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Hello and welcome to this next lecture in this course of pattern recognition, we have 

been essentially discussing the support vector method and the kernel function based 

classifiers. So, we will continue with the discussion this class also, we have looked at the 

support vector method both for classification and regression. We have seen the support 

vector machines for classification and also looked at this support vector regression in 

both cases. There are certain things that are interesting one is that the optimal parameter 

vector is given by the linear combination of a subset of the training data. The linear 

combinations coefficients happen to be the Lagrange multipliers or some functions of the 

Lagrange multipliers in the of the optimization problem. 

But essentially the W is given as a linear combination of the training, training vectors 

this, this support vectors. And, we seen that the kernel trick allows us to learn non-linear 

models using essentially linear techniques this because that kernel we can kernelize the 

inner product. So, any algorithm that essentially has only inner products can be implicitly 



be executed in high dimensional space, using the kernel function. So, these are 

essentially the two basic characteristics of support vector method that we seen so far. 
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Now, what we have not fully discussed even though we mentioned it just briefly towards 

the end of last class is, how does one actually solve the learning problem of support 

vector machines? Learning of the support vector machine involves a constrained 

optimization problem. And last class, we seen how to an example of solving this 

constrained optimization problem for a very, very simple example is, is in R 2 learning a 

quadratic classifier with only 3 examples. Though it is simple instance, it does tell us the, 

the more involved the, the issues involved in solving the optimization problem. 

That we need more general methods, we briefly mentioned. We just recall them once 

again. So, in this class, we will briefly look at the general methods that people has 

proposed for the solution, we are not looking at any method in any great detail, because 

most of these algorithms simply happen to be specialized numerical optimization 

techniques. So, algorithmically once you formulate the optimization problem. There is 

not much more there is; there is nothing much more conceptually to convey except that, 

these are very interesting specialized numerical technique for solving the class of 

optimization problems that are of interest in SVM. 
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So, this is the optimization problem as you already seen this is the optimization problem 

that we need to solve is a quadratic optimization, quadratic programming problem. The 

we have a quadratic cost function, it is a linear term summation, mu i and a quadratic 

term mu I, mu j, y i y j K X i X j. Essentially, this is the quadratic form with respect to 

the mu vector of the matrix, whose I j’th element is y i y j K X i X j and R 2 constraints 

one is S linear constrain linear equality constrain mu i y i is equal to 0. Another, the rest 

of the rest of the constraints are simply V bound constraints of the variables.  

So, is a standard quadratic programming problem with a quadratic cost function and 

linear constraints. So, what do we need is a nice numerical method of course, there are 

many numerical methods for general non-linear programming problems. For example, I 

can use constraint gradient, descent gradient projection one can use penalty method, 

barrier method. There are many such standard numerical algorithms for solving 

constraint optimization problems, but you know we can do; we can; we can certainly do 

such gradient descent base methods. 

But this problem has lot of extra structure, and because of that many more efficient 

algorithms are proposed. This essentially, there are only bound constraints on the 

variable which are very simple to implement. There is only 1 equality constraint, this is a 

very nice quadratic form, so there are interesting things you can do with it to actually, I 

look at this structure, let us look at the conditions for optimality of this problem. We are 



asking given some mu 1 mu, 2 mu, n when how can I say (( )) not there optimal. So, I it 

simply means whether, or not they satisfy the Kuhn tucker conditions, so by writing 

Kuhn tucker conditions and doing some algebra. 
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We can show that these are the optimality constraints, if you give me mu 1, mu n then I 

will define f X as mu i y i K X i X plus B. Where b is given by this for some mu j greater 

than 0, as we can see these are the standard solutions. We could have got for W on B, if 

mu what the optimal thing. Then with respect to such an F, the, this is what all I have to 

satisfy for every. I if mu i is equal to 0 then y i of X i should be greater than equal to 1, if 

mu i is strictly between 0 and C y i of X i is equal to 1 and mu i equal to C. Then y i of X 

i has to be less than equal to 1. So, these are this is the optimality constraint. 

