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Hello and welcome to this next lecture in the pattern recognition course. We have been 

looking at support vector machines idea. This lecture, we will close this; we will look at 

kernels in general. Just to recall, we have looked at the support vector machines both for 

classification and regression. The basics of electro machine that glance optical 

hyperplane for a two class classification, and also seen how we can do support regression 

using epsilon in sensitive loss function. And we also seen some generalization of the 

basic SVM idea. For example, look at the new SVM the way to add b square to the 

primal objective functions of that the dual becomes very simple to solve. So, which is 

called successive over relaxation SVM. 

So, we have seen some of the generalization of the basic SVM idea. So, to ultimately 

take some very broad look at what the SVM idea is added, there essentially two 

important ingredients in the SVM idea. So, if I am looking at only classification, then 

they told you the, the power of the algorithm comes from the fact that we are learning 

optimal hyperplane, which is what allows us to learn a classifier with very low true risk. 

And by using kernels to do inner products, we are able to learn a nonlinear classifier with 



this thing, but if I look at everything all the SVM type ideas. So, essentially kernels is 

one important idea. And equally important idea, which is what allowed us to use the 

kernel idea in the first place is that the final function admits a representation in terms of 

kernel functions. 

So, we seen for example, the in the SVM the final w is a linear combination of data 

vectors. And hence the final classification function of the discriminant function can be 

expressed as the linear combination of kernels of kernel function values. So, we can call 

this as support vector expansion. So, representing your final classifier say finite classifier 

function f X where sin of f X will be your classifier, representing that function f X as a 

nice kernel expansion. So, we will call that support vector expansion, so these two are 

the two ingredients that allowed us to solve nonlinear problem using linear techniques. 
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Now, both these are much general, much more general than what we have seen in the 

simple SVM method. Kernel functions in general allow us to learn nonlinear models 

using linear techniques and also a very good way to capture similarity that is useful in a 

general way. So, kernel functions can be thought of as capturing similarity, and 

dissimilarity between feature vectors. In the same way support vector expansion is also a 

very general property of kernel based methods. So, what we will do in this class is to 

look at this general overview of kernels. So, what I will do is I will first give you a very 

brief interaction or brief idea of what we mean by kernels at good way to capture 



similarity. And then we look at positive different kernels in a little more detail to 

understand the kernel idea in a slightly more general fraction then what you seen so far. 
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In pattern recognition, we always use distance as a means to access similarity that is one 

of the ways which you can do this. You know at the beginning of the course, we looked 

at nearest neighbor classifier. Nearest neighbor classifier I stored some prototypes and 

when you give me new pattern I find the distance the equilibrium distance of the new 

pattern to each of the prototypes whichever prototype is closest to I will put that in the 

class, we have seen that as an interesting very simple classifier. And if I have sufficiently 

many prototypes it is worst case probability of error is at worst twice that of the basic 

error. 

So, in that sense by simple classifier it does remarkably well. Now, kernel allow us to 

generalize such notions. So, the basic idea there is 2 patterns are closed to each other in a 

distance sense then they are also similar patterns. So, the question is what kind of 

distance is a good distance? So, we may have some similarity function, which we can 

think of as a kernel. And then we can use the kernel in place of the usual distance. We 

will, we will look at the very simple example to see how kernels can be used in a nearest 

neighbor classifier. 
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So, for the example let us take as usual two class classification problem, let us say X i y i 

X that is X 1 Y 1 X x n y n are the samples and the classes are plus 1 minus 1 and the 

feature vectors are in R m. Now, suppose we implement in a nearest neighbor classifier 

by computing distance from a set of prototypes. And the whole idea is that what are these 

SVM idea I have amount to that we do not do it is the original feature space. But we map 

the feature vectors to some other high dimensional space and do distance as this. So, the 

same way we using some phi to map X s and we are actually finding Euclidian distance 

R distance using a inner product in the (()) space of phi. 
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So, let us say we are using 2 prototypes, we call them as C plus and C minus, C plus is 1 

by n plus summation of phi X i where i is such that y i is plus that it is nothing. So, n plus 

is the number of examples of class plus 1 similarly, n minus is the number of examples 

of class minus 1. So, this is nothing but the average of all the patterns of class one, not in 

the original space. But in the real space of phi because I have mapped the original feature 

vectors using phi to some other space, in that space C plus is the centre of all the class 

plus 1 examples. 

Similarly, C minus is the centre of all the class minus 1 example. So, these are the 2 

centers of the 2 classes. So, we use them as the prototypes, the idea is that if you give me 

a nu X i will go to the reign space of phi. So, I will find the distance between phi X and 

C c plus this is phi X minus C plus norm square. If that is less than phi X minus C minus 

norm square then I put it in class plus 1 other wise I will put it in class minus 1 this. So, 

this is a simple nearest neighbor classifier, but distance has not found in the original 

feature space but in the phi space. 
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Now, we can do all this using kernels as follows, so basically we need to look at this phi 

