
Pattern Recognition

Prof. P. S. Sastry

Department of Electronics and Communication Engineering

Indian Institute of Science, Bangalore

Lecture - 36

Overview of SMO and other algorithms for SVM; v-SVM

and v-SVR; SVM as a risk minimizer

 (Refer Slide Time: 00:33)

Hello and welcome to this next lecture in this course of pattern recognition, we have

been essentially discussing the support vector method and the kernel function based

classifiers. So, we will continue with the discussion this class also, we have looked at the

support vector method both for classification and regression. We have seen the support

vector machines for classification and also looked at this support vector regression in

both cases. There are certain things that are interesting one is that the optimal parameter

vector is given by the linear combination of a subset of the training data. The linear

combinations coefficients happen to be the Lagrange multipliers or some functions of the

Lagrange multipliers in the of the optimization problem.

But essentially the W is given as a linear combination of the training, training vectors

this, this support vectors. And, we seen that the kernel trick allows us to learn non-linear

models using essentially linear techniques this because that kernel we can kernelize the

inner product. So, any algorithm that essentially has only inner products can be implicitly

be executed in high dimensional space, using the kernel function. So, these are

essentially the two basic characteristics of support vector method that we seen so far.

(Refer Slide Time: 01:45)

Now, what we have not fully discussed even though we mentioned it just briefly towards

the end of last class is, how does one actually solve the learning problem of support

vector machines? Learning of the support vector machine involves a constrained

optimization problem. And last class, we seen how to an example of solving this

constrained optimization problem for a very, very simple example is, is in R 2 learning a

quadratic classifier with only 3 examples. Though it is simple instance, it does tell us the,

the more involved the, the issues involved in solving the optimization problem.

That we need more general methods, we briefly mentioned. We just recall them once

again. So, in this class, we will briefly look at the general methods that people has

proposed for the solution, we are not looking at any method in any great detail, because

most of these algorithms simply happen to be specialized numerical optimization

techniques. So, algorithmically once you formulate the optimization problem. There is

not much more there is; there is nothing much more conceptually to convey except that,

these are very interesting specialized numerical technique for solving the class of

optimization problems that are of interest in SVM.

(Refer Slide Time: 03:10)

So, this is the optimization problem as you already seen this is the optimization problem

that we need to solve is a quadratic optimization, quadratic programming problem. The

we have a quadratic cost function, it is a linear term summation, mu i and a quadratic

term mu I, mu j, y i y j K X i X j. Essentially, this is the quadratic form with respect to

the mu vector of the matrix, whose I j’th element is y i y j K X i X j and R 2 constraints

one is S linear constrain linear equality constrain mu i y i is equal to 0. Another, the rest

of the rest of the constraints are simply V bound constraints of the variables.

So, is a standard quadratic programming problem with a quadratic cost function and

linear constraints. So, what do we need is a nice numerical method of course, there are

many numerical methods for general non-linear programming problems. For example, I

can use constraint gradient, descent gradient projection one can use penalty method,

barrier method. There are many such standard numerical algorithms for solving

constraint optimization problems, but you know we can do; we can; we can certainly do

such gradient descent base methods.

But this problem has lot of extra structure, and because of that many more efficient

algorithms are proposed. This essentially, there are only bound constraints on the

variable which are very simple to implement. There is only 1 equality constraint, this is a

very nice quadratic form, so there are interesting things you can do with it to actually, I

look at this structure, let us look at the conditions for optimality of this problem. We are

asking given some mu 1 mu, 2 mu, n when how can I say (()) not there optimal. So, I it

simply means whether, or not they satisfy the Kuhn tucker conditions, so by writing

Kuhn tucker conditions and doing some algebra.

(Refer Slide Time: 05:11)

We can show that these are the optimality constraints, if you give me mu 1, mu n then I

will define f X as mu i y i K X i X plus B. Where b is given by this for some mu j greater

than 0, as we can see these are the standard solutions. We could have got for W on B, if

mu what the optimal thing. Then with respect to such an F, the, this is what all I have to

satisfy for every. I if mu i is equal to 0 then y i of X i should be greater than equal to 1, if

mu i is strictly between 0 and C y i of X i is equal to 1 and mu i equal to C. Then y i of X

i has to be less than equal to 1. So, these are this is the optimality constraint.

So, essentially it is as if every mu i is tied with one example. Even in the our constraints

with the primal every mu i tied with because of every constraint in the primal is tied with

one example. Every mu i is tied with one example. So, I can say which examples mu this

is and each mu i is essentially has it is own condition because, it is not complete because,

of f X depends on all the other mu is, but really I can ask which mu satisfy the constraint,

which mu’s do not given the current f X if I think of f X as given. And do not worry

about it being a function of mu, I can individually ask which mu satisfies and which

mu’s do not satisfy the optimality constraints. So, given this kind of a structure, there are

many interesting tricks you can do in optimization

(Refer Slide Time: 06:48)

And one standard such trick is what is called a chunking. Chunking is a very generic idea

in optimization, where even though I have a optimization problem with large variables.

We would optimize only on a few variables at a time, this standard chunking that most of

us know about is the coordinate wise optimization. If I have an unconstraint optimization

RNA simple thing to do is to first optimize with respect to first variable X 1 then with

respect to X 2. Then with respect to X 3 and so on the idea is that all one dimensional

optimizations are simple. So, in general chunking the idea of chunking consists of

optimizing on only few variables at a time. It is utility is that the dimensionality of the

optimization problem is controlled.