So, essentially it is as if every mu i is tied with one example. Even in the our constraints 

with the primal every mu i tied with because of every constraint in the primal is tied with 

one example. Every mu i is tied with one example. So, I can say which examples mu this 

is and each mu i is essentially has it is own condition because, it is not complete because, 

of f X depends on all the other mu is, but really I can ask which mu satisfy the constraint, 

which mu’s do not given the current f X if I think of f X as given. And do not worry 

about it being a function of mu, I can individually ask which mu satisfies and which 

mu’s do not satisfy the optimality constraints. So, given this kind of a structure, there are 

many interesting tricks you can do in optimization 



(Refer Slide Time: 06:48) 

 

And one standard such trick is what is called a chunking. Chunking is a very generic idea 

in optimization, where even though I have a optimization problem with large variables. 

We would optimize only on a few variables at a time, this standard chunking that most of 

us know about is the coordinate wise optimization. If I have an unconstraint optimization 

RNA simple thing to do is to first optimize with respect to first variable X 1 then with 

respect to X 2. Then with respect to X 3 and so on the idea is that all one dimensional 

optimizations are simple. So, in general chunking the idea of chunking consists of 

optimizing on only few variables at a time. It is utility is that the dimensionality of the 

optimization problem is controlled. 

Because we may not want to do one at a time as in the coordinate wise optimization so 

may be, I have optimization problem over thousand variables. I may be between 25 at a 

time, or 50 at a time, or 20 at a time. the idea is because the quadratic programming 

problem if I take only 20 variables. I have a quadratic form with 20 by 20 matrix which 

is much easier to solve than a cost function which involves quadratic form of 1000 by 

1000 matrix. Basically the idea of chunking is that at our iteration, I choose let us say a 

20 or 25 variables to optimize on and only for that, that many variables are in the 

optimization algorithm and I keep randomly or chosen, keep choosing subsets of variable 

to optimize and normally this speeds up the entire optimization, and this idea gave rise to 

the first specialized algorithm for SVM which is called SVM light. Even today possibly 

one of the most popular SVM algorithms easily downloadable, if just from any web 



browser SVM light will tell you how to download SVM light. Freely available software 

and very good for experimenting with so, SVM light essentially uses a chunking idea to 

solve the SVM optimization problem. 
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Now, as we seen chunking is basically do a few variables at a time. So, you can what is 

the extreme chunking I can do what is smallest set of variables, I can optimize on can I 

do coordinate wise optimization in this problem, I cannot because the mu i is have to 

satisfy one equality constraint mu i y i summation. mu i y i is equal to 0, what it means is 

if I am currently at a feasible point. So, I am at some mu 1, mu 2, mu N, which is 

feasible it satisfies all the constraints. If I change only 1 mu keeping everybody else 

same, obviously; I will go out of the feasibility region because, I can no longer satisfy 

the equality constraint. So, because a higher equality constraint if at every iteration I 

want to move from a feasibility point to a better feasibility point and so on. 

I cannot get rid of feasibility. So, I have to at least consider 2 variables at time, so this 

smallest chunked that I can optimize on is 2. So, there is an algorithm called sequential 

minimal optimization. It is called minimal, because it works only on 2 variables at a 

time, the earlier we said that, by during chunking, by reducing the number of variables to 

optimize. We are improving the, the I mean improving the numerically over speeding of 

the algorithm, so using only 2 at a time is very nice because you know, we do not even 

need a numerical optimization technique to actually with respect to 2 variables. 
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So, this is the algorithm SMO so SMO method optimizes 2 variables at a time it always, 

maintains feasibility at any given point. It is at a feasible at any given time in the 

algorithm is at a feasible point and then, it uses some 2 variables to optimize and comes 

to a new sort of a values for those 2 variables in such a way that terms still in the feasible 

division. It always maintains feasibility basically, what it does is keeping all other mu i 

fix, if we it changes only 2 of them let us say mu1, mu 2 have been changed. So, mu 3 to 

mu n are all fixed. Then my, my quadratic form of the; of the objective function right. 