X minus C plus whole square that is the distance. By expanding phi X minus C plus 

whole square becomes phi X transpose phi X minus 2 phi X transpose C plus C plus 

transpose C plus. Now, I want phi X minus C plus whole square greater than phi X 

minus C minus whole square. So, do this simple algebra this constant term cancel both 



sides. So, finally, it means we will put X in class plus 1 if this quantity is greater than 0, 

phi X transpose C plus minus phi X transpose C minus plus some constant which is C C 

C minus transpose C minus, minus C plus transpose C plus. So, basically I have to do all 

these inner products to be able to implement my nearest neighbor classifier by first 

transforming all the patterns using the function phi. But the idea is that all these inner 

products can now be kernelised. 
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Very easy to see that they can be kernelised, what is phi X transpose C plus? Phi X 

transpose, this is my C plus. Now, push phi X inside then it becomes phi X transpose phi 

X i which is nothing but K X i X. In a similar way, what is my C plus? My C plus is this 

I want C plus transpose C plus, what I will ultimately I get is phi X i transpose phi X j 

for all i j pairs at both y i and y j are plus 1 and phi X i transpose phi X j is K X i X j. So, 

I get C plus transpose C plus like this similarly, I can write C minus transpose C minus. 
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Which means finally, my nearest neighbor classifier is sin of h (X) where h (X) can be 

obtained like this. This is phi X transpose C plus this is phi X transpose C minus and the 

constant b is this plus C plus transpose C plus C minus transpose C minus. So, 

everything can be kernelised. So, what it meant is that I can for example, use phi to 

transform my features into some other high dimensional space and finding the actual 

distances there. So, if I have a suitable kernel then I can actually implement nearest 

neighbor classifier by implicitly transforming features into high dimensional space. Now, 

another way of looking at it is essentially the kernel captures. So, if I think phi X 

transpose whatever norm of phi X minus phi y is a good matrix for distance between 

pattern vectors X and y then correspondingly K X y is a good similarity measure. 
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So, that is we can implement nearest neighbor classifiers by implicitly transform the 

feature space. And the kernel function allows us to formulate the kind of similarity 

measure in the original space. For example, if I am using a Gaussian kernel so, which 

means, that I am measure similarity over some spatial extent by (( )), my sigma 

parameter and so on. Another way of looking at is suppose I take this what do we call phi 

X transpose C plus phi X transpose C minus I call them P plus X and P minus X. Now, 

these are very familiar expressions, this is summed over all the examples of 1 class some 

kernel functions. So, there is some function defined here it is value at X is summed over 



all examples of class 1, the kernel functions at each of the example points this X is same 

as this X that is the argument. 

So, if for example, this was a a a proper window function; this is nothing but a non 

parametric estimate of density. For example, if I take this to be Gaussian that means I am 

putting a Gaussian centered at each of the X i’s and some sum up and sum up all their 

contribution, this X that is my estimated class conditional density at X. So, with a proper 

normalization these are nothing but non parametric estimate for class conditional 

densities the kernel density estimates. So, we have seen the kernel density estimates and 

my final classifier is if P plus X minus P minus X is greater than something. 
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So, so all it means is that no these are nothing but non parametric density estimators that 

we have seen earlier these are the kernel density estimators. And in that sense what I call 

the nearest neighbor classifier using kernels is like a Bayes classifier, using a non 

parametric density estimator for class conditional densities using the kernel a popularly 

normalized kernel with the density estimate. So, in this sense once again you can see 

kernels give us some kind of a similarity metric all. Now, let us, let us look at f few more 

general theoretical details of kernels. We defined positive definite kernels earlier we, we 

actually looked at two different kinds of definition of kernels. 

One of positive definite kernels, other kernel that satisfy Mercer's theorem, we just that 

anything that satisfies Mercer's theorem is such that there is always exist a phi and K X 

comma X prime will be phi X transpose phi X prime. We did it say, we did not prove 

this theorem, but for positive definite kernels in this class, we will show that there are 

always exist such a space and we actually construct this space. So, we look at positive 

definite kernel in some detail, because these are one of the most important kernel pattern 

recognition today. So, we show that for any such kernel there is one vector space, we call 

that a H script H which has an inner product on it. 

So, a a vector space endure with inner product that we can construct such that the kernel 

is an inner product in that space. So, this particular space is called the reproducing kernel 

Hilbert space RKHS associated with this kernel K. And we will we will actually show 



how to construct this space. And then we also show that if you are doing regularized 

empirical risk minimization under almost any loss function. Then the final solution 

would have a support vector expansion form. The, the, the rest of this lecture assumes 

some level of mathematical sophistication.  

Specifically I am going to assume that everybody knows general vector space as norms 

basis orthogonal vectors, orthogonal complements of subspaces and so on and so forth. 

So, if any of you do not any of vector spaces may be it will be a little difficult to further 

part of the lecture. The, the, and the other, other hand the rest of this lecture is 

independent of the course. So, if you do not understand rest of the lecture can just 

skipped it. 
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So, let us start looking at positive definite kernels as earlier, let X be the original feature 

pace this script X. And K is a positive definite kernel that is K is a symmetric function on 

X class X real value symmetric function X class X which, which satisfies some 

conditions just recall that given any n points. Let us say X 1 given any n and n points X 1 

X 2 X n in my feature space. The n by n matrix whose i jth element is K X i X j is called 

the Gram matrix of K. So, if I take all the X i X j’s and arrange them as n by n matrix 

would be a symmetric matrix and recall that K is a positive definite kernel. If the gram 

matrix is positive semi definite that is it is quadratic form is always greater than or equal 

to 0 for all n and all points X 1 to X n, this is what we defined earlier. 

