
Pattern Recognition 

Prof. P. S. Sastry 

Department of Electronics and Communication Engineering 

Indian Institute of Science, Bangalore 

 

Lecture - 38 

Feature Selection and Dimensionality Reduction;  
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Hello, and welcome to this next lecture in pattern recognition. With the last lecture, we 

have discussed, we have completed discussion on kernel based methods. So, with that we 

kind of completed as the part of the course, which discusses about learning classifiers. 

So, we can, we can take a global look now and ask what, what all have we done so far. 

So, in this course so far, we have discussed various strategies for learning classifiers. We 

started with pattern classification said the classifier design is, what admits lot of 

mathematical structures and we discussed different strategies for learning classifiers. 
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So, specifically we have considered the Bayes classifier, the optimal Bayes classifier; the 

different methods for implementing it by learning class conditional densities. Then we 

looked at various linear classification regression techniques, percepetron least squares 

LMS specially linear discriminant so many of these techniques we looked at. We looked 

at various pros and cons of them. Then we went into statistical learning theory to show 

what kind of bounds, we can put on them. And then we looked at strategies for learning 

nonlinear classifier. We just concentrated so far on how on some general techniques for 



learning classifiers given both linear, nonlinear classifiers and some theory of statistical 

learning which also deals with us. 
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So, one question that we never addressed really is what features does one use right in all 

our discussions so far. Patterns are represented as feature vectors, patterns are abstract 

for us and patterns are always some d dimensional feature vectors. And we have no 

never in this course said anything about, what should we what kind of features does one 

use. Very beginning of the course, we seen many examples of specific pattern 

recognition task, and there we discussed the kind of features people use in those 

examples. And the, the overall import is that features are very much problem dependent 

which is still true. So, what features to use very much depends on the problem and the 

kind of pattern is said, if I am doing a SVM regression task. I would have a one 

dimensional signal and I may do some frequency content out of it as my features. If I am 

doing a phase recognition task image as the feature, and you know the, the kind image as 

the pattern and the kind of features, I measure would be totally different. 

So, in general features are very much problem dependant. Essentially one heuristically 

decides on what kind of quantity is or, relevant for the classification decision. And also, 

what kind of quantities are easy to measure, easy to calculate and that is how one comes 

up with a decision on what features to use. Of course, in practice the final classifier 

would very much be dependent on the features use so, even the so called Bayes optimal 



classifier is optimal in the sense given that particular feature vector. And the 

corresponding underlying class conditional densities, no other classification will can do 

better, that is all it means. It does not mean that, you cannot and that problem, we cannot 

do better. Obviously, if I change the features I should, I may be able to do better. So, 

while we cannot give general theory of what features to measure there it is still possible 

to talk, about if I can measure so many features out of that can I double a features which 

are useful.  
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So, one strategy, what is called feature selection is that we start with many different 

measurements. We measured, whatever we think are possibly relevant. And then out of 

that given our training samples try and (( )) a good subset of features. This is known as 

feature selection problem, and the; and the problem we want to address here is 

essentially, which subset of features are the best correlation with the class labels. So, we 

are asking, given my training data, what is the best subset of features can I use? So, 

looking at the training data, I am asking which features have better correlation with the 

class label, which features have less correlations class labels, which features you know 

seem to give me the best discriminative information. 

So, there are some information ways of formulating this question, saying which subset of 

features gives me the best information regarding the class label, and we can use such 

notions to decide, which subset of features to select. So, there are some general 



techniques, if you, you if you can measure this 500 different features, I might be able to 

provide you, with some 50 good subset of features. These are computational expensive, 

but there often useful, but in this course we will not be considering feature selection it is, 

it. These techniques are computationally rather expensive, and it is difficult to implement 

a completely theoretically justified method. So, very often they turn out to be heuristic, 

so with that and also because it, takes us a little outside the purview of what we want to 

discuss here, we will not be considering these. However, I would like all of you to know 

that there is lot of work, on how one can select a subset of features. 
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As you said, there is also another way of looking at getting better features. Given that, I 

have measured these features, can I manufacture a new features out of these features? 

For example, may be certain linear combinations of these features may give me better 

features for discrimination. So, there are also techniques to transform, the original 

features vector into new feature vector. We may want to do it for many different, we may 

want to do this to improve the features for example, you may want to make them 

uncorrelated, or you may want to make them better at classification. Or we may want to 

do dimensional trade action I am ask, a can I instead of having this hundred dimensional 

feature vector. Can I have some fifty dimensional feature vector of course, just dropping 

a 50 of them may not be the best solution. But if I transform them first and then drop a 

50 it might be better. 



So, I may want to transform them to get a better dimensionality reduction. One such very 

popular technique is called principal component analysis or PCA for short. And this is a 

very, very important technique in many, many different problems of data analysis. And 

machine learning apart from pattern recognition. So, whenever you have training data 

and you want to understand the, the geometry of training data to ask, how many 

dimensions in the vectors are needed to capture most of the training data. So, principal 

component analysis is a, is a good technique, it is in general used as a very general 

purpose dimensionality reduction technique, give some data. So, we will consider that in 

detail in this class.  
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 So, we can think of PCA as a useful linear transformation of the feature vector. So, 

given the feature vector, you want to find a different linear transform, transform to 

transform the feature vector into some other space, or linearly transform into some other 

space and that is useful for classification. In the dimensional direction sense, we 

essentially, want to project the data on to some lower dimensional subspace. The linear 

transform would be projection actually, so if I may have a D dimensional feature vector. 