 If I can always take, away all the terms involving only mu 3 to mu N, then I just get 

some quadratic expression in mu 1 and mu 2. Now, that is very easy to optimize, I can 

analytically find the optimum with respect to those 2. So, keeping all the other mu, I 

fixed if we want to change only 2 of them, we can calculate the updates for them 

analytically very easily which means, I do not have to spend my time doing numerical 

optimization. So, I can spend most of my time in deciding which 2 variables to choose at 

each iteration. 

Now, I have separate optimality conditions to be satisfied by them. So, I know which all 

variables are not satisfying optimality. Now, out of them I can choose 2 based on some 

heuristics. So, there are lot set of heuristics in SMO, which are employed to decide 

which 2 variables to choose and the resulting algorithm is extremely efficient. It can 

solve tons of 1000 of variable SVM problem very, very fast even on a simple computer. 



So, SMO is for a long time or the fastest algorithms for solving SVM, but too there are 

many, many other recent additions to this, but possibly even today SMO is one of the; 

one of the simplest in the sense of conceptually simple simple to explain. One of the 

simplest algorithms that is still very efficient to solve most of the freely available 

packages used at the SMO or SVM light for solving. The SVM optimization problem 

cause. 
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There are many other techniques for example, here is another technique which proposes 

also quite efficient compared to SMO is a just a little bit involved to actually create the 

details. The basic idea is the following suppose you have a 2 class problem with linearly 

separable patterns. When we did the; when we did the V C dimension proof for 

hyperplanes actually saw that 2 sets of points are linearly separable if and only if their 

convex hulls are separable. So, basically if I have 2 sets of points which are linearly 

separable, because 2 class problem where which is linearly separable then if I take 

convex hull of class 1 and convex hull of class 2 then those will be separable 2. 

Then I ask what are the 2 closest points on the 2 convex hulls that is I want to pick a pair 

of points one on each convex hull, which are closest to each other. Now, they are called 

nearest point methods and there are, some very efficient algorithm since computational 

geometry for such things. And one can show that the optimal hyperplane as we have 

defined earlier will be the line that perpendicularly bisects the line that is joining the 2 



closest points. Now, this idea can be used of course, you still need this is only in the 

linear case I have to make this thing work with kernel function, but this idea has been 

used to develop a very interesting and highly efficient algorithm for SVM optimization. 

So, like this there are many other techniques, so we stop there. 
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And so we have considered the entire SV support vector method for both classification 

and regression. We will see some generalizations of the kernel idea, but before that let us 

ask the question now, that we have considered one more method for learning a non-linear 

classifiers, how good it is. As it turns out so say very competitive method for tackling 

most PR problems today, the state of what is such that if your trying out a for the 

algorithm on your problem of the first, (( )) unless you have very good reason. You have 

to first try SVM for example, if I am a researcher in your writing, your paper and 

suggesting a new method the one thing against, which you have to benchmark your 

method, is a SVM. 

So, SVM has become that kind of a standard in pattern recognition today. SVM meaning 

SVM and all the kernel, kernel based methods, it is possibly more today is much more, 

much more if a competitive method than neural network methods. We considered earlier, 

but there is not to say that neural network methods will not work or for every problem. 

SVM is good obviously; it does not generate magic classifiers but all the same learning a 

non-linear classifier only, involves choosing a kernel function here. 