Because we may not want to do one at a time as in the coordinate wise optimization so

may be, I have optimization problem over thousand variables. I may be between 25 at a

time, or 50 at a time, or 20 at a time. the idea is because the quadratic programming

problem if I take only 20 variables. I have a quadratic form with 20 by 20 matrix which

is much easier to solve than a cost function which involves quadratic form of 1000 by

1000 matrix. Basically the idea of chunking is that at our iteration, I choose let us say a

20 or 25 variables to optimize on and only for that, that many variables are in the

optimization algorithm and I keep randomly or chosen, keep choosing subsets of variable

to optimize and normally this speeds up the entire optimization, and this idea gave rise to

the first specialized algorithm for SVM which is called SVM light. Even today possibly

one of the most popular SVM algorithms easily downloadable, if just from any web

browser SVM light will tell you how to download SVM light. Freely available software

and very good for experimenting with so, SVM light essentially uses a chunking idea to

solve the SVM optimization problem.

(Refer Slide Time: 09:00)

Now, as we seen chunking is basically do a few variables at a time. So, you can what is

the extreme chunking I can do what is smallest set of variables, I can optimize on can I

do coordinate wise optimization in this problem, I cannot because the mu i is have to

satisfy one equality constraint mu i y i summation. mu i y i is equal to 0, what it means is

if I am currently at a feasible point. So, I am at some mu 1, mu 2, mu N, which is

feasible it satisfies all the constraints. If I change only 1 mu keeping everybody else

same, obviously; I will go out of the feasibility region because, I can no longer satisfy

the equality constraint. So, because a higher equality constraint if at every iteration I

want to move from a feasibility point to a better feasibility point and so on.

I cannot get rid of feasibility. So, I have to at least consider 2 variables at time, so this

smallest chunked that I can optimize on is 2. So, there is an algorithm called sequential

minimal optimization. It is called minimal, because it works only on 2 variables at a

time, the earlier we said that, by during chunking, by reducing the number of variables to

optimize. We are improving the, the I mean improving the numerically over speeding of

the algorithm, so using only 2 at a time is very nice because you know, we do not even

need a numerical optimization technique to actually with respect to 2 variables.

(Refer Slide Time: 10:26)

So, this is the algorithm SMO so SMO method optimizes 2 variables at a time it always,

maintains feasibility at any given point. It is at a feasible at any given time in the

algorithm is at a feasible point and then, it uses some 2 variables to optimize and comes

to a new sort of a values for those 2 variables in such a way that terms still in the feasible

division. It always maintains feasibility basically, what it does is keeping all other mu i

fix, if we it changes only 2 of them let us say mu1, mu 2 have been changed. So, mu 3 to

mu n are all fixed. Then my, my quadratic form of the; of the objective function right.

 If I can always take, away all the terms involving only mu 3 to mu N, then I just get

some quadratic expression in mu 1 and mu 2. Now, that is very easy to optimize, I can

analytically find the optimum with respect to those 2. So, keeping all the other mu, I

fixed if we want to change only 2 of them, we can calculate the updates for them

analytically very easily which means, I do not have to spend my time doing numerical

optimization. So, I can spend most of my time in deciding which 2 variables to choose at

each iteration.

Now, I have separate optimality conditions to be satisfied by them. So, I know which all

variables are not satisfying optimality. Now, out of them I can choose 2 based on some

heuristics. So, there are lot set of heuristics in SMO, which are employed to decide

which 2 variables to choose and the resulting algorithm is extremely efficient. It can

solve tons of 1000 of variable SVM problem very, very fast even on a simple computer.

So, SMO is for a long time or the fastest algorithms for solving SVM, but too there are

many, many other recent additions to this, but possibly even today SMO is one of the;

one of the simplest in the sense of conceptually simple simple to explain. One of the

simplest algorithms that is still very efficient to solve most of the freely available

packages used at the SMO or SVM light for solving. The SVM optimization problem

cause.

(Refer Slide Time: 12:57)

There are many other techniques for example, here is another technique which proposes

also quite efficient compared to SMO is a just a little bit involved to actually create the

details. The basic idea is the following suppose you have a 2 class problem with linearly

separable patterns. When we did the; when we did the V C dimension proof for

hyperplanes actually saw that 2 sets of points are linearly separable if and only if their

convex hulls are separable. So, basically if I have 2 sets of points which are linearly

separable, because 2 class problem where which is linearly separable then if I take

convex hull of class 1 and convex hull of class 2 then those will be separable 2.

Then I ask what are the 2 closest points on the 2 convex hulls that is I want to pick a pair

of points one on each convex hull, which are closest to each other. Now, they are called

nearest point methods and there are, some very efficient algorithm since computational

geometry for such things. And one can show that the optimal hyperplane as we have

defined earlier will be the line that perpendicularly bisects the line that is joining the 2

closest points. Now, this idea can be used of course, you still need this is only in the

linear case I have to make this thing work with kernel function, but this idea has been

used to develop a very interesting and highly efficient algorithm for SVM optimization.

So, like this there are many other techniques, so we stop there.