I may want to project it onto on a; onto on a, m dimensional subspace of the D 

dimensional space. So, we can in general, we can define PCA in 2 different ways. A 

PCA is a projection of data onto a subspace, such that one variance of the projected data 

is maximized that is even though, I am projecting onto a m dimensional subspace. Most 



of the variance in the data is captured by this, by the projection onto the m dimensional 

subspace. 

So, give a fixed M, which particular, m dimensional subspace, we will capture as much 

as the variance of the original data as possible to is, if I want to approximate the original 

feature vector with the projection, I want to minimize the mean square error. So, I want 

to find that m dimensional subspace such that approximating a feature vector with this 

projection, the in the sense of mean square error is best as it turns out solution for both is 

same. So, that is the PCA, we will see how to derive how what this particular transform 

would be. But whether I want to think of it as best approximation in the m dimensional 

subspace or a fixed m on both are for a fixed m for a fixed m capture most of the 

variation in the original data. The final solution turns out with the same transform. 

So that is what PCA is that is what, we are going to consider now. And I just to want to 

want you to understand that here we were not considering the class label information at 

all we are just looking at data, all the data and asking if I want to project it to a smaller 

dimensional subspace which subspace will, will give me the best approximation. We are 

not bothered about you know based on the class label information, which is the best 

approximation. So, here this is nothing to do with the class label, we are just give large 

set of data vectors, what is a best lower dimensional representation of the data vectors?  
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So, let us start define the problem, let us say we first found to look at it from the point of 

view of dimensionality reduction. Let X 1 to X n be the given data, as I said now, class 

labels are not important. So, we will only look at X 1 to X n. Let us say all of them are in 

are d dimensional, we want to project it on a m dimensional subspace. So, let us say U 1 

to U m denotes the orthonormal basis for the m dimensional subspace. So, ultimately 

want to determine the vectors U 1 to U m, because they determine the subspace. So, we 

will, we will the subspace is of course, given by its basis and we will choose a 

orthonormal basis. So, let us say U 1 to U m is an orthonormal basis for the m 

dimensional subspace. And let us say, because that will be subspace of R d. If I add U m 

plus 1, U d it should become an orthonormal basis for R d. 

So, U m plus 1 to U d define them to be those orthogonal vectors, which when added to 

U 1 to U m become a orthonormal basis for R d. So, U 1 to U m is the orthonormal basis 

for the m dimensional subspace I am looking for U 1 to U m, U m plus 1, all the way up 

to U d is the extension of this basis to the whole of R d. So, because this is orthonormal 

basis any X i can of course, be represented as a linear combination of the vectors used U 

1 to U d. And the coefficient of the linear combination will be simply, X i transpose U j, 

because orthonormal basis. So, X i can be written as sum over j is equal to 1 to d, X i 

transpose U j, U j. So, it is written as a linear combination of these basis vectors U j and 

the (( )) linear combinations X i transpose U j. These are the standard, standard 

representation any orthonormal basis. 
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Now, let us say X i tilde is the approximation of X i in the m dimensional subspace, 

because the dimensional subspace which is spanned by U 1 to U m, X i tilde can be 

written as Z i j, U j j is equal to 1 to m. So, Z i j are the coefficients in the U j coordinate 

system for representing tilde. In addition, we will have a constant, we will put second 

term which is a constant. So, that is, there is any, any mean to be taken care of there is 

always better to take (( )) constant to get a low mean square approximation an X i. So, 

because this is a constant and whatever is in the m dimensional subspace can easily be 

accounted for by j i j. The part of the constant which is not in the m dimensional 

subspace is what, we have to worry about. 

So, that we will write it as j is equal to m plus 1 to d beta j U j. Now, we can see that this 

expression is independent of i. This term does not depend on the index i, so this is a 

constant for all X i, it simply some constant vector, which is in the orthogonal 

complement of this m dimensional subspace. The only reason for putting it like this is 

essentially, just represent it in terms of these U j is, there might be a constant which 

when added might lower my mean square error. Of course, if I do not use the constant; 

the constant will turn out to be 0 that is when, I optimize, but having a constant we will 

help me to find a better approximation. 

So, what is the task now? We have to find Z i j, b z to get the approximation with the 

least mean square error, of course, you have to get also U j. So, we will solve the 

problem in 2 steps. Given any particular, U j that means given any subspace. what are the 

best Z i j’s in b j ‘s in, terms of U j’s. Then my, I will write the mean square error and 

find the best Z i j’s and b j’s. So, ultimately my mean square error will now, only 

depends on U j. Now, I can minimize the mean square error by choosing the right U j. 

So, we will first want to find the best Z i j’s and beta j’s, if you get a good 

approximation. 
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What is my approximation error? I want X i to be close to X i tilde; X i tilde is my low 

dimensional approximation. So, my error is X i minus X i tilde norm square summed 

over, i is equal to 1 to n divided by 1 by n. This is the mean square error, this is the error; 

this is the square of the error add and divide 1 by n to get the mean. So, mean square 

error is what, I want to subtract. Now, we know that X i X i is given by this X i transpose 

U j U j where, X i tilde is given by up to U m, it is some Z i j U j and from U m plus 1. It 

is beta j so, for want X i minus X i tilde up to m, X i as X i transpose U j are the 

coefficient and X i tilde Z i is at coefficient. So, this is X i transpose U j minus Z i j into 

U j j is equal to 1 to m. From, m plus 1 to d X i, still has X i transpose U j, but X i tilde 

has beta j. 