And choosing a kernel function is much easier because, I just asking the kind of 

separation. I want as I want to choosing whether I want one hidden layer or 2 hidden 

layer how many hidden nodes, I want in a in a neural network case and also if your using 

feed forward sigmidal networks. I have the problem of local minima here the SVM 

optimization problem does not have the problem of optimal minima. So, learning non-

linear classifiers with SVM is certainly very, very attractive because, all it involves is 

choosing kernel of course, it is not as simple as that uses still needs to make choice of 

parameters. I have to choose kernel function, but I also have to choose parameters in the 

kernel function for example, if I am using Gaussian kernel, I have to choose what the 

sigma in the Gaussian kernel should be. 

Second thing, I have to choose is the C parameter, the penalty parameter in the 

optimization problem. I have to also choose parameters in the optimization problem for 

example, in any numerical optimization. I have to choose an epsilon which is equal to 0 

So, what I am trying to say for checking optimality, if I have to say y i f X i is equal to 1 

obviously, I have to ask to what precision should be one in numerical technique. So, to 

also choose an epsilon so all these choices are still there bad choices can still result in 

overfitting, but given that still SVM is possibly one of the most competitive methods for 

tackling PR problems today. The second very interesting thing about SVM is are the 

support vectors, as we have seen the support vectors or he training data which are closest 

to the class boundary as well as closest to the optimal separating hyperplane. 

Of course, this hyperplane is in high dimension space that essentially closest to the class 

boundary in the original space. So, these themselves have very important extra 

information that this support vector method gives me because, if I know that these are 

the patterns that are closest to the boundary in some sense. I know these are the hardest 

samples to learn to classify as a matter of fact in the SVM method, as we saw once we 

get our optimal hyperplane. If now I keep only the support vectors, and throw away the 

rest of the examples. And once again solve the optimization problem, new optimization 

problem only on this and learn this exactly the same optimal hyperplane. Because these 

support vectors are the most important the once they classify support vectors. The rest of 

the things will be automatically classified. 

So, in that sense support vectors at the end of thing, I am not only just getting a classifier. 

I am also getting support vectors, which is a very useful extra information that the 



method gives me matter of fact in the sense that they are they, they define the class 

boundary may be never about classifier. We just use a support vectors as we will do very 

well as the matter of fact in many applications such things are tried. I will just show you 

a 2 true interesting cases of which illustrate both how nicely the SV method classifies as 

well as utility of the support vectors. 
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Here is the first example is a 2 class problem, one class is shown with slightly darker 

things than the other, actually we have classes and squares. I suppose all of you can see 

that it is a 2 by 2 checker board problem we have at the centre 2 lines. So, this quadrant 

and this quadrant is one class this quadrant and this quadrant is what is shown here are 

thousand samples uniformly drawn in the square and the, the classification is also given. 

So, these are the sample set and, if I did in SVM with Gaussian kernel and after learning 

the SVM, if I flag only the support vectors. 
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That is what I get as you can see these support vectors essentially, define the class 

boundary. These are all the vector that are closest to the class boundary of course, I use a 

Gaussian kernel. So, I am working in a very higher dimensional space learning 

hyperplane there, but then the patterns are closest to that hyperplane or this matters. So, 

essentially, the support vectors give me a very good idea of the geometry of the class 

boundary of course, pictorially um. 
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Here is another example, certainly more complicated actually it looks like a mess here, I 

plotted 2500 sample points. This is actually a 4 by 4 checker board. That is a, a 4 by 4 

grid, where alternate squares are different classes. So, this is one class that is another 

class that is one class that is another class and so on. This is one class that is another 

class once again, this is class 1 and that is class 2 and so on. These are 4 by 4 square once 

again, using Gaussian kernel, if I learn SVM, 
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And then plot the support vectors. Those are the support vectors as you can once again 

see, I have neatly pulled out only the vectors, which are closest to the class boundary, 

rest of them can all be thrown out now. So, in this sense not only SVM is do a good 

classification in, in both these cases. The SVM classification is very has very high 

accuracy, but in addition the support vector themselves are a very useful extra 

information that we get out of this method. 
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The basic ideas about vector machines as we seen is the kernel function that is what 

makes the method competitive the idea of kernel functions can extended in many ways. 