So, specifically because the quadratic to be greater than equal to 0, a positive definite 

kernel if K is a positive definite kernel, the, for every n and every X 1 to X n, the 

summation over i n j going from 1 to n C i C j K X i X j. This is the quadratic form of the 

matrix is greater than equal to 0 for all scalars X i. So, given any scalars even C 1 C 2 C 

n and any element from my feature space X 1 X 2 X n this double summation i j going 

from 1 to n C i C j X i X j has to be greater than or equal to 0 if K has to be a positive 

definite kernel. For this talk, we are going to confine ourselves to all our scalars being 

rear even though everything we say can be extended to these scalars coming from the 

complex field, we will restrict ourselves to scalars being all real numbers. 



So, what does this mean? Once again this is nothing but the Gram matrix n by n Gram 

matrix is positive if I take n is equal to 1 of course the matrix has only one element. So, 

which means K X comma X should be greater than equal to 0 positive. Similarly, 

different if I take n is equal to 2 it will be a 2 by 2 matrix. The first row being K X 1 X 1 

X K X 1 X 2; second row will be K X 2 comma X 1 K X 2 comma X 2. We want that to 

be positive semi definite, which for example, mean that the determinant has to be greater 

than or equal to 0 if n is equal to 2. And I take the determinant, determinant will be K the 

main diagonal is K X 1 X 1 into K X 2 X 2 of diagonal is X 1 X 2 into X 1, but K is 

symmetric. 

So, the determinant has to be positive so, K X 1 X 2 whole square should be less than 

equal to K X 1 X 1 into K X 2 X 2, this is true for every pair of features X 1 X 2. So, if K 

is a positive definite kernel then in particular it satisfies this given any 2 feature vectors 

X 1 X 2 K of X 1 comma X 2 whole square is less than or equal to K of X 1 comma X 1 

into K of X 2 comma X 2. I hope all of you recognize this structure of this inequality this 

is nothing but Cauchy Schwartz inequality, because we think of K as a inner product if K 

was an indeed an inner product. Obviously, phi X 1 transpose phi X 2 whole square is 

less than or equal to phi X 1 transpose phi X 1 to phi X 2 transpose phi X 2. 

But we have not yet shown, that K is actually inner product, we just defined that a 

symmetric function with positive definite kernel if it satisfies this. But it satisfying this 

means that this kind of Cauchy Schwartz inequality is satisfied by the kernel. Of course, 

the Cauchy Schwartz inequality does not mean that there is a space in, in and a function 

phi is at K X comma X 1 comma X 2 is phi X 1 transpose phi X 2. But certainly the 

function K by virtue of it being a positive definite kernel satisfies the Cauchy Schwartz 

inequality. This is going to be very important for us alter on in the in, in studying 

positive definite kernels. 
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If in fact, the kernel is obtained as a inner product in some other case that is if script X 

can be mapped to some other space using phi and the real space of phi has an inner 

product here I represent it the transpose. So, in, in, in fact, if K X coma X prime is phi X 

transpose phi X prime then that such a K is certainly positive definite why, because for K 

to be positive definite kernel. I want to show that this C i C j K X X i X j should be 

greater than equal to 0 K X i X j is nothing but phi X i transpose phi X j. 

So, I need to show C i C j phi X i phi X j transpose phi X i transpose phi X j is greater 

than or equal to 0. So, this can this can always be written as summation over i C i phi X i 

transpose summation over j C j phi X j these two are same element. So, this is nothing 

but norm of summation over i C i phi X i norm square of that. So, this is always positive. 

So, if in fact, K happens to be an inner product then K will always be positive definite. 

But we only ask this for positive definiteness and this is of course, much easier to verify 

then your Mercer's theorem. So, where if K satisfies Mercer's theorem K satisfies 

Mercer's theorem. Then we know that there is some phi and K can be written like this. 

So, if K satisfies Mercer's theorem then it is a positive definite kernel. 
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Now, we show that all positive definite kernels are also inner products on some 

appropriate space as I said we show this by saying given a kernel K we will construct a 

space endowed with the inner product. And show how positive definite kernel is 

essentially implementing inner product in this space, as I said this space is call the 

reproducing kernel Hilbert space. 
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So, to start on this let R superscript script X, this one let this be set of all real valued 

functions on my feature space that is if I have any function g that maps my feature space 



to real numbers then that g will be an element of this set. So, this set consists of all 

possible real valued functions on my feature space X. Now, K be the given positive 

definite kernel. So, given any element in my script X any feature vector X, let us 

represent by K dot comma X. This is general representation for functions the dot is 

where the functions argument is. 

So, essentially this is a function because you put anything in place of this dot you get a 

real number. And think that you can put in place of this dot or elements of script X. So, 

K dot comma X is nothing but a function that maps script X to real numbers. So, this 

belongs to R superscript X. So, K dot X is some real valued function. Let us say this 

denotes the function that maps any X prime to K X prime comma X. So, that is almost so 

simply dot is the notation for the dummy argument of the function. 

