible F how many such possible F are there. 
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Here there a total of eight possible feature vectors five of them already in the training set. 

So, there only three feature vectors outside the training set, so each of this three, so how 

many different F's can I have. Now, the F has choose this values for on the five so these 

what are the possible F's over which will be comparing all F's that can take different 

values on this three. So, how many such F's are there 2 into 2 into 2 right, there eight 

such F's are there. So, there are eight Boolean functions consistent with the training set 

those are the only once and which I will be finding the errors because we finding the 

error only on X naught in the training set.  

Now, as all of you know from such Boolean functions that if I look at all possible 

Boolean functions for this three row truth table then obviously on any one row of the 

truth table half the functions will be one half the functions will be 0 that is how the 

Boolean functions behave. So, on any of the three patterns outside the training set half 

these eight Boolean functions would take 1 and the other half would take 0, which 

means… Each of those patterns irrespective whether h X is 1 or 0, see at all that the 

different learning algorithms can affect is whether it that the corresponding h X will be 

say 1 or 0 on this three patterns outside the training set. Irrespective of whether my h X is 

1 or 0 half, the time is right half the time is wrong if I average over all possible F. 

So, my algorithm can do nothing, all my algorithm are those given me a h which can 

only decide to say 1 or 0 on each of this patterns. Irrespective whether says 1 or 0 on any 

one pattern its error when averaged over all f is always 0.5. Because half the patterns it 

prediction will be right, half the functions is for half the F is its prediction will be correct 

for half the F is prediction is wrong. So, the fraction of F 1, which it will predict wrong is 

always half irrespective what h is? These essentially, what the no free (( )) no matter 

what h is averaged over all these F its error is the same and hence no learning algorithm 

is better than other if we averaged over all F. And the other hand let say all F are not 

equally important to be. 
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Let say when I start learning when I am given this problem I was also told that the target 

function is a single mean term right mean term as you remember from your brain algebra 

disc is a conjunction of literals. In general you write sum a products form, so each time 

its called a mean term. So, let say the Boolean function that I am interested in can be 

represented by single term, a single conjunction of literals. These are the… So I am only 

interested learning Boolean functions that can be represented as a single term.  

Now, that a quit a structural constraint without going you did not tells of course looking 

at this table those of sure interested can verify, given this training data that the F X 

values. You can ask how many possible mean terms are? How many possible single 

mean term functions are consistent with this data? I wont go into the details is a very 

simple thing to do, but one can show that the training data consistent only with this one 

particular function x 1 x 2 bar, which means if I am working in the space of function that 

can be represented by single mean term. That is the only niche of pattern recognition 

problem that been interested. 

Now, all algorithms are not same because there is only one function, this consistent with 

all training data that is the function I must be having because I know before (( )) that my 

my the functions are which I am learning are single mean terms. So, this is the only mean 



term that is, that could be generating data. So, if I average over all F, this is all F that 

satisfy this structural constraint is only one function. Hence, a h that predicts as per this 

function below 0 error every other h will not have 0 error.  

Hence one method can be superior to other if I restrict my attention to learning only 

those target functions which can be represent the single mean term. This essentially is the 

sense of no free lunch theorem when we are interested only in this subset of PR problems 

a learning algorithm or not all learning algorithms are same any more. Otherwise where 

interested in all possible target functions obviously there is no algorithm can be superior 

to another.  

So, this is the sense of no free lunch theorem, so they cannot be an algorithm that does 

well very well on some set let say cannot even have algorithm that can do very well on 

some subset and do average on the rest that is not possible. Because if they do very well 

on some subset of pattern recognition problems then what the no free lunch theorem 

assures as is that they do very badly not average they do very badly on some other subset 

of pattern recognition problem. Because uniformly averaged over all pattern recognition 

problems no algorithm is different from any other algorithm.  