(Refer Slide Time: 14:32)

And so we have considered the entire SV support vector method for both classification

and regression. We will see some generalizations of the kernel idea, but before that let us

ask the question now, that we have considered one more method for learning a non-linear

classifiers, how good it is. As it turns out so say very competitive method for tackling

most PR problems today, the state of what is such that if your trying out a for the

algorithm on your problem of the first, (()) unless you have very good reason. You have

to first try SVM for example, if I am a researcher in your writing, your paper and

suggesting a new method the one thing against, which you have to benchmark your

method, is a SVM.

So, SVM has become that kind of a standard in pattern recognition today. SVM meaning

SVM and all the kernel, kernel based methods, it is possibly more today is much more,

much more if a competitive method than neural network methods. We considered earlier,

but there is not to say that neural network methods will not work or for every problem.

SVM is good obviously; it does not generate magic classifiers but all the same learning a

non-linear classifier only, involves choosing a kernel function here.

And choosing a kernel function is much easier because, I just asking the kind of

separation. I want as I want to choosing whether I want one hidden layer or 2 hidden

layer how many hidden nodes, I want in a in a neural network case and also if your using

feed forward sigmidal networks. I have the problem of local minima here the SVM

optimization problem does not have the problem of optimal minima. So, learning non-

linear classifiers with SVM is certainly very, very attractive because, all it involves is

choosing kernel of course, it is not as simple as that uses still needs to make choice of

parameters. I have to choose kernel function, but I also have to choose parameters in the

kernel function for example, if I am using Gaussian kernel, I have to choose what the

sigma in the Gaussian kernel should be.

Second thing, I have to choose is the C parameter, the penalty parameter in the

optimization problem. I have to also choose parameters in the optimization problem for

example, in any numerical optimization. I have to choose an epsilon which is equal to 0

So, what I am trying to say for checking optimality, if I have to say y i f X i is equal to 1

obviously, I have to ask to what precision should be one in numerical technique. So, to

also choose an epsilon so all these choices are still there bad choices can still result in

overfitting, but given that still SVM is possibly one of the most competitive methods for

tackling PR problems today. The second very interesting thing about SVM is are the

support vectors, as we have seen the support vectors or he training data which are closest

to the class boundary as well as closest to the optimal separating hyperplane.

Of course, this hyperplane is in high dimension space that essentially closest to the class

boundary in the original space. So, these themselves have very important extra

information that this support vector method gives me because, if I know that these are

the patterns that are closest to the boundary in some sense. I know these are the hardest

samples to learn to classify as a matter of fact in the SVM method, as we saw once we

get our optimal hyperplane. If now I keep only the support vectors, and throw away the

rest of the examples. And once again solve the optimization problem, new optimization

problem only on this and learn this exactly the same optimal hyperplane. Because these

support vectors are the most important the once they classify support vectors. The rest of

the things will be automatically classified.

So, in that sense support vectors at the end of thing, I am not only just getting a classifier.

I am also getting support vectors, which is a very useful extra information that the

method gives me matter of fact in the sense that they are they, they define the class

boundary may be never about classifier. We just use a support vectors as we will do very

well as the matter of fact in many applications such things are tried. I will just show you

a 2 true interesting cases of which illustrate both how nicely the SV method classifies as

well as utility of the support vectors.

(Refer Slide Time: 18:55)

Here is the first example is a 2 class problem, one class is shown with slightly darker

things than the other, actually we have classes and squares. I suppose all of you can see

that it is a 2 by 2 checker board problem we have at the centre 2 lines. So, this quadrant

and this quadrant is one class this quadrant and this quadrant is what is shown here are

thousand samples uniformly drawn in the square and the, the classification is also given.

So, these are the sample set and, if I did in SVM with Gaussian kernel and after learning

the SVM, if I flag only the support vectors.

(Refer Slide Time: 19:38)

That is what I get as you can see these support vectors essentially, define the class

boundary. These are all the vector that are closest to the class boundary of course, I use a

Gaussian kernel. So, I am working in a very higher dimensional space learning

hyperplane there, but then the patterns are closest to that hyperplane or this matters. So,

essentially, the support vectors give me a very good idea of the geometry of the class

boundary of course, pictorially um.

(Refer Slide Time: 19:38)

Here is another example, certainly more complicated actually it looks like a mess here, I

plotted 2500 sample points. This is actually a 4 by 4 checker board. That is a, a 4 by 4

grid, where alternate squares are different classes. So, this is one class that is another

class that is one class that is another class and so on. This is one class that is another

class once again, this is class 1 and that is class 2 and so on. These are 4 by 4 square once

again, using Gaussian kernel, if I learn SVM,

(Refer Slide Time: 20:47)

And then plot the support vectors. Those are the support vectors as you can once again

see, I have neatly pulled out only the vectors, which are closest to the class boundary,

rest of them can all be thrown out now. So, in this sense not only SVM is do a good

classification in, in both these cases. The SVM classification is very has very high

accuracy, but in addition the support vector themselves are a very useful extra

information that we get out of this method.

(Refer Slide Time: 20:15)

The basic ideas about vector machines as we seen is the kernel function that is what

makes the method competitive the idea of kernel functions can extended in many ways.

So, basically do the extensions mean basically, I can reformulate the SVM problem so,

me of them are we can deformulate the SVM problems. So, that I get may be only an

approximate optimal hyperplane by the algorithm will be more efficient, or I reformulate

exactly, the sense I still get the optimal hyperplane that I can add some additional

features to the original SVM method. There are many, many, many variations like this.

Today for this course to stick to a time and other constraints, I have I am just going to

illustrate it with just 2 simple examples, once of each kind.