So, K dot comma X is the real valued function on X whose value at an argument X prime 

is K of X prime comma X. Now, consider the set of functions H 1 which consist of all 

such K dot X‘s for R X for every X in my feature space actually we can think of K dot X 

at the kernel functions centered at X. It is actually this norm is actually function its value 

at any argument value is the value of the kernel function X prime comma X so, this we 

will call this a kernel centered X. 

So, H 1 is the set of all the set of kernels centered at all possible feature vectors all 

possible elements of X. Let us script H be the set of function that are finite linear 

combinations of functions in H, we will you take H 1 and make finite linear 

combinations. Let us say alpha 1 K dot X 1 alpha 2 K dot X 2 like that so all possible 

finite linear combinations of functions H 1. If you take all possible finite linear 

combinations of functions of H 1, let us call that set of functions as script H. So, script H 

is the set of all functions that are finite linear combinations of functions in H 1. 
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So, any f in H would be a linear combinations of functions from H 1 and the only 

functions in H 1 are K dot X type where X is an element of script X. So, any f in my 

script H can be written as alpha i K dot X i for some n. So, it is a finite linear 

combination so, we do not know how many term they will be, but there will be some in 

(( )) such that there will be n terms in the linear combination. 

So, f will be i is equal to 1 to n for some n of alpha i K dot X i for some real numbers 

alpha i and some X i. So, every function in this script H can be written like this. For 

some X 1 to X n elements of script X some alpha 1 to alpha n real numbers. And some n 

f can be written as i is equal to 1 to f in alpha i K X which means if I have 2 functions f 

and g in H is very easy to say f plus g is also in h. Because f plus g would once again be 

some finite linear combination of K dot X‘s. And similarly, alpha times f will also be in 

H for any real number alpha which means H is a vector space over the field of real s, 

because the rest of the vector space axioms are easy to verify, essentially we have a 

vector addition and scalar multiplication while define. 

So, this, this set H know is a vector, vector space under the usual addition of functions 

and scalar multiplication of functions a vector space over the field of real numbers. As I 

said everything as a in this lecture can be extended to the field of complex numbers with 

minor modifications, but for simplicity we will stick to all scalars being layer. So, what 

we showed is that if we take finite linear combinations of kernels entire that any points in 



X, if we call that as the space H that H is the is a vector space under the usual function 

addition and scalar multiplication. So, now what we are going to do is that we define an 

inner product on a space H inner product. And then show that essentially there can be a 

phi that maps script X to this H. So, that K X comma X prime will be phi X phi X prime 

inner product that we are going to define. 
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So, first I have to define an inner product for any two elements of H. So, let us take any 2 

elements of H and g, every element of H is a finite linear combination of kernel functions 

entered at X i. So, f is some summation i is equal to 1 to n alpha K dot X i alpha i K dot 

X i for some real alpha i some elements X i. So, g is beta j K dot X j prime so, X 1 X 2 X 

n X 1 prime X 2 prime X n prime. These are all arbitrary I took n and n prime also 

different, because the 2 functions may have different number of terms in there linear 

when they represented as linear combinations of K’s. 

So, given 2 functions f and j like this, we will define inner product I am going to 

represent inner product like this in general the standard notation for inner product 

between the 2 angular brackets f comma g within the angular bracket. So, this is the 

inner product of f and g if f is this and g is this. We will represent the inner product of f 

comma g as i is equal to 1 to n j is equal to 1 to n prime summation alpha i beta j K of X 

i comma X j prime.  



So, if f is this and g is this then the inner product is defined to be this. Of course, we have 

to show that this is an inner product it has satisfy all the properties of inner product 

before we can go for there to show that this is an inner product. We have to first show 

that this is well defined, what do you mean by well defined when I say elements of H R 

finite linear combinations of elements of H 1 which are nothing but kernel functions 

centered at point x. 

So, this function f given different arguments say f of X is alpha i K i X comma X i. Now, 

a given a function a of H there may be more than one way of writing it as a linear 

combination of some kernel function when we say we all possible linear combinations 

there is no guarantee that 2 different linear combinations do not give you the same 

function which on other words a given function may not be representable uniquely as a 

linear combination which means these alpha i’s are not (( )).  

The function of course, is (( )) because function is an element in H, but the same function 

may be representable with some alpha i primes of and some K y i’s who knows. So, 

essentially what we have to show is that it is not dependent on this alpha i’s and beta j’s, 

because they can be different kinds of representations. So, the, the inner product should 

not be dependent on the expansion coefficients. So, first you have to show that it does 

not depend on the expansion coefficients. 
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The other product as we defined I can take alpha i outside, what I have is j is equal to 1 

to n prime beta j K X i X j prime g dot is j is equal to 1 to n prime beta is a K dot X j 

prime. So, g of X i will be beta j X i X j prime. So, if I take alpha i out, what I have is 

beta j K X i X j prime which is nothing but g f X i. So, I can write the inner product as i 

is equal to 1 to n alpha i g of X I, which means while it depends on the function g it does 

not depend on either beta j or X j prime i g can be written in different ways. It does not 

matter as long is the same function it only depends on the values of g at X i. So, i g has a 

different expansion it does not matter. Similarly, by taking beta j by interchanging the 2 

summations and taking beta j out I can write as j is equal to 1 to n prime beta j i is equal 

to 1 to n alpha i K i X i X j prime, what is this? f dot is this. 