So, if there is an algorithm that has very well compare to another algorithm on some 

subset than this algorithm will do very badly compare to the other on some other subset 

pattern recognition problems. So, depending on the problem on hand we may have to 

choose an algorithm, but while this is in general true as a general tip for how one makes 

pattern recognition systems work is also true in this fundamental sense. That is not just 

because we do not know enough we do not have, we have not at found the ideal pattern 

recognition in any algorithm. There is no such a thing as a an ideal algorithm for learning 

classifiers that the such a thing does not exist that is what our no free lunch theorem 

guaranties. 
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No free lunch theorem is to say that no there is no best classifier learning strategy. So, 

that is nice and it Is not as if we can we should be searching around for this one 

algorithm after which we can stop working on pattern recognition problem. So, 

depending on the kind of problems we have to find some algorithm that works best for 

the problems of interest to us and that application. In a same way there is there is no such 

thing that the best features there is no god given features for any problem, not for any 

problem there no god given features once again in a in a problem independence sense.  

That is if all problems are equally important to you, then one feature set is as good as any 

other feature set, it really does not matter. For once again, uniformly I have raised your 

all problems, no feature set is better than any other this can also be proved I would not 

even state this because this is a little more complicated stated precisely this call ugly 

duckling theorem. The origin for the name is that all of us think the ducklings are very 

ugly as a matter of fact duckling in English language is used as the kind of symbol for 

ugliness, but obviously I am sure the ducklings mother would not agree the ducklings is 

ugly.  

So, the ugliness is in the eye of the beholder, so that is what it says that there is no such 

thing at the right feature set. If all problems are equally important then no see features set 



is better than any other, this theorem is called ugly duckling theorem any way I said we 

are not formalizing this. So, this is one generic issue about the classifier descent so we 

understand, now that there is no inherently superior classifier (( )) strategy. 
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Now, a few others generic issues, so our, the entire idea of learning is the following 

where given a set of i i d examples. Then we are asked to learn a classifier or we learn a 

classifier or a regression function using this examples a linear regressor or a non-linear 

regressor or in general a function or a classifier we given training examples we learn a 

classifier this is the whole idea. This involves two steps learning a classifier or a function 

given training examples, as we seen through the course involves two steps.  

What are the two steps? I mean to broad steps one is at a first select a suitable class of 

models, linear functions a neural network or you know non-linear function represent the 

kernel. What have you I choose a suitable class of models? Then I learned a specific 

element of that class a specific model specific classifier from that class. So, the two 

issues involves, one is I have to first decide or which class of models I will learn and 

then within that class I learn them.  

So, the first one called model selection and the second one is called model estimation. 



What we studied throughout the course are algorithms for model estimation. Back 

propagation is a method that if you fix if search is over a specific class of neural 

networks and gets you the one that has the least error right each of the algorithm that we 

considered are essentially model estimation algorithms. Of course, made is point we said 

how do I decide the model how do I decide how many hidden nodes to have my neural 

network, so that is the issue of model selection.  
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So, for an example suppose you learning a neural network model. What is model 

selection involves? It involves choice of the network architecture that is let Us say I have 

to first chose the number of layers one hidden layer two hidden layer so on. Then I have 

to chose the number of hidden nodes I have to chose activation functions then we have to 

choose the parameters for the learning algorithm all this right. All this is part of the 

model selection, so choosing a set of hidden layers and hidden nodes in each hidden 

layer will give me one particular class of neural networks, one particular class of 

classifiers, one particular class of models. 

Now, within that class within that family of classifiers we are minimizing mean square 

error we are minimizing empirical risk using squared error lost function, to learn a 

particular classifier. For example, using back propagation we learn and we learn optimal 



values of weights etcetera, which means we are picking out one of neural networks of 

that structure right this is the model estimation.  
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For another example if I am using an S V M the choice of kernel function is part of the 

model selection I do decide whether I want let say polynomial kernel with P is equal to 3 

or polynomial kernel with P is equal to 4 so on. So, that kind of decides which family of 

classifier which family of models I am searching over after I have choose that for 

example, after I choose the kernel function, then the optimization algorithm does the 

model estimation.  