(Refer Slide Time: 22:14)

There is, this is the way one does these things. So, I start with the basic SVM

optimization problem and then, then I change the optimization problem in some ways

which is useful to me. So, here is one way my original optimization problem is half W

transpose, W plus time X i minimize, that subject to that supportability constrain y i W

transpose X i plus P greater than 1 minus X i greater than equal to 0 that is the standard

SVM problem with penalty constant. I get a b square the idea is, I am having my, my

actual classifier is W transpose X plus b, but I am using only W transpose W b square

now. I know why, I put transpose W because, that is the margin that I am minimizing b

square has nothing to do there, but let us say we put the b square term anywhere, just like

that we put the b square term then what happens,

(Refer Slide Time: 23:15)

What happens is this I what turns out to be the dual your objective function hasn’t

changed, not hasn’t changed, this time is same as earlier, this time is same as earlier. I

am just adding one more term in the objective function mu i mu j y i y j and, this is also a

quadratic term, it makes no difference adding one more term into this quadratic

optimum, but what I gain is that the equality constraint is lost there is no longer.

The equality constraint in the dual only bound constraints, why is such a great thing now

it is no different from just minimizing unconstrained way a quadratic function for

example, I can do gradient descent on this. If I do gradient descent on this normally in a

constrained gradient descent, I have to do gradient projection, what do I do from the

current point I calculate the variant direction move along that thing wherever I go from

there I have to project myself back on the feasibly region now, the feasibility region is

crazy. I do not know how to project myself.

But if the feasibility is only about bound constraints then what it means is I start from

some mu travel along the gradient then at that point, if any of the mu is less than 0. I

make that 0 for any of the mu is greater than C, I make it C that is all the projecting back

in this constraint region is, it can be better than that because, it is a quadratic function if I

take it is gradient and equate to 0, I get a similar linear equations. So, actually I have to

solve a set of linear equations subject to these constraints, I can easily solve a set of

linear equations by many relaxation methods. relaxation for example, relaxation simply

says, I start with some, some point, some solution point, then of the new value for the

first variable from the first equation.

By using the old values of the other thing now, for this is new value for the second

variable from the second equation, and so on. and if the it is very easy for me to

implement these constraints because, after every time I calculate the update for mu i have

to just clip it between 0 and C is that update turns out to be negative I make it 0. If it

turns out to be greater than C i make it C right.

So, I can just take the, the, the variant which become just a set of linear equations and I

can solve the linear equations under this bound constraint, using a simple algorithm such

as relaxation, where iteratively I keep finding new values for variables by one using one,

one equation for one variable. It is called, it is called successive over relaxation this

makes very efficient algorithm. It, it is much more efficient almost 10 times more

efficient that SMO.

But the problem is that, it is not solving the problem, I am interested in I am of course; it

is its giving me a very efficient algorithm for solving a different problem. what is this, b

square doing will that still give me optimal hyperplane of course, it does because my

optimal hyperplane is a solution of the optimization problem with b square not there. But

what can be shown is that if I do with a b square I would not be too far away, from the

optimal hyperplane. So, I get only approximate optimal hyperplane finally, a good

approximation and the (()) I mean the, the, the advantage I am gaining for being only

approximately correct on the optimal hyperplane is that solving my dual optimization

problem is very, very efficient. So, this is one way one can reformulate.

(Refer Slide Time: 26:57)

We look at another reformulation now, this is called the nu SVM and most people think

that this nu is a (()) on the SVM proposed this new SVM the idea behind the or the

motivation behind new SVM is as follows. This is the primal objective problem that we

that we seek to solve for SVM here, I put phi X i, instead of X i because, we are

essentially learning this optimal hyperplane near high dimensional space and phi is the

symbol for that transformation. Basically, this is the margin and basically, you put X i

because, we do not whether things are separable or not. So, we use the slack variables X

i. The problem with this optimization is, I do not know how to choose C. C is a kind of

an exchange rate between margin, and some measure of error and the measure of error is

very crazy here, because X i i greater than 0, does not have mean that term actually,

make the error if X i i is better than 0.

But less than one the corresponding X i y i is correctly classified, but it still has 2 error

and it does not tell me, how many I am incorrectly classifying. Instead of misclassifying

only 1 but misclassifying by a large margin, I may settle for something that classifies 100

misclassifies, 100 patterns, but each one by small margin. Because by this the summation

X i, I really do not know what it is doing. So, I I cannot give any physical meaning to C

all in (()), if C is very large, I will not tolerate any errors except, for that I have very

little idea about whether, I should choose C to be 5 or 10 and what are the tradeoffs.

(Refer Slide Time: 28:45)

So, one problem with the SVM formulation slack variables is we do not have good

guidelines on how to choose C it is very difficult to give guidelines because C does not

have any simple interpretation So, let us say we we want to work with a optimization

problem in which the use of constant like C has some meaning. So, I reformulate the

primal objective function like this I still have are We transpose W I still have summation

X i i instead of C. I put 1 by n here, where n is the number of samples and, add a one

extra term minus nu rho nu is a parameter instead of C I am my new parameter is nu, nu

rho is also optimization variable now in addition to W b and X i i I have added one more

optimization variable rho and rho comes here in place of one

 So, instead of say demanding y i and W transpose phi X i plus b greater than one minus

X i. I am saying, it should be greater than rho minus X i. So, whether the margin is with

respect to hyperplanes that are one distance away or rho distance away. I do not know, I

am just saying take a rho distance away and optimize. Now, let us just consider this

problem as it is and of course, if I want rho to play, put the place of one and, and now,

that is what defines a margin then rho I need rho greater than 0. I do not need rho greater

than 0, for the following thsi optimization is very cleverly chosen given this problem if

the point W is all come as a W is equal to 0 or, b equal to 0 all components are X i equal

to 0 and rho equal to 0. This is my optimization variables, all 0 is a feasible point and

because, it satisfies all the constraints.