So, I just left everything is still the norm square X i minus X i tilde vector is represented 

in terms of U j’s like this. Now, because U is, are an orthonormal basis if I have sum a 

linear combination of U is and I want the norm, norm square is simply equal to the 

square of the individual coefficients. So, this is 1 by n summation is equal to 1 to n that 

comes from this j is thing. And here I have to square all the coefficients. So, j is equal to 

1 to m X i transpose U j minus Z i whole square plus j is equal to m plus 1 to d X i 

transpose U j minus beta j whole square so, this is the mean square error. So, I want to 

minimize this to find Z i j and beta j for given U j is. 
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So, how do I find them we, we first have to take partial derivatives of j with and equate it 

to 0 so, I have essentially, find Z i j and beta j. So, first let us look at derivative with 

respect to Z i j. So, if I take any indices as n T and i want derivative with respect to delta 

Z as T with respect to X T. If I want partial derivative, there is only 1 term in this entire 

expression that contain Z s T that happens, when i takes a value Z and j takes the value T 

and that term is nothing. But X i transpose U j minus Z i j is are the X i transpose U t 

minus Z s T whole square. So, if I differentiate that I will get this 2 into X s transpose U t 

minus Z s T equate it to 0. 

So, what does that give me that gives me Z s T is X s transpose U t so, Z i j is X i 

transpose U j. So, essentially to find the coefficients of representation X tilde with 

respect to the first U 1 to U m, you might use it as the, the same thing as the original X s 

that is X i transpose U j. What about beta? If I want to differentiate with respect to 

particular beta t that happens when the j takes value t so, i fully remains. So, the 

derivative with respect to beta t will be 1 by n summation, i is equal to n derivative of 

this with respect to beta t. That happens only, when j is equal to T and this term does not 

have any betas. 

So, only this will come that will be 2 X i transpose U j minus X i transpose U t minus 

beta t so for any t, t greater than m plus 1 only t for t greater than m, m plus 1. We have 

beta t is so del j by del beta d is equal to 0. I implies 1 by n, i is equal to 1 to n, 2 times X 



i transpose U t minus beta t is equal to 0. If I expand this, I get 1 by n, 2 will anyway go. 

So, I will get 1 by n summation, beta t that will be n beta d by n, will be beta t. This 

second that will come on the one is, are the equality that will be equal to what one by n 

summation i is equal to 1 to n X i whole transpose U t. 
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So, this gives me beta t equal to 1 by n summation, i is equal to n, X i transpose U t. This 

is nothing but mean of X i so, let us represent it by X bar. So, beta t is X bar t into t so, 

my best approximation in the m dimensional subspace given a m dimensional subspace. 

That is U 1 to U m and U m plus 1 to U d is for the first time components I use X i 

transpose U j as my coefficients and for all the remaining ones, the constant I have to put 

is X bar transpose U j essentially, if X bar is equal to 0. I do not need it, X bar is not 0, i 

need this constant.  

So, this is my best m dimensional approximation. By m dimensional approximation, we 

mean the X i tilde vectors leave in a m dimensional subspace of d dimensional space. Of 

course, this is a linear combination of the vectors U 1 to U d each of the vectors U 1 to U 

d are (( )) R d. So, the right and side of this is a d dimensional vector, there is no; there is 

no question about that. So, this expression does not show that X i tilde is an m 

dimensional vector, but the expression is such that we will see shortly, how it happens 

that essentially, X i tilde leaves in an m dimensional subspace plus a constant. This 

constant is independent of phi. So, accept for a constant X i leaves in a m dimensional 



subspace so, if know this constant separately, let us say if X bar is equal to 0, which I, i 

can always take then these m numbers, X i transpose U j will completely specify, X i 

tilde. That is; that is; that is what is meant by it is a; it is a sits in a m dimensional 

subspace. So, this is X i tilde, tilde; this is the best representation, we get for a given j is. 
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And we know that X i is this so, if I want X i minus X i tilde the first m components in 

the first m U j’s it is same, X i tilde here is j is equal to 1 to m X i transpose U j U j and 

here, also i same thing. So, for j is equal to 1 to m the U j’s coefficient if I take X i minus 

X i tilde i will be 0, only this will survive. So, I can now write X i minus X i tilde at j is 

equal to 1 plus m 1 to d X I is coefficients for using U j. Now, is X i transpose U j 

whereas, X tilde coefficient is X bar transpose U j only, if I am j is equal to m plus 1 to d. 

So, this is my error so the, the norm square of the error will be what because, once again 

because, U j’s are an orthogonal basis, U j’s are orthogonal vectors if I take norm of this 

that will be simply equal to squares of this, because U j’s are orthonormal vectors. So, 

that will be X i transpose U j minus X bar transpose U j whole square, which I can 

always write as X i minus X bar whole transpose U j whole square. So, my for a given i 

my square of the error X i minus X i tilde norm square is some j is equal to m plus 1 to d 

X i minus X bar whole transpose U j whole square. So, my actual j, my actual mean 

square error is some of this over i is equal to 1 to n divided by 1 plus n.  
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So, my j is 1 by n summation, i is equal to 1 to n X i minus X tilde whole square, which 

is this. So, I can write that as j is equal to m plus 1 to d X i minus X tilde transpose U j 

whole square. Now, X i minus X bar transpose U j is a scalar. So, I can, I can write it as 

X i minus X bar transpose U j or U j transpose X i minus X bar. So, I can write this 

square as, I first interchange the 2 summation both are finite summations j is equal to m 

plus 1 to d 1 by n, i is equal to 1 to n, i write the square as 2 times U j transpose X i 

minus X bar into X i minus X bar transpose U j. If I write it like that now, I have a very 

interesting structure here. 