So, f of X j prime will be i is equal to 1 to n alpha i K i of X j prime X i and your K is 

symmetric. So, whichever way I write it as does not matter. So, this entire summation 

nothing but alpha of X j i mean f of X j prime. So, I can also write f the inner product 

between f and g as summation j is equal to 1 to n b prime beta i j f of X j prime. So, it 

depends on the value of the function f at X j prime where does not does not specifically 

depend on the specific vectors f i or alpha I, which shows that the inner product does not 

depend on the specific expansion coefficients and hence it is well defined. So, this f well 

defined inner product. So, next you have to ask is this indeed an inner product I just said 

is an inner product, we have to show that this is an inner product. 
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So, what is an inner product satisfies? An inner product vector space h takes space of 

vectors and gives you a real number. So, it is a function h class h 2 l, what does this 

function satisfy? It has to be symmetric, it has to be bilinear inner product of any, any X 

any element with itself is always greater than or equal to 0. An inner product is 0 if and 

only if the element is 0 inner product of some element with itself is 0 if and only if 

element is 0 these are the properties of inner product. 

Now, our inner product is symmetric by definition, because this is how we define this. 

So, you given this and this there is an dependant on you know which is f and which is, 

because these alpha i beta j K i X i X j prime and K is symmetric. So, in a product of f 

and g is same as product of g and f i. I would like to remind you once again that will 

considering field of real numbers, this our vector space is vector space over reals that is 

why we are only looking at symmetry otherwise we have to worry about complex 

conjugateness. But we are not allowing complex scalars now for simplicity of exposition 

I am just taking everything to be real. 

Similarly, it has to be bilinear that is inner product of f g 1 plus g 2 should be inner 

product of f comma g 1 plus f comma g 2. Similarly, the other way which is also very 

straight forward, because of the definition of the inner product it is very easy to verify 

that it is bilinear. So, if I put f 1 plus f f 2 here. So, I will get some alpha i K dot X i plus 



some gamma gamma j K K dot some X bar j so, accordingly they come in the 

summation. 

So, f 1 plus f 2 comma g will be f 1 comma g plus f 2 comma g and so on. So, by 

definition, it is symmetric and it is bilinear. And similarly, you can show that if one of 

the, are given multiply by a constant, the inner product gets multiplied by that constant. 

Next, what you have to show? You have to show that inner product of f comma f is 

greater than or equal to 0 while end product of f comma f if f is alpha i K dot X i inner 

product of f comma f is alpha i alpha j K X i comma X j sum over i i j. So, this is nothing 

but the quadratic form of the gram matrix and because K is positive definite kernel, this 

is greater than or equal to 0. So, we also shown that inner product of f comma f is greater 

than or equal to 0. 
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So, the only thing that remains to be shown now is that if the inner product is 0 f is 0. 

Mind you, if I had assumed, if I defined positive definite kernels as a function K such 

that the Gram matrix is positive definite rather than positive semi definite then I am 

done. If I am asking for this to be positive definite then except when R alpha i alpha j is 0 

which means function is 0 this quadratic form has to be strictly greater than 0. But if I 

want positive definite functions only there will be difficult for, for us to get kernels. 

Because we want kernels should represent similarity in general as it turns out in many 



applications. While it is easy enough to show Gram, Gram matrix is positive semi 

definite is much more difficult to show that Gram matrix is positive definite. 

So, we do not want to assume positive definiteness, the kernel, because we do not know 

need it I, I just want you to understand that because we assume only positive semi 

definiteness of the Gram matrix I only get f comma f inner product of f and f is greater 

than equal to 0 and it is not I I still have to separately show that if inner product is 0 f is 

equal to 0. So, let us go a go ahead and choose this separately. Show this, let us take any, 

any some P functions from H and some P scalars gamma 1 to gamma P and let g 1 is 

gamma f i, because H is the vector space g will also be in the in H . 

Now, if I look at gamma i gamma j f i f j gamma i gamma j inner product of f i f j 

summed over i j is equal to 1 to n. By the bilinearity of inner product, it is same as inner 

product of i is equal to 1 to P gamma f i gamma is j is equal to 1 to P gamma j f j. 

Because of the bilinearity of the inner product, we have seen that the inner product of f 1 

plus f 2 comma g is inner product of f 1 comma g plus f 2 comma g. And similarly, the 

other way and hence this summation double summation can be written as inner product 

between these two. 