Because all 0 is feasible point and at that point, the objective function is value 0 which

means the, the actual minima cannot be positive. Because, I already knew one feasible

point at with the objective functions value 0. Your strictly positive value can be it is

minima now, if I choose rho greater than 0, this term will be positive, I know W

transpose, W is positive. I know X i i is are positive So, if I, if I choose any rho greater

than 0, this will be strictly greater than 0. Now, such a point can never be the solution of

this optimization problem because, I know a feasible point at which the objective

functions value 0. So, we do not need rho greater than 0 constraint at all we can just

minimize unconstraint on rho. So, let us start with the this problem.

(Refer Slide Time: 31:23)

And form it is Lagrangian. So, recall that I have W b X i rho 4 optimization variables

then I have n constraints like this. Another unconstraint like this, I have to write all my

constraints as less or equal to 0 form so, this constrain becomes rho minus X i i minus y

into W transpose phi X i plus b less or equal to 0. This constraint becomes minus X i i

less than equal to 0, this constraint becomes minus X i i less than equal to 0 also, the (())

that we are putting phi X i here so that we are already using the kernel trick and we

ultimately put the kernel there that we are we are of keeping the notations.

So, that we are conscious that the formulation is in a transformed space so, with all this,

this will be my L;agrangian. This is objective function half W transpose, W minus rho nu

plus 1 by n summation X i i minus eta i X i i is for this constraint minus X i i less than

equal to 0, and eta are the corresponding Lagrangian variables and this is for this

constraint summation mu i rho minus X i i minus y i W transpose phi X i plus b this is

my Lagrangian right.

So, mu i are the Lagrangian multipliers for the separability constraints and eta is the

Lagrangian multipliers for constraints X i i greater than equal to 0. Now let us put the

Kuhn tucker conditions for this I have to first is so, derivative with respect to all the

optimization variables should be 0 of l. So, there with expect to W 0 del by del b is equal

to 0 with respect to X i is equal to 0 and del l, where del rho is equal to 0 del with respect

to W is equal to 0 is such a thing because with respect to W nothing has changed, I get

one W from here and I get.

So, that will still give me this similarly, with respect to b, also nothing has changed so I

put I get that with respect to X i. So, if I want to differentiate with respect to any

particular X i i I get 1 by n from here minus eta i, from here and minus mu i from here so

any (()) with respect to any X i i will give me eta i plus mu i is equal to 1 by n. It is a

very interesting thing the, the 2 Lagrangian multipliers or the different constraints in the

primal I will (()) like this similarly, del l by del rho will give me if differentiate with

respect to rho will give me minus nu from here and summation mu i from here.

So, this nu that I have chosen as a nu is of different constant should be equal to

summation, I is equal to one to n mu i interesting relationship. So, the Kuhn tucker

conditions specifies that summation mu i should be equal to nu, then I have the

feasibility the way the 2 constant that should be satisfied then the Lagrange multipliers

for the equality constraints shall be positive then, I have the complimental slackness

because, eta i is for the constraint X i i greater than equal to 0, eta i X i i should be equal

to 0. Similarly, nu I into this constraint should be equal to 0 these two are the

complimental slackness condition.

(Refer Slide Time: 34:40)

Now, why is this interesting suppose X i i greater than 0 for some I so, X i i is greater

than 0. Then the corresponding eta is equal to 0 because, of the complimentary slackness

once the corresponding eta is equal to 0, this tells me that the corresponding mu i should

be equal to 1 by n. and I also know that nu is equal to summation mu i we can put all of

these together suppose X i i is greater than 0 for some i. Then we have eta i equal to 0

and hence, mu i is equal to to 1 by n and hence nu is equal to summation mu I. Now, this

summation mu i can be written as summation over all those I is such that, X i i greater

than 0 and summation over all those i is, is that X i i equal to 0. For some I X i i will be

X i for some i X i i will, will greater than equal to 0 the mu i is are positive.

So, I can if I (()) this terms it is all, I am only finding a lower bound. So, I can always

write this plus, this is greater than equal to only this term and this term has a very

interesting structure. When X i i greater than 0 mu i is equal to 1 by n. So, each of these

terms will be 1 by n how many systems are there as many i are there X i i greater than 0.

So, I can say this is the, this set of I is are that X i i greater than 0. This is the number of I

for which X i i greater than 0 by n. What does X i i greater than 0 means? On that

particular example, X i y i there is an margin error that is I am actually do not have as

much margin, as I want that is X i i is are slack variables, X i i will be greater than 0 only

if I makeshift arrangement making an error on the corresponding X i y i.

So, this numerator here is nothing but the number of examples on which I made error.

So, what we have is that mu is greater than equal to the fraction of margin errors so, the

new that I have chosen is such, that it has to be greater than or equal to the number of

margin errors. So, if I chose mu to be point 1, when I, when I am solving this problem

that means, I will not allow that means my optimization problem guarantees that any

solution. I get is such that the number of i for which I have made margin errors is less

than 10 percent. So, nu is an upper bound on the fraction of margin errors is not all.