Now, I can, I can work it out that these, because these U j’s do not depend on I, the U j 

transpose can come out of the ith summation and, this U j can also be outside the i 

summation. So, I can write it as summation, j is equal to m plus 1 to d U j transpose. 1 by 

n summation, i is equal to 1 to n, X i minus X square; X i minus X square transpose U j. 

So, what I have here is a quadratic form. U j transpose something, U j and this something 

is a matter X. This X i minus X bar is a d by 1 vector and X i minus X bar transpose is a 

1 by d vector. This is a d by d matrix is known as an outer product, I, I hope many of you 

have come across this earlier, this called an outer product of 2 vectors. So, I am summing 

over, i is equal to 1 to n so, this whole thing is a d by d matrix. So, j can be written as a 

quadratic form, so let us give a name to this matrix, what is this matrix? X i minus X bar, 

X bar is the mean of X i, so X i minus X bar X i minus X bar transpose summed over, i, i 

is equal to 1 to n is nothing. 
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But the covariance matrix, for random vector X, the covariance matrix is defined as 

expected value of X minus mu X into X minus mu X transpose. Now, if I do not know 

how to evaluate such an notation, I can evaluate it as a sample means, and this is nothing 

but the sample mean estimator that expectation. So, this is the data covariance matrix am 

I with come across the data covariance matrix earlier when we did the Fischer linear 

discriminant. So, S is nothing but the data covariance matrix and j now can be written as 

U j transpose SU j, J is equal to m plus 1 to d . 

So, now my mean square error given, given any subspace defined by the U 1 to U m, U 

m plus 1 to U d. The mean square error in approximating a vector by its projection onto 

this m dimensional subspace is given by j is equal to m plus 1 to d U j transpose SU j 

where S is the data covariance matrix. So, my job is to find U j’s to minimize this, so we 

need to find U j’s finding U j is, is same as finding the correct subspace to minimize j. 

Let us so, what we need to minimize is; essentially, a quadratic form of a matrix with 

respect to vector of course, here I need to minimize sum of such quadratic forms with 

respect to vectors, which are constrained to be orthonormal, constrained to have norm 1 

and orthogonal to each other. 
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So, just look at how 1 minimizes a quadratic form suppose I want to find a vector U to 

minimize U, U transpose S U subject to the constraint the norm of U is equal to 1. This is 

constraint optimization problem, that we already seen when we stated with SVM. So, 

you want to maximize or minimize this objective function subject to this constraint. So, 

we have to write a Lagrangian, so the Lagrangian will be U transpose SU plus lambda 

times 1 minus U transpose U. So, this is the Lagrangian for this constraint optimization 

problem and to find the optimum, we need to equate the gradient as the Lagrangian to 0. 

The, what I am trying to find is U, so I am optimizing with respect to the vector U. So, 

the gradient with respect to U that gives me SU 2 will go away anyway from both side. 

And this side I will get minus lambda U, so equating gradient to 0 we get SU is equal to 

lambda U, what is this equation? U is a vector S is the given matrix. 

So, S is equal to lambda U is nothing but the Eigen vector equation for the matrix. So, 

this shows that any U that minimizes this has to be a Eigen vector of the matrix S. That 

means U should be an Eigen vector first. So, if I want to minimize U transpose SU 

subject to U transpose U is equal to U 1 then U has to be an Eigen vector, which Eigen 

vector. We can actually plug this Eigen vector property into our objective function. So, if 

I take U to be any Eigen vector, what is the value of my objective function? U transpose 

S. SU, SU is nothing but lambda U, U transpose lambda U, transpose U is 1 so that is 

lambda. 



So, if I want to minimize U transpose SU subject to the constraint that U transpose SU is 

equal to 1. Then U has to be an Eigen vector take as pointed to some Eigen value 

lambda, and then if I take any Eigen vector corresponding, Eigen value lambda. The 

actual value of U transpose SU is nothing but lambda, how can this value be lambda? Is 

lambda i real number, i complex number. This can be lambda because, lambda is real 

number. Why is lambda a real number? As I said, this is the data covariance matrix as 

you already, know the data covariance matrix is real.  

Because is all it is easy enough to see it is; it is; it is, if all X i is are real, it is real and is 

also symmetric that is also quite easy to see. Because of the outer product form the 

matrix that you get is symmetric. So, S is a real symmetric matrix and hence all its Eigen 

values are real. So, if I want to minis U transpose SU subject to U transpose is equal to 1, 

then the minimizing U has to be a Eigen vector and if I take it to be Eigen vector with 

Eigen value lambda, then the value of U transpose SU is equal to lambda, which mean, 

we actually minimize it I, I need to take the Eigen vector which has, which corresponds 

to the least Eigen value.  
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Now, coming back to our problem, we want to minimize j is equal to m plus 1 to d U j 

transpose S U j. Where our constraints are not only that U j’s are orthogonal U j’s are 

unit norm, that is U j transpose, U j’s equal to 1 they are also orthogonal. U j transpose U 

i equal to 0 if phi is not equal to j. With those constraints, I want to minimize this, 



because we can once again write the Lagrangian and do dirty algebra. But we do not 

need to do all that because, I know for any one of these terms, if I want to minimize the 

U has to be a Eigen vector. 