So, whether or not it is explicitly state a like this all are algorithms involve both model 

selection I mean essentially model estimation, but we have to also do a model selection 

right. Of course, we do not know what does the selected model is the right one we 

already discussed various stages that is the model is too complex. For example, neural 

network has too many hidden nodes if the v c dimension is very large then we may be 

doing over fitting. This generalization error of the learn classifier will be poor it will not 

do well on unseen data right. So, model selection is a very crucial issue because 

depending on the kind of function we want to learn depending on the amount of data we 

have, we have to choose the right model. How do I do model selection? 
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Some generic issues about what this model selection means this is often seen the many 

different ways of seeing it. In this class we will consider only one which is called the bias 

variance trade off. Estimating a model is very similar to parametric density estimation 

that we consider. When we discussed parametric density estimation we saw that the mean 

square error of an, of an estimator is given by the sum of its variance and bias square. We 

show that the mean square error of any estimator can witness bias square plus variance.  

So, essentially very often there is a tradeoff between them. We may not be able to reduce 

the mean square error very much; the model selection may be trading of bios verses 

variance or in very nice scenario may reduce poor. So, this kind of bias variance 

decomposition is crucial in many learning problems and essentially what it means is the 

following as we seen this enough number of time this course if the class of models 

whoever which I am searching is too complex.  

Then if I average over all possible training data I may get I would buy in large get the 

right function. Because you know the model class is very rich and the target function are 

very close approximation dude exist in my bag. So, that is essentially what low bios 

means, but because it is very complex on most realistic size date sets I may not be able to 

do a very good step of learning. Hence depending on the examples I have given I may 



pick over different functions and hence variance would be very high. So let us just look 

at this in the little more detail what this bios variance decomposition is, once again to 

keep thing simple. We will look at it in a very, very simplistic scenario. 
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Let say Y denote the target random variable that you are predict that you want to predict 

class label or the function value in a regression problem. Lets also assume that the 

relationship between the target and feature vector X is Y is equal to f of X plus epsilon 

where epsilon is a 0 mean independent noise simplest of problems so f is essentially the 

target function. I want to learn the target function f given data training data which are X 

comma Y where Y is f of X plus epsilon. Let say f at if the function output by the 

learning algorithm, now let say I want to ask what is the expected error in the prediction 

made by a our learning algorithm as prediction made a fact at specific point X naught let 

say.  
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So, the error I let us say we will take the mean square error. So, error at X naught is 

expected value of Y minus f at X naught whole squares where the Y is with respect to an 

X which is equal to X naught that is why I put condition X equal to X naught. So, we 

already know when X is equal to X naught Y is f of X naught less epsilon. So, I can write 

this f of X naught plus epsilon f at X naught whole square. Now, I get an epsilon square 

plus f X naught minus f at X naught whole square the cross term will go.  

Because the cross term contain epsilon into f X naught minus f at X naught epsilon is 

independent of all this. So, expected value of the product will be expected value of 

epsilon into some term and expected value of epsilon is 0 because epsilon is 0 minimize. 

So, the cost term will go away because noise is 0 mean and independent. So, when 

expand the square I only get a specular epsilon square and specular of f X naught minus f 

at X naught whole square.  

Now, if you remember what the same algebra that we did for a parametric point estimator 

I can rewrite this term as follows f X naught minus f at X naught whole square added and 

subtracted expected value of f at X naught. So, wrote it as f of X naught minus specular f 

at X naught plus specular f at X naught. Then grouped these separately why, now 

effectively square I get this square f X naught minus specular of f at X naught whole 



square then this square expect value of f at X naught minus f at X naught whole square. 

A cost term a cost term is inside the expectation the first fact of the cost term f X naught 

minus specular f at X naught is constant because f X naught is a constant by definition 

this is a expectation of something.  

So, this also constant that comes out with the expectation then the second term is 

specular f at X naught minus f at X naught and when I put expectation outside of that 

that will be 0. So, the cost term will be 0 that is giving me sigma square epsilon expected 

value of this square and expected value of this square, expected value of this square is f 

X naught minus specular f at X naught whole squares. I do not need expectation because 

the constant the second term the expectation of this I have just wrote the other way, so as 

it looks familiar f at X naught minus specular f at X naught because these square anyway 

does not matter, so this is what I get finally. 
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So, this is what we can write as this is the inherent error because of the noise variant this 

is noise variance this is noise variance because my data given is f x plus epsilon. So, 

whatever is the variance in epsilon that the minimum error I have to make anyway then 

this is the bias this term is called bias squares. This is the variance this we already know f 

at x naught minus specular f at x naught whole square expectation is nothing but variance 



of f at x naught this is called the bias of f at x naught.  