(Refer Slide Time: 36:57)

 We also know that for all I, whether or not X i i greater than 0, mu i is between 0 and 1

by n and we known nu is equal to summation mu I. So, I can once again split that to mu i

such that mu i greater than 0, mu i such that mu i equal to 0. This term does matter really

and for all these mu I, I know it is less than equal to 1 by n So, I can write it less than

equal to mu i such that mu i greater than 0, and we know what are mu i greater than 0

they are support vectors. So, nu is also, because each mu is less than equal to 1 by n

summation mu i is less than equal to 1 by n times. The number of thing in the summation

and number of things in that summation is number of I is, is the mu i greater than 0 that

is equal to the number of support vectors.

So, nu is a lower bound on the fraction of support vectors that is nu is always less than

equal to fraction of support vectors. So, if I chose nu to be 1. I am, I am asking the

optimization I am, I formulate the optimal problems such that at the optimum point, the

fraction of support vector should be at least 10 percent and the number of margin errors

have to be utmost 10 percent. Matter of fact, one can show that asymptotically as the

number of examples goes to infinity nu will be actually equal to both. These fractions nu

will be equal to the fraction of support vectors and fraction of margin errors. It is very

useful so, I can decide what kind of performance I want by choosing my nu.

(Refer Slide Time: 38:36)

So, the nu in SVM formulation in the nu in the nu, SVM formulation the nu is a user

chosen constant and unlike the parameter C. the nu has interesting interpretation nu will

be between 0 and 1 and with of nu between 0 and 1. This will be, this will not have a

solution because nu has to be a summation mu i and, mu i are always between 0 and 1 by

n and given that nu between 0 and 1. It is simultaneously, it is a, it is a lower bound on

the fraction of support vectors and is an upper bound on the fraction of margin errors.

Simultaneously, an upper bound on the fraction of errors and lower bound on the fraction

of support vectors. So, what it means is that for the chosen nu the problem has a solution

with rho greater than 0 of course, if I chosen an unattainable nu I cannot get a solution,

but what do you mean by I cannot get a solution it always has a feasible point. So, I will

get a solution, but the solution will be trivial, I will get rho is equal to 0, but if I will get a

solution with rho greater than 0, then the bounds would be met. This gives you a very

good way of choosing the penalty constant unlike C, I can choose nu. And you know

because, I have now good idea of so if I, if I am allowing, if I am willing to tolerate may

be at most 10 percent margin errors then I choose nu to be 0.1.

I solve it suppose on this problem, I cannot get a solution, where I can only misclassify

10 percent points it turns over that the rho that I get would be 0. So, maybe I will change

the 10 percent nu to 15 percent nu. But the nu has a nice interpretation and hence in that

sense is much easier to choose, than the penalty constancy, this is the; this is the real

utility of the nu SVM. So, can it be solved easily see my, my primal problem now looks

much, much different from the old primal problem of old SVM, because I get a minus

rho nu rho here and I changes to rho but much more importantly unlike the rho SVM. It

has one more optimization variable, but as it turns out if I take the dual the, dual looks no

different.

(Refer Slide Time: 41:10)

This is the dual for us all that happened is the, the quadratic term in, in the in the dual

still stays mu i mu j y i y j K X i X j with a minus term the, the linear term summation

mu i goes away does not matter. Now, I still have the old inequality constraint, I is equal

to 1 to n mu i y i is equal to 0. The old equality constraint then I still have bound

constraint, but not there is no C. Now, as what was there before summation X i i is 1 by

n.

So, I get mu i to be between 0 and 1 by n and I get this extra summation, i is equal to 1 to

n mu i is equal to nu. So, it is exactly same as the old SVM, this external rho that I have

put in really makes no difference. The objective function is still quadratic and, I still have

similar kind of linear equality constraints and bound constraints of the variables. So, a

simple optimization problem similar to that of old SVM so, it is very easy to solve once

again the dimensionality is only n and so on, so forth. One can also show that this is not

any approximation like the P S 1 I considered.

If suppose, you have a solution for nu SVM and ultimately once we solve we will not

only get mu i is, but also get rho and get say, the rho is strictly greater than 0. That is

what, we mean by solution for nu SVM. Then I go back to the old SVM formulation

there I choose C is equal to 1 by rho times n, n is the number of examples, then 1 can

show that you get the same solution with that old SVM algorithm as you got for nu

SVM. So, this nu SVM essentially gives you a solution, you could have got for a

particular value of C in that sense unlike adding b square in function I am not doing any

approximation that, what I have done is, I have really cleaned up the formulation of

SVM because, unlike the penalty constant C the use of different constant nu here has

some interpretation.

(Refer Slide Time: 43:20)

Now, this idea can be extended to regression problem also just you have got nu SVM. I

can get nu support vector regression algorithm, let us call it nu SVR in the regression

problem, what are the use of different constants one is epsilon, epsilon tells me see I if

you recall your support vector regression algorithm. We’re using the so called epsilon

insensitive loss function. So, in that sense epsilon tells me the allowable error range if the

actual value the difference between the actual value and my prediction is less than

epsilon I suffer no loss unlike in the least squares case so to make a good guess on

epsilon on this problem. If I put epsilon very large then useless predictions will come and

even, if I put epsilon very small, I may not be able to find a nice function, which predicts

to that level of accuracy.