So, ultimately U is all, U is have to be Eigen vectors. Now, I can there, there are a S is a 

d by d matrix, there are d possible Eigen vectors corresponding to d possible Eigen 

values. And if I choose U j to be any one Eigen vector, I know U j transpose SU j will be 

the corresponding Eigen value. So, this particular j would be some of Eigen values which 

Eigen values the, the Eigen vectors that you picked up the Eigen values correspond to 

Eigen vectors you picked up. Now, I want this to be as small as possible, so what is that 

mean? Now, we know because S is symmetric all Eigen values are real and also it will 

always have a set of Eigen vectors, which can be orthonormal. So, S will have 

orthonormal set of Eigen vectors, these Eigen values are real and the Eigen vectors of S 

will span the space. So, Eigen vectors of S can be an orthonormal basis for R d. I know 

the so I can take the Eigen vectors of S to be orthonormal base for R d, then they satisfy 

the constraints of U j. 

Now, we already know that any Eigen vector will satisfy the gradient equal to 0 

equation. So, essentially we have to ask which Eigen vector would you choose to 

minimize this. Any Eigen vector I pick here, will be the, the U j transpose U j’s the Eigen 

value and obviously, I cannot repeat any Eigen vector, because I want U j’s to be 

orthogonal like they have to span the space. So, that tells me that the best I can do is to 

make my so, I have to pick U I want to minimize this sum over j is equal to m plus 1 is 

equal to d, that means you have to pick U m plus; U m plus 1 up to U d. 

So, I need to pick U m plus 1, U m plus 2 up to U d and each one of them has to be a 

distinct Eigen vector S. And, whichever Eigen vector I pick up that term in this sum 

transpose of the corresponding Eigen value. So, which means U m plus 1, U m plus 1 to 

up to U d should be the d minus 1 Eigen vectors corresponding to the least d minus 1 

Eigen values. You take the Eigen values of S, take the least d minus m Eigen values and 

take the corresponding Eigen vectors, that is the least, I can make this to be. 

So, what we now see shown is that if, I want to minimize this, my choice of U m plus 1, 

U m plus 2 up to U d are the d minus m Eigen vectors correspond to the least d minus m. 

Eigen values. Of course, minimizing this I will be fixing only U m plus 1 m up to U d. 



Why is that so, because my j just turns out to be that. When we did that my, my, my j 

turns out to be that, because my X i minus X tilde up to first term; up to first m terms in 

the summation X i and X tilde are same. And hence, my X i minus X tilde sums over 

only j is equal to 1 plus 1 to d of something into U j. 

So, ultimately my J turns out to be this. So, because my J turns out to be this and I 

minimize that, I essentially pick U m plus to U d, but that does it mean that I have; I have 

a choice about remaining. I do not. Because, the, the U m plus 1 to U d completely 

specify the orthogonal complement to the m dimensional space that I want to want to be 

in. So, my optimal m dimensional space space is one whose orthogonal complement is U 

m plus one to U d which means the an orthonormal basis for that space U 1 to U m.  

So, ultimately you have to shown is that if I want X tilde the lambda (()) projection onto 

the m dimensional subspace to be close to the origin X i in a in the sense of minimizing 

mean square error. Then the m dimensional subspace is has a orthonormal space given 

by U 1 to U m where, U 1 to U m are the Eigen vectors of the data covariance matrix 

here corresponding to the top m Eigen values. 
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So, let us sum this up so, given some data X 1 to X n all living in the d dimensional real 

Euclidean space, we do a lower dimensional representation as follows. We first form the 

data covariance matrix S is 1 by n, i is equal to 1 to n X m as m bar X i minus X bar 

transpose, this is a d by d matrix. Then you find all its Eigen vectors. Let us say U 1 to U 



d be the orthogonal set of Eigen vectors because, S is real symmetric. We it, will have a 

complete, complete set of Eigen vectors meaning its Eigen vectors span the space. 

Since, the Eigen vectors span the space we actually make the Eigen vectors be 

orthogonal an orthogonal set of vectors and then a of course, I can normalize that so I 

can have a orthonormal set of Eigen vectors of S. Let us say U 1 to U d are that such 

Eigen vectors which are arranged in a decreasing order of corresponding n value that 

means U 1 corresponds to the highest Eigen value U 2 corresponds to the next highest 

Eigen value and so on. And I can talk about highest and next Eigen value, because the 

Eigen values are real because S is real symmetric. 

Once, I have this, this complete Eigen spectrum arranged like this, my low dimensional 

approximation now X hat tilde is for j is equal to 1 to m X i transpose U j, U j where this 

U 1 to U m are the Eigen vectors corresponding to top m. Eigen values of S and then 

there is a constant j is equal to m plus 1 to d X bar transpose U j. This is my lower 

dimensional approximation I can slightly rewrite it, what I can do is, I can for from each 

of these terms I can subtract X transpose U j and then add X transpose U j that means, I 

will be adding j is equal to 1 to m X transpose U j, U j to this term. 
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So, I can write my X tilde as j is equal to 1 to m X i transpose U j minus X bar transpose 

U j, what I did is from each of these terms I subtract X bar transpose U j. Now, I got j is 

equal to and plus this, other term j is equal to 1 to d X bar transpose U j, U j now I can to 



get all my X bar transpose U j terms together. Once I subtract them I have to add it, I 

already have m plus 1 to d and I am adding j is equal to 1 to m. So, I am adding j is equal 

to 1 to d.  