What is bias? Tell us bias a difference between f of x naught the actual target function 

minus expected value of f of x naught what is the expectation with respect to obviously 

by training data sets. Different days I get different training data sets averaged over all 

training data sets. So, f at is a function of the training data, so f at is a random only 

because function of the training data. So, this expectation with respect to the training 

data distribution, so averaged over all possible training data set do a on the averaged 

make the right prediction.  

So, bias is about how well on the average the learnt function captures the true underlying 

function here. Of course, we wrote written error at a particular point, but essentially were 

interested error all the other points, so essentially it is a matter of whether the expectation 

of f at is the same as the function f. So, bias is about how well on the average the learnt 

function captures the true underlying function. What about the variance? Variance tells 

me, so expected value of f of x naught is what I learnt averaged over all training data 

sets, where as this is what I learnt any one so to say so this tells you how much variance 

is there.  

How close would be predictions of the learnt function would be? Over all training sets 

one day aligned with one training set. So, I learnt one function that make some prediction 

another day I learnt with another training data sets hence I learnt another function that 

may make a different prediction am asking how different are this prediction the 

predictions are close to the whether the variance will be small predictions are different. 

So the variance is about how close will be predictions of the learnt function over training 

sets because that is important because I will essentially learn with only one training set 

right I cannot averaged over all possible training sets. 
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The class of functions over which you are searching is rich enough there is likely to 

contain good approximation of the target function. Hence averaged over all training 

samples we may learn a function that is close to the target, so if the class is rich enough 

our bias is likely to be small, but the model class is rich unless you have very large 

training set we may not learn very well. In sense on any given day with the given 

training data I may not be able to learn the same function. So, on different data sets we 

may learn different function and that is high we make a high variance this is the whole 

idea of the bias variance decomposition in the final error we make. 
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So, low model complexity results in high bias. If the model is very restricted I may not 

be able to find a function that is close to the target function. So, I may have lot of bias, so 

if I am learning you know tenth degree polynomial using linear models obviously even 

the best algorithm can only give me linear function. So, my model complexity is very 

small so they will be lot of bias. So, we can say high bias indicates poor estimate I am 

not chosen the right class to look for the function high model complexity and the other 

hand will have low bias, but will result in high variance. So, we can say high variance 

indicates a weak estimator, because we do not have the power to estimate from such a 

high model complexity unless you have very large number of examples. 
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So, once again we look at this in a very, very simple example suppose my learning 

method is a k nearest neighbor method I am thinking of it is a regression. So, what it 

means is my f at any given x naught is average of the k nearest neighbors I can find in 

the data set the values function values the k nearest neighbors. So, I represent nearest 

neighbors is x 1 x k. So, that corresponding function value is the data set is y f l. So, if y 

of within brackets l is the l th nearest neighbor value that is x of l is the l th nearest 

neighbor to x naught then its value on the training data set is f x l plus epsilon.  

Because training data set I get only noise corrupt values so average of all this is what my 

predator would be if I am suing nearest neighbor algorithm, so this is my prediction. 

Now, I have to find expect value of f of x naught right if I put a expectation here what are 

what are the random things here, of course epsilon is random and x l is also random 

because it depends on the training data set because to which of the closest to excel. 
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So, do calculate calculating this expectation is very difficult because x l r random lets 

ignore it for now. If I ignore it, so I put an expectation outside, but I am not treating x l as 

a random then the epsilons will go away because epsilons are mean 0 I get this. That 

means between f at x naught, which is this and expect a value of f of x naught the only 

difference is epsilon right. Because we already seen that we are not worrying about 

average with respect to this, which you do not have reduce there enough the training 

example then maybe they distributed roughly around this same way. So, then epsilon is 

the only difference between the specular of f of x naught and f of x naught.  
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So, the variance is very simple, variance f of x naught expected value of f of x naught 

minus specular f of x naught the difference is only epsilon. So, this is l is equal to 1 to k 

because I am summing over k nearest neighbors and this square.Eessentially it has to be 

epsilon k in the sense it is the error random variable that corrupts the noise random 

variable that corrupts the k th training that particular training, training data there are 

anyway independent. 