So, because up to epsilon the loss function is nu 0 loss, I should use epsilon very

intelligently and once again like the C there here. The C is not the real issue this epsilon

is the one that is telling me, how I am trading accuracy. And I have no like epsilon

specify the tolerance, tolerable error and is once again difficult to know for this data set.

What is a tolerable error so like in the nu SVM case, we can reformulate support vector

regression. So, that just like we added rho instead of one there and rho as a optimization

variable. we can add epsilon as an optimization variable here this will give me something

very similar to SVM nu SVM, it is like this

(Refer Slide Time: 45:03)

(Refer Slide Time: 45:46)

So, once again this is my old SVR optimization half W transpose W which we added as a

parameter we already seen this is like the epsilon margin of a function C times, this

because, this is simply a way to implement the epsilon in sense to a loss function. So, if

(()) of y i minus W transpose phi X i minus b is less than epsilon, when both X i i and X

i i prime are 0, if on one side it is not less than epsilon, then the corresponding X i i will

come here.

So, this is my whole formulation of the slack variables and in the nu formulation. I want

to optimize an epsilon also, I add epsilon as an extra parameter for optimizing and I put

nu epsilon inside here otherwise the constraints remain the same epsilon just became an

optimization variables. And I am just saying on the C side in addition to your old

parameters, I put nu epsilon where nu is a user chosen constant.

(Refer Slide Time: 46:11)

The dual for this once turns out to be quadratic, it is, it got once again very simple

structure a, very similar to the old nu SVR. I would not go in details because, it is, its it is

pointless, but the, the thing to recognise is that the, the objective function is still as one

linear term and one quadratic term, and all constraints are linear. So, this is once again a

very good nice optimization problem and, one can show that you get similar results as nu

SVM. The whole idea of, why we did this is same as in SVM case, where we want to

have a allowable accuracy. So, we want to choose nu based on how much accuracy we

are looking for in our predictions. So, that you know I, I correctly optimize a my epsilon

tolerance limit.

(Refer Slide Time: 47:08)

So, this is, this turns out to be true, this turns out to have similar kind of properties as the

nu SVM case that is to say in the nu, SVR suppose nu SVR leads to solution, W bar b

bar epsilon bar with epsilon bar strictly just like in the nu SVM. If, I choose a wrong nu I

would not get a solution in the sense, I get a solution with rho is equal to 0 similarly, here

so when I get a solution with epsilon strictly greater than 0. Then if I now run the old

SVR with that value of epsilon and the, the, the same values for the other constant C,

then I get back the same solution.

So, one like nu SVM, nu SVR also gives you a solution that old SVR could have given

and at some particular parameter settings. The only thing is we beforehand do not know

how to set this parameter because, for this data set we do not know, what is the tolerable

error? That is why we assumed it is good except that once, once I get a particular epsilon

bar for that epsilon bar. I get the; I get the same solution in the old nu SVR also, this is a

actual exact formulation and once again you confer that nu is an upper bound and the

fraction of errors meaning number of points on which prediction is greater than epsilon

and lower bound on the fraction of support vectors. And like earlier, if you have

sufficiently good data sets, sufficiently good meaning your large number of IID

examples and your class conditional densities satisfies some proper conditions.

Then in such cases nu equals nu simultaneously equals both fractions asymptotically. So,

as the number of examples goes to infinity nu is actually equal to the fraction of support

vectors, as well as the fraction of errors so, like an SVM it becomes very easy to decide,

how to choose the required constants by the user. So, this is; this is an example of just

reformulating the, the optimization problem for SVM. So, that the resulting optimization

problem is a lot easier to choose the user defined constants while at the same time, we

are still getting the same solution, as the old SVM and same solution mean, same

solution at some parameters. So, we are not really sacrificing the idea of getting optimal

hyperplane, but this allows us to choose our parameters much more simply much more

easier to choose than the penalty constant C.

(Refer Slide Time: 49:50)

Now, I will look at one more issue with SVM is we posed SVM support vector

regression problem as a risk minimization under a special loss function namely, epsilon

insensitive loss function. And then reformulate, it as a equivalent constraint optimization

problem for a support vector machine namely, the classification problem we directly

pose the optimal hyperplane problem is a constraint optimization problem. Among all

hyperplane that satisfy, the separabilty constraint, find the one with minimum margin.

But know we know the connection between, constraint optimization equivalent

unconstraint optimization problems at least some time, they can exist so one can ask is

SVM can SVM be written like a risk minimizer, as it turns out. Yes SVM is also an

empirical risk minimization algorithm under a special loss function.

(Refer Slide Time: 50:38)

So, let us look at the SVM again this is, the SVM primal optimization problem half W

transpose W plus C I with these constraints. So, what do the constraints mean the

constraints mean, if you give a particular W on b these X i i is that I have to choose to

maintain feasibility or such that X i i has to be greater than 0. And X i i has to greater

than 1 minus y i into W transpose X i plus b.

So, X i i has to be greater than maximum of 0 comma 1 minus phi into W transpose, X i

plus b ultimately. I am minimizing summation X i i so, as long X i i can be anything

greater than this. So, the best X i i is to just simply choose this because, X i i has to

greater than equal to this, and I am minimizing summation X i i I I just need to choose

this as my X i. So, given a W b this is the best choice for X i and once I know that the

best choice for X i i can put it there once, I put it there I will use up the constraints now.