Now, j is equal to 1 to d X bar transpose U j, U j’s nothing but the representation of X 

bar in the coordinate system of U j. So, this entire sum is nothing but X bar so I can write 

it as X bar, X a transpose U j minus X bar transpose U j, U j plus X bar. This is my low 

dimensional representation. Writing like this is nice because, if I assume X bar to be 0 

then it is simply X i tilde is X i transpose U j U j first m components. Essentially, a first 

m components in the coordinate system of the Eigen vectors. 

So, instead of what my original coordinate system I now represent my axis in the 

coordinate axis of the Eigen vectors and then take the first m components. The, the extra 

term comes only to take care of the bias that means the, the non zero mean of the data. 

And this never causes any problem, because you can always work with mean subtracted 

if you give me X 1, X 2, X n as data. I can actually redefine X 1 prime, X 2 prime, X n 

prime where, X i prime is X i minus X bar. 

So, now these prime variables have zero mean, I can always work with zero mean data 

and the, the covariance matrix of the original data is same as the mean subtracted data. 

So, my U j’s will be the same, so whichever loss has generally I can assume X power to 

be 0 from now, on we will write these expressions with X bar is equal to 0. So, that they 

are much simpler as I already told you this does not look like an m dimensional vector is 

of course, it lives in m dimensional subspace because, this is just a constant. So, this is 

X, this is expanded in terms only U 1 to U m so to represent X i tilde you need to give 

me only m numbers. But it is still written in a vector notation as a, d dimensional vector 

because each of the U j’s are d dimensional. 
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We can of course, rewrite it as a d vector so, as I said in our representation X i tilde is a d 

dimensional vector. Because each of the U j’s are d dimensional vectors, but we can; 

obviously, write as an m dimensional vector because, it is; it is an m dimensional 

subspace of R d. How do I write as m dimensional vector? So X i tilde can be written as 

U 1 transpose X i U 2 transpose X i so on. It becomes a transpose X i written as a vector 

now of d components m components. Essentially, what it means is that once we take X x 

bar to be 0. Essentially I can write as m component vector where the first component is 

X i transpose U 1. Second component is X i transpose U 2 and so on. 

So that is what this representation is so I can actually write X i tilde as a transpose X i 

where A is a d by m matrix, this matrix whose columns are the vectors U 1 to U m. So 

you make a, you make a matrix whose columns are the Eigen vectors, you take as many 

as you want. And then write X i tilde as a transpose X i where X i is the original data 

then that is the lower dimensional representation of X. This is in this sense that it is a 

linear transform so essentially projecting X i onto the space spanned by the Eigen vectors 

we want to use. 
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Now, this is a as far as the U point of finding the best mean square approximation is 

concerned. So, let us look at the other view point of maximizing variance, let we want to 

find an m dimensional subspace in which the projected data would have the maximum 

variance. As you already said, this solution will turns out to be same once again, you 

have to project data onto the space spanned by U 1 to U m, the orthonormal Eigen 

vectors correspond with the top m Eigen values of the data covariance matrix. We will 

see, we will; we will not even give as much detail for this proof as the earlier one to get 

our (( )) on let us consider one dimensional case. 



Let us say U 1 is unit vector for the one dimensional subspace that we want to find; we 

want to find U 1. So, the projected data will be X i transpose U 1 along U 1 so, X i 

transpose U 1, U 1, this is the vector notation. So, its mean will be X bar transpose U 1 U 

1, what will be its variance? X i transpose U 1 minus X bar transpose U 1 whole square 

summed over I is equal to 1 to n, 1 by n. This will be 1 by n sum I is equal to 1 to n, U 1 

transpose X i minus X bar, X i minus X bar transpose U 1. We will all you know, what is 

this because 1 by n I is equal to 1 to n, X i minus X bar into X i minus X bar transpose is 

S, this is used U 1 transpose X U 1.  
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And we already know that, this is maximized if U 1 is the Eigen vector corresponding, 

the highest Eigen value. See maximum minima, maximizing and minimizing is the same. 

Essentially, if I equate the gradient to 0, I get solution which might be either maxima or 

minima that tells me, that it has to be an Eigen vector and for any particular Eigen vector, 

I take U 1 to be, this U 1 transpose U 1 will be corresponding Eigen value. So, if you 

want to maximize it, U 1 should be the Eigen vector corresponding to the maximum 

Eigen value. If you want to minimize it, it should be Eigen vector corresponding to the 

least Eigen value. 

So, he will want to maximize it so, my first U vector U 1 should be the Eigen vector of at 

covariance matrix corresponding to the maximum value. Now, suppose m is equal to 2 

and we want to add one more direction, what is that we need;,we need a U 2 which has a 



unit now, which is that U 1 transpose U 2 is equal to 0 and the projected variance should 

be maximum once again you will get the same thing. And U 2 should become the Eigen 

vector corresponding to the second largest Eigen value and so on. 
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So, that is how we can say if you want an m dimensional subspace that the projected data 

would have the highest variance. Then that subspace is the one spanned by the m Eigen 

vectors of S corresponding to the top m Eigen values. These directions U i are called the 

principal directions and the projected values U i transpose X i and so on. They are called 



the principle components that is why the, this, this n type way of finding is called 

principal component analysis. 