Now, this is nothing but what we call the function g 1. So, this is nothing but the inner 

product between g 1 and g 1, because these two are the same summation i and g are 

dummy variables after all. And this we already show n to be greater than equal to 0. So, 

what it means is given any P functions from H f 1 f 2 f P and any P scalars gamma 1 

gamma P gamma i gamma j inner product f i comma f j summed over i j equal to 1 to P 

is greater than or equal to 0. What is this mean? This is exactly what we wanted from a 

positive definite kernel, earlier positive definite kernel meant as we seen C i is C is a K X 

i comma X j is greater than or equal to 0. So, I can think of the inner product itself as 

kernel on H our original K the the kernel I am considering K is a kernel on script X or 

feature space, but now it looks like f i f j can. 
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What is f i f j f i f j? This inner product is a symmetric function that maps H cross H, the 

inner product is given any 2 elements of H, it maps it to real number and the function is 

symmetric and any such symmetric function by virtue that it satisfies this mean that it is 

a kernel on H. So, that is what we have shown is that this function; this function linear 

product function which maps H cross H to R is in fact, a positive definite kernel on H. 

Because it is a positive definite kernel on H, we know that positive definite kernel satisfy 

Cauchy Schwartz inequality. What does, what did the Cauchy Schwartz inequality 

mean? The kernel value at X 1 comma X 2 whole square is less than or equal to kernel 

valued function X 1 comma X 1 into kernel value at X 2 comma X 2. 

So, if I take any 2 element from H their inner product square. So, this is element 1; this is 

element square is less than or equal to inner product of element 1 comma element 1 into 

inner product of element 2. So, in particular I know that if I choose f as 1 element and K 

dot X as another then because of the because this satisfies Cauchy Schwartz inequality. 

We know have inner product of K dot X comma f whole square is less than or equal to 

inner product of K dot X comma K dot X and inner product of f comma f [s]. So, let us 

calculate each of these inner products from our definition of inner product. 
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Recall that f is equal to alpha i K dot X i g is equal to beta j K dot X j then inner product 

of f comma j is this. So, what it means? For example, if I want K dot X comma K dot X 

prime then both of these sums are only one element sums both these expenses are one 

element expansion. So, my f comma g will be nothing but K f X comma X prime so, K 

dot X comma K dot X prime is K X comma X prime. 

Similarly, if f is this, but g is simply K X prime 1 element then what will be the inner 

product? Alpha i K X prime comma X i. So, if g is simply K X prime then the inner 



product will be summation alpha i K X prime comma X i which is nothing but f of X 

prime I hope this is clear, K dot X comma f is f of X. So, very, very important property, 

just for our definition of inner product shows this let us understand this again. Let us say 

f is this alpha i K dot X i sum over i. And let us say g is simply a single function K dot X 

then what will be this double summation be? This implies single summation i is equal to 

1 to n alpha i K X comma X i. 

Now, summation alpha i K X comma X i is nothing but f of X. So, definition of inner 

product is such that K dot X comma f is f of X. Now this is called the reproducing 

property of kernel. If I take a kernel centered at X and take its inner product with f what I 

get is the value of f at X. If I take a kernel centered at X and take it is centered product 

with respect to f then what I get is the value of f at that X this is called the reproducing 

kernel property, because the reproducing property what we have is the following. 

Now, f X square which is nothing but the inner product of K X comma f whole square by 

Cauchy Schwartz inequality. This is inner product of K dot X comma K dot X which is 

nothing but K X X into inner product of f comma f. So, what is that mean? It means if f 

comma inner product of f comma f is 0 then for every X f X whole square is 0 that 

means for every X f X is equal to 0 that means f is equal to 0. So, we have shown that 

our inner product is such that if inner product of f comma f is equal to 0 then f is 

identically equal to 0 using this so called reproducing kernel property. So, this shows that 

what we have defined indeed a proper inner product. 
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So, given a any positive definite kernel, we can construct the inner product space H as 

explained give me a f kernel K and have the feature space X. I will take kernel centered 

at each point on X which we called K dot X, we take the set of K dot X for every i for X 

in my feature space. Then I make all possible finite linear combinations of these, these 

kernels alpha i K dot X i summed over i. And I can consider the set of all functions that 

is my space h, this space happens to be a vector space on which I can put an inner 

product. And you know once I put this inner product technically I want this space to be 

complete, what does what do I mean by complete? That a an inner product; obviously, 

gives me metric. 

If I have an inner product between 2 elements f comma g then I can have a norm for this 

as inner product norm f square is inner product f comma f. And I will define distance 

between f and g as norm of f minus g. Under such a distance metric if any sequence is 

Cauchy that is a a sequence of that as n n n m tends to infinity. The nth and mth element 

of the sequence comes close to each other in the distance metric. Then the sequence 

should also have a limit that is what is meant by complete. This space is not complete, 

we can always complete, it this just a technical diognisation if you do not understand it 

does not matter essentially, H is a vector space is the inner product. And we simply 

assume that under this inner product all convergent sequences have their limits in the 

space that is what is called completing the H. 



This space is called a rapid using Kernel Hilbert space. Essentially Hilbert space is a 

vector space on which you are define a inner product and in the metric induced by the 

inner product this space is complete. So, that why it is called a Hilbert space, so this H, 

we that, we constructed is called a reproducing kernel Hilbert space and the reproducing 

kernel properties. So, given a positive definite kernel K we constructed the H and that H 

there is an inner inner product and the inner product is such that inner product of K dot X 

comma f will give me the value of that f and that X. 