So, all the class terms will go away and the any single epsilon square term is nothing but 

the sigma square epsilon. This square 1 square will make this 1 by k as one by k square, 

so, ultimately I will get sigma square epsilon by k. What it means is if I am essentially 

using a nearest neighbor estimator variance decreases monotonically with k? 



(Refer Slide Time: 48:50) 

 

This is intuitively very clear as k increases we are doing more and more smoothing in my 

estimate. I am taking average values of sufficiently many nearest neighbors of the current 

point as the estimate. Hence you know irrespective of what errors set I started with if I 

am doing average of enough of them and the data is you know distributed well then I 

roughly about get the same value. So, as k is increased I do more and more smoothing a 

matter of fact if k is equal to my data size I always give you the same value.  

One can show this is true even considering the randomness of x l in general however. If 

you smooth to much the predicted value is likely to be far from the target giving raise to 

high bias. So, if k is very large as I said if I do k nearest neighbor classifier and k is equal 

to the number of training data. No matter what the feature vector is I always call the 

same class right. So, if I smooth to much obviously predicted value can be far from the 

target giving rise to high bias we get low bias in this case if k is small if k is equal to one 

we are not doing smoothing at all. We get very low bias then, but then we get high 

variance right.  
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So, this is essentially the issue or it always comes in various gadgets and different 

algorithms, so such a bias variance tradeoff is common in most learning methods. So, in 

general estimating bias and variance of a specific method is difficult. The generic issue is 

we have large number of training samples then usually variance would be small. So, 

variance can be reduced by having enough training data if you have large training data 

this generally no problem, because your variance will be small.  

Also if I have a large training data then I can choose a richer model class and hence 

reduce bias. So, in general that is fine, but very often we do not get large training data. 

So, if you wanted I chose both variance and bias sufficiently we need to a sufficient 

number of examples also we need to a some knowledge of the target function. So, it be 

can intelligently chose the model class you want to chose the model class, so that we 

have we will have a function that is close to the target function. At the same time the 

class is not so rich that we will not be able to learn it fit the example that we have this 

often an art, but this is one way of looking at the tradeoff involve in designing a pattern 

recognition system. 
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Now, let us finally come back to the issue of how do I assess a learnt model. We use a 

training set to learn a model right a classifier, but we actually interested in how well the 

classifier does on unseen data. Its performance on the training set is of no consequence 

even thou all my learning algorithms are essentially optimizing based on the error on the 

training set. We consult this enough number of time I in my first class I have been 

discussing this is the issue of generalization error how well nurse a classifier learnt from 

some data generalize, how well will it do on unseen data. 

Training data is of course, also I had, but even intuitively the error and training set is not 

a good indicator the generalization error. Because I am picking my classifier to do well 

on the training data, so obviously it will do well on training data. Only some classifiers 

that does well on training data is what I will pickup. Hence the error on the training set, 

which is called the training error is not necessarily good indicator of the generalization 

error.  
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Of course, even in a stochastic (( )) is it the error in training set is the empirical risk we 

already know empirical risk is not necessarily close to the true risk, which is the 

expected error on new test data. New my expected error on new test data if I take data 

randomly is nothing but the true risk where the training set error is the empirical risk. 

Now, for empirical risk to be close to the true risk we need large number of examples 

relative to the model complexity.  

The model is very complex then we may over fit that is that is basically when the 

training error is small, but the test error is large. Basically if the model is complex I may 

be able to find functions within the model, which can do very well on the training data, 

but you know they are really not learning anything. Now, this the phenomena that always 

is called the over fitting that is I get very low training errors when I see new data the 

errors will be large. One example is when I use too many hidden nodes in neural 

network. 
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So, we can roughly represented like this, suppose we have a fixed samples size and we 

keep learning to the same algorithm with in more and more complex model classes. 