So, to sum up the PCA is essentially a projection of the data vectors onto a space 

spanned by the Eigen vectors for the covariance matrix. So, this, this is a linear transform 

of the original data X tilde j tilde transpose X, where columns of a are the Eigen vectors. 

Of course, they can choose all of them, even then I am transforming the data into a better 

data because, but essentially, to take by, by using only top m Eigen vectors. 

So that I make a to be d by m matrix so, X tilde will be m dimensional subspace. So, if I 

use only top m Eigen vectors, we get dimensionality reduction. Now, what will be the; 

what will be the residual error? The residual error as you already seen j is equal to m plus 

1 to d U j transpose U S U j which means nothing but the sum of the remaining Eigen 

values. So, the residual be the sum of the least d minus m Eigen values so, you find all 

the Eigen values look from the bottom most. 

So, keep adding them that how much error you can tolerate that many Eigen values you 

can reject that tells me, what m I should use. This has often one way of deciding what m 

I look at these Eigen values and based on these decide, how many Eigen values, I can 

reject. If I have got a few high Eigen values and rest of the Eigen values are all small. 

Then along those, Eigen directions I do not have much variation, so that component of 

data is not important. I will only look at the top m Eigen values, that is how PCA works.  
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We will quickly look at a couple of generic variations of PCA. First is (( )) whitening 

transform. Of course, so far we looked at PCA mainly for dimensional reduction that is 

its main use most of the time, it is used as a dimensional reduction technique. But there 

are other uses, we will just illustrate 1. We can use PCA to find a linear transform of the 

feature vector so, the transformed feature vectors are uncorrelated, when we considered 

our linear least squares, as well as our neural networks and so on.  

We mention that it is always nice to normalize individual feature components. That is we 

want each feature component of zero mean and variance. So, that can be done by taking 

each feature component, find its mean from the data. I mean it is sample mean from the 

data its sample variance from the data and then do a simple linear transformation so that 

the mean and variance of each feature component can be standardized. 

So, we discussed, how we can normalize, so at each feature component at zero mean and 

unit variance. But did I mean that the features themselves are uncorrelated because, it 

still leaving the features using PCA. We can actually transform the feature vector, so that 

the components can become uncorrelated which could be quite useful in pattern 

recognition. 
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So, as earlier let S be the data covariance matrix and lambda 1 to lambda d be the Eigen 

values of S arranged in the decreasing order. U 1 to U d be the corresponding Eigen 

vectors, which are orthonormal remember that, because S is real symmetric and has a 



complete set of Eigen vectors. We can have a orthonromal, an orthonromal setup Eigen 

vectors of S and they are arranged in the order of lambda 1 to lambda n, that is 

decreasing order of the values of course. 

Then let of course, this we, we will not particularly use the fact that they are decreasing 

values in the whitening transform. Let L be a diagonal matrix with lambda I being the 

diagonal entries and let U tilde be the matrix, whose columns are U j. So, U tilde be U 

tilde is the matrix of Eigen vectors and because these Eigen vectors are orthogonal U 

tilde is a orthogonal or even tilde matrix. So, U tilde is a d by d matrix because, they are 

d Eigen vectors each of d dimensions. 
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So, the Eigen value, Eigen vector equation for S is S U tilde is U tilde L. So I have 

written all the Eigen value, Eigen vector equations together this, because L is diagonal 

with lambda, this is nothing but the Eigen value equation for S. Now, let me define a 

transformation of the vector, so I am transforms X i is into Z i is; Z i is given by l to the 

power minus half where L is the diagonal matrix like the Eigen values on the diagonal L 

to the power minus half U tilde transpose X i minus X tilde. Where X bar X i minus X 

bar, where X bar is the mean of the data vectors. 

Now, it is very easy to see that Z i has zero mean now the, the transformation makes Z i, 

zero mean simply, because X i minus X bar as zero mean. So, Z i will add all the Z i is, 

this is a constant then that will be same as summation X i minus X i bar that will be 0. 



Now, so zero mean, we achieve, we are asking, what is the covariance matrix of Z i? We 

want Z i covariance matrix to be identity matrix. So, that not only each Z i has unit 

variance Z i Z j are uncorrelated. Let us calculate the covariance matrix of Z i. 
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Why is the covariance matrix of Z i Z i Z i transpose because Z i is zero mean. So, let us 

substitute for Z i Z i is nothing but l to the power minus half U tilde transpose X i minus 

X bar, z i transpose is X i minus X bar transpose U tilde L to the power minus half. Now, 

I have this S matrix sitting in the middle 1 by n, i is equal to 1 to n, X i minus X bar X i 

minus X bar transpose, put that in. So I got L to the power minus half U tilde transpose S 

U tilde L to the power minus half. Now, because U tilde is the matrix of Eigen vectors S 

U is U i i S U tilde is U i. So, this is L to the power minus half U tilde transpose U i, L to 

the power minus half U is a orthogonal matrix these columns are orthogonal. So, U 

transpose U tilde transpose U tilde is identity so this goes away. And now I get L to the 

power minus half by L to the power minus half. This is diagonal matrix so, this is a 

identity. So, the covariance matrix of the data Z i now is the identity matrix. 
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What does this mean? If you transform X i to Z i by using Z i is equal to L to the power 

minus half U tilde transpose X i minus X bar. Where X bar is the mean of the original 

data and U tilde is the matrix, whose columns are the Eigen vectors of the data 

covariance matrix. And L is a diagonal matrix, whose diagonals are the Eigen values of 

the data covariance matrix. 