This is called the reproducing property of the kernel, this is true for every f in the space. 

Essentially the elements of this RKHS are real valued functions on H not all real valued 

functions of certain real valued functions at f X, which can essentially be written as 

linear combinations of kernel centered at X. So, this is a kind of generalization of linear 

functional on X. So, that is another way of looking at RKHS, which have essentially the 

special reproducing kernel property. 
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So, given this RKHS K be associated with K, now we can define f i that maps X to H 

that is it maps every element of X to every element of H namely i map the element X in 

my feature space to the element K dot X in h i mapped X to the kernel functions centered 

at X. So, phi maps X to K dot X, if I take this phi then the inner product of phi X comma 

phi X prime is nothing but inner product of K dot X comma K dot X prime which is 

nothing but K X comma X prime. 



So, K X comma X prime is nothing but inner product between phi X and phi X prime in 

H. So, H is the space you are looking for give a given a positive definite kernel K. Now, 

I have constructed a specific space H and I showed you a function phi that maps X to H 

such that K X comma X prime is nothing but inner product between phi X and phi X 

prime. So, this is; this means that any positive definite kernel gives us an inner product in 

some other space as needed. Now, let us just get a little more idea of what this RKHS is a 

very familiar setting if you look at it then we make at some more idea about this RKHS 

is. 
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So, we look at a very simple example, let us assume X is R m, and let us take this 

simplest linear kernel K X comma X prime is transpose of X prime. So, what will be K 

dot X now K dot X is a function that takes dot product of its argument with X for each X 

I have function K dot X which is essentially taking inner dot product with X that is the 

name of the function. 

So, you give X prime as the argument of the function outcomes X prime transpose X. So, 

essentially K dot X is the function that takes dot product of its argument with X. So, let 

us take any, any vector X in R m with components X 1 to X m. And let us say e i are the 

coordinate unit vectors that is e 1 is 1 0 0 0, e 2 is 0 1 0 0 1 and so on. If you give me any 

X prime belonging to R m. Now, K X prime comma X is by definition X transpose X 



prime X transpose X prime is nothing but summation of over i of ith element of X and i-

the element of X prime. 

So, i summation over i I can write X i and I can get ith element of X prime as e i 

transpose X prime, because e i is the coordinate vector. Now, by definition of kernel e i 

transpose X prime is nothing but K of X prime comma e i or e i comma X prime does not 

matter whichever way we write. So, if summation X i K of X x prime transpose g i, so K 

X prime comma X is nothing but summation i is equal to 1 to m X i K X prime comma e 

i, what is that mean? K dot comma X is i is equal to 1 to m X i K dot comma e i. So, for 

any arbitrary X if you want a kernel function centered at X that itself can be written as a 

linear combination of these m specific kernel functions K dot e i. That means every K 

dot X can be written as a linear combination of K dot e i which means any linear 

combinations of K dot X for all X for different X’s can once again be rewritten as a 

linear combination of K dot e I. 
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Which means all functions in H are simply linear combinations of K dot e i. And for i is 

equal to 1 to m there only m such kernel functions. And every other function H can be 

written as linear combination of these, which means any f can be written as i is equal to 1 

to m w i K dot e i. So, any f can be represented now by m w i’s which means it can be 

represented by a vector in R m, which means every f can be uniquely defined by a m 

component vector which means my RKHS itself is isomorphic to R m. And that means 



every element in H can be associated with a hyperplane on H. So, my for my linear 

kernel the reproducing kernel Hilbert space is nothing but the set of all the hyperplanes 

on X. That is what a linear classifier gives me essentially if my if I take the linear kernel 

extra X transpose X then what I am doing is I am searching over hyperplane over x. So, I 

have actually searching over the RKHS so, the inner product H now is simply the usual 

dot product in R m and learning hyperplanes is nothing but searching over this H for a 

minimize of empirical risk. 
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So, we shown the following given a positive definite kernel there is a vector space within 

a inner product namely the RKHS associated with K and a mapping phi from X to H. 

Such that the kernel is an inner product in H the RKHS represents a space of functions 

where you can search for the empirical risk minimize is a is is is essentially that that kind 

of functions. Now, given this, we will just do one very important insight which is called 

the Representer theorem. What is Representer theorem say? Let K be a positive definite 

kernel and H be the associated RKHS and X i y i be the training data set as earlier. Now, 

any given any function f suppose, I want empirical risk under this training data set. 

So, empirical risk depends on some loss function l of y i comma f X i whatever so, no 

matter what is the loss function is, the empirical risk ultimately depends on what X i y i f 

X i for i is equal to 1 to n. It cannot depend on anything else, given this training 

examples and a function f. The empirical risk can depend only on X i y i f X i for i is 

equal to 1 to n. So, let us write empirical risk of any function f as some function C of X i 

y i f xi i is equal to 1 to n. So, we do not have to worry about what our loss function is, 

let us say we want to minimize H i empirical risk. But we want to do a regularized 

empirical risk minimization that means we use a regularization term for which we use 

the norm in the H space. And let us say the inner product f comma f, we will represent as 

norm f square like this. 
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So, this is the theorem, let omega be any strictly monotonically increasing function then 

if g is any minimizer minimize is I am searching over the RKHS. And g is the minimizer 

of the regularized risk there regularized risk is this empirical risk under any arbitrary loss 

function plus the regularization term omega of which is a function of the norm of g in H. 