So, I can just do a unconstraint optimization.

(Refer Slide Time: 51:37)

So, what this means is that solving the SVM problem this, this constraint optimization is

same as solving this unconstraint optimization, instead of summation X i i. These X i i

has to take only this value max of this now I do not need these constraints any more

once. It takes this with respect to W and b and the corresponding X i i it satisfies these

constraints. So, my SVM problem is same as solving the unconstraint optimization

problem, minimize over W b of W transpose W plus C, I is equal to 1 to n max of this

max of 0 comma 1 minus y i and W transpose X i plus b. Now the model we used is f X

W transpose X plus b.

So, this is this term is like some, something y i and f X i this is f X i so, 1 minus y i f X i

this is some function of y i and f X i. So, this can be a loss function, if this is a loss

function this should be the regularization term. Of course, where that C comes is a matter

of convenience. So, the end we know that is a regulation term because for this model, we

already know that W transpose W is a good regularization term. So, this must be the

empirical risk so, is this empirical risk.

(Refer Slide Time: 52:50)

Yes of course, it is a empirical risk with respect to a particular loss function that we have

seen earlier, when we studied loss functions, it is called the Hinge loss. So, the hinge loss

for, for X y for a model, f is l of y comma f X is max of 0 comma 1 minus y into f X, that

is what we have here, that is what exactly max of 0 comma 0 minus y into f X y i f X i.

So, that is the binge loss, so with respect to hinge loss, if I want to do regularize a risk

minimization. What should I do minimize over W b 1 by n because empirical risk I is

equal to 1 to n l of y i f X i plus constant n is of W transpose W.

Because that is the regularization term l of y i comma f X i is nothing, but max 0 comma

1 minus y i f X i that is what, I have here. So, which means our SVM formulation is

nothing but empirical risk minimization under the hinge loss along with a regularization.

So, SVM is also no different from empirical risk minimization, it is just; it is just doing a

empirical risk minimization under a special loss function called hinge loss. Which you

have already seen as an example, loss function what we considered loss function matter

of fact a truly that these are convex loss unlike the 0 1 loss function.

(Refer Slide Time: 54:11)

As we saw the hinge loss and square loss are good convex approximations of the 0-1

loss, when we studied loss functions, we said the 0-1 loss is nice because, minimizing 0-

1 loss gives you classifier with minimum probability of misclassification. But 0 one loss

is non convex and hence it is good to have some convex loss functions. So, let us just

recall this 0-1 loss function is 1, we are considering y is plus 1 minus 1. So, and our

classifier is sign of f X our model.

So, 0-1 loss function is a y and f X of the same sign when there is no loss otherwise,

there is a loss. So, it is one if y f X is negative and 0 otherwise, as we already seen square

error loss can be written like this because, when y is 1 is 1 minus f X whole square.

When y is minus 1 it is minus 1 minus f X whole square, it is same as 1 plus f X whole

square. So, this is the square loss function, this as we have seen the hinge loss.

(Refer Slide Time: 55:07)

(Refer Slide Time: 55:56)

We can plot all these so, that is the 0-1 loss function plotted and the X axis, I am plotting

y into f X and the y axis, I am plotting the loss function y comma f X. So, that is the 0-1

loss function, but that is non convex. So, squared error is one way of convexifying it and,

the hinge loss is another way of convexifying it. Square loss is what say neural networks

minimize hinge loss is, what SVM is minimize. Because, I convexified it nice in SVM

because that is both pieces are linear.

I get a very nice optimization solution, the as we saw the empirical risk under regularize

the empirical risk under hinge loss can be rewritten equivalently, as the constraint

optimization problem, which can be solved very efficiently hinge loss. I also called soft

margin loss suppose we, we are actually minimizing expectation with respect to soft

margin loss say y is plus 1. So, we want to the f that models, such that we want to

minimize expectation of max 0 comma 1 minus y f X what is our best. We want always

this max 0 comma something to be 0.

So, we want this to be always positive, if possible that I can do if I always make y and f

X of the same sign. So, essentially what it means is that, the best f is such that a

probability y is equal to plus 1. It is greater than 0.5 given a particular X for that X f X

should be greater than 0 and so, this is a very nice classifier. This is essentially bayes,

bayes optimal classifier, if the posterior probability is greater than 0.5, I go for that class.

So, essentially minimizing expectation under hinge loss, also gives us just like under 0-1

loss gives us a freely a good classifier that is that is one another way of, of looking at

why SVM is perform better.

(Refer Slide Time: 57:10)

So, to go further on this, let us see that SVM method has two important ingredients; one

is the kernel function, the kernel functions allow us to learn non-linear model choosing

essentially, linear techniques. The second one is the support vector expansion, the final

model is expressed as the linear combination of the data vectors and often sparse.

Because as the Lagrange multipliers might be except for the support vectors for the rest

of them Lagrangian multipliers are 0.

So, that is the support vector expansion, the final model is expressed as a fast linear

combination of the examples, though these are very useful things. Now, in general also

these are good, kernels are good way to capture similarity, and are useful in general

support vector expansion is also a general property of kernel based methods. So, in the

next lecture, we will look at these two in detail; we will, we will look at capturing

general similarities, using kernels and also when all such support vector expansions

occur. So, next lecture, we will use slightly more theoretical tools and look at kernel

based methods in general.

Thank you.