Then this transformation, transform vectors into zero mean unit variance uncorrelated 

components. This can often be useful many for example, in naive Bayes, we assumed 

different features are un independent. This transformation can at least give uncorrelated a 

PCA used like this to make my feature vector components uncorrelated is called a 

whitening transform. So, this is another use of PCA apart from dimensional direction, I 

can use PCA as a whitening transform. 
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There is one other interesting take on PCA that is worth knowing. To implement the 

PCA, we need to find Eigen values and Eigen vectors of S. The data covariance matrix is 

a d by d matrix, there can be situations when the feature vector dimension is large. And 

so large that as a matter of fact the number of examples, I have is less than d what is such 

situations image based pattern, when we think of let us say we I am doing face 

recognition. 

So, I take each face image as a, as a pattern, so if I simple think of it as a vector suppose 

I have a 32 by 32 measure very small, highly scaled on image is still has 1000 

components. If I have 64 by 64, it has a million components. That even 32 by 32, have 

1000 component face image. If you want face recognition, how many different images 

can, can I get for one particular person on may be 20 may be 10. I cannot get 10,000 

images. 

So, very often n will be much less than d, because I often work with more than 32 by 32 

images and I do not have so many face images of a single person and even, if I have all 

the face put together would not become too large. So, I may have d much larger than n 

and I need to find the Eigen space of S. Now, when d is large the finding the Eigen 

vectors of S can be computationally expensive and also may be useless. Basically, 

because it computationally expensive, we do not want to find all the Eigen values. So, 



they are asking because, n is much less than d. Is there a way I can find the Eigen vectors 

of some other n by n vectors instead of this d by d matrix, we show that it can be done.  
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The main reason why, we choose an n by n matrix is, S is given by this each of X I, this 

is some vector so, X i minus X bar X i minus X bar transpose, this is an outer product. 

So, if I take a vector a, and i form the matrix a, a transpose; obviously, it is a rank 1 

matrix because, every column is a multiple of another column. So, because this is a rank 

1 matrix, I am adding n rank 1 matrices. The rank of S can be at most n which means by 

any way know d minus n Eigen values will be 0. Because, the rank will be n and hence I 

do not need the Eigen vectors correspond to I would not use them, because there are zero 

Eigen values anyway drop those dimensions. So, I should be able to work just n Eigen 

vectors, if I want to work with n Eigen vectors I should be able to find n, Eigen vectors 

having n by n matrix. 
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So, what n by n matrix should I use so let A be the n by n d matrix whose ith row is X i 

minus X bar transpose. Then by definition S is 1 by n a transpose A X i minus X bar, X i 

minus X bar transpose summed over i. Let U i be an Eigen vector of S with an Eigen 

value lambda for a Eigen value greater than 0. So, that means 1 by n A transpose A into 

U i is lambda U i, if I multiply both size with a that is A lambda, i times A U i will be a 

times 1 by n A transpose A U i the because matrix multiplication associated. We can 

write as 1 by n this is scalar bring it out, I have A, A transpose and A U can be put that 

means I have 1 by n A, A transpose times A U is lambda times A U. So, A U i is a Eigen 

vector corresponding to the Eigen value lambda i of the matrix one by n A, A transpose 

A is an n by d matrix. So, A, A transpose is a n by n matrix, S is of course, A transpose 

A instead of that, if I do 1 by n, A A transpose the A U i is are Eigen values.  
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So, U i is an Eigen vector of S 1 by a transpose a for an Eigen value lambda i. Then 

lambda i is also happens to be Eigen value of the n by n matrix 1 by n A, A transpose 

and A U i is the corresponding Eigen vector. Which means for taking PCA now, I do not 

need to find the Eigen vectors of S, I can work with the Eigen vectors of the n by n 

matrix. Specifically, what can I do? 
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Let V i be the Eigen vector of corresponding Eigen value lambda i of the n by n matrix 1, 

1 by n A, A transpose. I hope you remember, what A is, A is the n by d matrix whose i 



through X i minus X power transpose. So, S is actually 1 by n A transpose A instead of 

that, we are looking at 1 by N A, A transpose 1 by n A transpose A is d by d matrix, 1 by 

1 A A transpose A is a n by n matrix. If V i is Eigen vector, I know 1 by n A A transpose 

V i is lambda i V i. And hence, 1 by n A transpose A into A transpose V i. So, if I 

multiply both sides of the equation is a transpose I can put a transpose A here, and A 

transpose V i here, because of associatively so, 1 by n A transpose A into a transpose V i 

is lambda i times a transpose A. 

So, I find all the Eigen vectors V i of 1 by n A transpose, this is an n by n matrix. And 

then I can get the Eigen vectors of 1 by n A transpose A, which is my data covariance 

matrix as simply A transpose V i. That is we get all the required Eigen vectors of S. So, 

this is how one handles high dimensional PCA. So, we stop the PCA here, so we would 

not come to feature vector selection anymore next class. We look at a few other special 

topics of pattern recognition.  

Thank you. 

 