What can model complexity mean? Suppose I am suing neural networks with more and 

more hidden nodes given that I mean given sufficient complex in the problem what one 

can except to the training initially if I choose models of very low complexity. Training 

error is training error is the red curve the training error is large that the error on training 

set but, as I keep increasing the model complexity.  

I can keep reducing my training error, so for example, if I am using r b f networks once I 

reached the number of hidden nodes, which is same as the training sample I can get 0 

errors. So, while the shape of the curve specific shape of the curve is not important, the 

general shape of the curve that at low complexity I will have high training error, but 

training error can be monotonically decrease at the complexity decreases. But if I look at 

the test error the error of the learnt classifier at any given model complexity at a 

particular number of hidden nodes or whatever at a particular model complexity I learn a 

classifier and ask how will it do on unseen data. If I track that error that also initially 

decreases as my model complexity increasing.  

It initially decrease, but after some model complexity its starts increasing, because given 



your data that is the level of complex models are true (( )). So, we need to select the 

model with the correct complexity only if you run out algorithm at a model complexity 

level of this. Are we likely to get a good final classifier? Otherwise we may get a bad 

final classifier here. So, this is a generic behavior of most learning algorithms for the 

same training sets size as I keep increasing model complexity till some level both 

training and test headers will decrease, but after that only training error will decrease, but 

generalization error will increase. So of course, there is no way of knowing, which is the 

right complexity. 
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Is very difficult to decide on what particular model class is correct from a problem. Right 

model class means how many hidden nodes in neural network what kernel do I use in 

SVM so on. So, far while we have seen some theory like the V C dimension, so on these 

are loose bounds they give while they give you general guidelines they cannot give you 

any specifics. Hence one needs to use the training data for doing model selection also 

deciding, which model class to use? How do I do this? But we saw training error is not a 

good indicator for the model class. I can keep increasing the complexity and keep 

reducing my training error. So, if we want to use the use the use the data that we have 

then you have to use it slightly differently. 
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If we have sufficient data we can do this. We can do both model selection and model 

estimation this is how we do it, we divide the data into two parts; a training set and a 

validation set. We select some model class specific class on neural networks specific a 

kernel function with repressive parameters and so on. Then use the training set to learn 

the classifier whatever best classifier you can get within that model. We find the error of 

the learnt model on the validation set not on the training set, but the other training data 

that we have say called the validation set.  

Now, I do it for different model class, so I start with let say a three hidden node network. 

I learn using my training data and the final network its error I measure on the validation 

set. Then I do it for four hidden nodes with the same training set why once again learn 

the best four hidden node network. Now, calculate its error on the validation set, now I 

can plot the errors on the validation set of models are different complexity. So, if you do 

this for models are different complexity we can chose the one that has the least error on 

the validation set. So, this allows us for example to use the training data to also learn let 

say the number of hidden nodes in neural network.  
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So, we divide the data we use one part as for training one part for validation the training 

is use for model estimation the validation is use for model selection. Normally, we would 

also like to have an estimate of the final generalization error of the final learnt model 

after doing all this I decide that five hidden nodes seem to the best and then learn the 

final five hidden node network. Now, if somebody ask me how well do thing perform 

what will I tell him, of course I can find, this is called model assessment.  

I can I can tell him that it is error, so my final error I can say whatever if the error I got in 

the validation set may be my good estimate for generalization error. What is overly 

optimistic? I pick that particular network, because it is doing well learn validation set. 

So, by definition you know that network is tune to do well on the validation set so what 

one does is that we have separate test data also for final assessment.  
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So, what does all this mean? We need to use the data that we have for model selection, 

model estimation and model assessment. We divide the data into three parts; training set 

validation set and test set. We repeatedly use the training set to learn specific model from 

a chosen class of models, the validation set is used to select good model class, and test 

set is used to assess the final learnt model. So this is how one does model assessment. 

Next class, we look at what to do. See of to do all this, I need lot of data I may or may 

not have enough data. So, we will look at some generic practices people use for doing 

model assessment in the next class. 