So, essentially the regularization term should be some increasing function of the norm of 

g. So, if, if I am using norm of g in H are the regularizing under not, not directly norm of 

g any increasing function of norm of g would do. Then any minimizer can be represented 

as the linear combination of kernels centered at X m. So, g dot is alpha K X i dot this. 

So, the the final minimizing function can be simply written as linear combination of 

kernel functions centered at data points X i. 
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Let us see, what it means, functions in H are linear combination of kernel centered at all 

points of X there be, there may be uncountably infinitely many points in X. So that many 

functions are there in H though, we are searching over the space, the minimizer can 

always be expressed as a linear combination of kernel centered at data points only. And 

they are only finitely many data points, which means though H may be infinite 

dimensional, we can solve the optimization problem by searching for only n real 

numbers alpha i. 

I do not have to worry about what the g’s representation is my minimzer g always 

representation like this where X i’s are always all given. So, my g dot is nothing but 

alpha i K X i dot. So, essentially I need only alpha 1 to alpha n to find my g, my 

minimizer. Even though H, H contains linear combination kernel centered all points of 

X. And H may be alpha 1 to alpha n 2, find my g my minimize even though H, H 

contains linear combination kernel centered all points of X. And H may be infinite 

dimensional I can find the minimizer by searching for only these n numbers alpha i. This 

is essentially what we did when we solve the dual in SVM irrespective of the, as I said 

are the dimensions of the transform of the feature vector. The dual is a dimensionality 

equal to the number of examples, because this is a very generic property when we work 

with kernel. If you are doing a search over the RKHS for a minimize of the regularized 

risk under any loss function as long as regularizer uses the norm of the function in H. 
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So, let us quickly prove the Representer theorem in the vector space of H, consider this 

span of the functions K X 1 dot X i. So take the kernel centered at each of the n data 

points and take their linear span that is a sub space so, because these are subspace  given 

any f in my RKHS that f can be resolved into that component which is in the subspace. 

And the component that is a orthogonal to it, let us call these 2 components f parallel and 

f perpendicular which means for any f in H and any H in X. Because f is f can be written 

as f parallel plus f perpendicular f X is f parallel X plus f perpendicular X f parallel X is 



what is that part of f which is in the linear span of X i that means f parallel X can be 

written as a linear combination of K X i dot. 

So, f parallel X is nothing but i is equal to 1 to n alpha i K i X for some alpha i’s and f 

perpendicular X what can I say for f perpendicular X. Firstly it is also in H and secondly 

it is orthogonal to this, that means its inner product with this with f parallel should be 0. 

And by bilinearity its inner product with each of the K X i dot should be 0 for if X i’s are 

the data points. Then f perpendicular is a function such that f perpendicular comma K X i 

dot is equal to 0 for phi is equal to 1 to n, this is true for every function. Given my data 

points X 1 X x n I can resolve every function as the parallel and perpendicular 

components of this K of the linear span of K X i dot. And hence this kind of 

decomposition holds. Since H is RKHS reproducing kernel property gives me f X prime 

is f comma X prime dot, the inner product of f and K X prime dot is is the f X prime. 
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Which means if I take any data points X j f X j is the inner product of f and K X j dot, f 

is f parallel plus f perpendicular K X j dot. By bilinearity this is f parallel inner product f 

X j the K X j and f perpendicular K X j f parallel K X j inner product can be written like 

this f perpendicular K X j is 0, which means for each of the data points X i j is same as X 

parallel X j this is true for every function f in H. 
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Now, let g be any minimizers of the regularized risk we can write g as g parallel plus g 

perpendicular. And hence we know g X j is g parallel X j for all data vectors X j. Now, 

the empirical risk only depends on X i y i g X i. So, it depends on values of g’s only on 

the data points on the data points g and g parallel are same. So, the empirical risk of g is 

same as empirical risk of g parallel. So, we know that empirical risk of g and g parallel 

are same. Now, let us look at the regularizing term. So, we know norm g square is norm 

g parallel square plus g perpendicular square these two are orthogonal and so hence is 

greater than g parallel square. 
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So, which means omega, the omega g square g norm square is greater than omega g 

parallel square, which means g parallel cannot have a regularized risk anymore than that 

of g that means g parallel is also minimizer of risk. And hence my minimizer always 

admits this representation. So, apart from the proof this particular theorem is very 

important, it shows that essentially my minimizer if I am doing empirical risk over 

empirical, risk minimzier any loss function over the RKHS using the norm of a the 

function under H as the regularizer. Then it has this nice support vector expansion, this is 

a very generic property of all kind of kernels as long as kernels are pointed out, that is 

the reason why one looks at positive definite kernels. So, we will stop about the kernel 

based methods here. So, next class, we will, we will just round up about what all we have 

done about learning non linear classifiers. And then move on to a few special topics to 

wind up the course.  

Thank you. 

 