So, basically do the extensions mean basically, I can reformulate the SVM problem so, 

me of them are we can deformulate the SVM problems. So, that I get may be only an 

approximate optimal hyperplane by the algorithm will be more efficient, or I reformulate 

exactly, the sense I still get the optimal hyperplane that I can add some additional 

features to the original SVM method. There are many, many, many variations like this. 

Today for this course to stick to a time and other constraints, I have I am just going to 

illustrate it with just 2 simple examples, once of each kind. 
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There is, this is the way one does these things. So, I start with the basic SVM 

optimization problem and then, then I change the optimization problem in some ways 

which is useful to me. So, here is one way my original optimization problem is half W 

transpose, W plus time X i minimize, that subject to that supportability constrain y i W 

transpose X i plus P greater than 1 minus X i greater than equal to 0 that is the standard 

SVM problem with penalty constant. I get a b square the idea is, I am having my, my 

actual classifier is W transpose X plus b, but I am using only W transpose W b square 

now. I know why, I put transpose W because, that is the margin that I am minimizing b 

square has nothing to do there, but let us say we put the b square term anywhere, just like 

that we put the b square term then what happens, 
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What happens is this I what turns out to be the dual your objective function hasn’t 

changed, not hasn’t changed, this time is same as earlier, this time is same as earlier. I 

am just adding one more term in the objective function mu i mu j y i y j and, this is also a 

quadratic term, it makes no difference adding one more term into this quadratic 

optimum, but what I gain is that the equality constraint is lost there is no longer.  

The equality constraint in the dual only bound constraints, why is such a great thing now 

it is no different from just minimizing unconstrained way a quadratic function for 

example, I can do gradient descent on this. If I do gradient descent on this normally in a 

constrained gradient descent, I have to do gradient projection, what do I do from the 

current point I calculate the variant direction move along that thing wherever I go from 

there I have to project myself back on the feasibly region now, the feasibility region is 

crazy. I do not know how to project myself. 

But if the feasibility is only about bound constraints then what it means is I start from 

some mu travel along the gradient then at that point, if any of the mu is less than 0. I 

make that 0 for any of the mu is greater than C, I make it C that is all the projecting back 

in this constraint region is, it can be better than that because, it is a quadratic function if I 

take it is gradient and equate to 0, I get a similar linear equations. So, actually I have to 

solve a set of linear equations subject to these constraints, I can easily solve a set of 

linear equations by many relaxation methods. relaxation for example, relaxation simply 



says, I start with some, some point, some solution point, then of the new value for the 

first variable from the first equation.  

By using the old values of the other thing now, for this is new value for the second 

variable from the second equation, and so on. and if the it is very easy for me to 

implement these constraints because, after every time I calculate the update for mu i have 

to just clip it between 0 and C is that update turns out to be negative I make it 0. If it 

turns out to be greater than C i make it C right. 

So, I can just take the, the, the variant which become just a set of linear equations and I 

can solve the linear equations under this bound constraint, using a simple algorithm such 

as relaxation, where iteratively I keep finding new values for variables by one using one, 

one equation for one variable. It is called, it is called successive over relaxation this 

makes very efficient algorithm. It, it is much more efficient almost 10 times more 

efficient that SMO. 

But the problem is that, it is not solving the problem, I am interested in I am of course; it 

is its giving me a very efficient algorithm for solving a different problem. what is this, b 

square doing will that still give me optimal hyperplane of course, it does because my 

optimal hyperplane is a solution of the optimization problem with b square not there. But 

what can be shown is that if I do with a b square I would not be too far away, from the 

optimal hyperplane. So, I get only approximate optimal hyperplane finally, a good 

approximation and the (( )) I mean the, the, the advantage I am gaining for being only 

approximately correct on the optimal hyperplane is that solving my dual optimization 

problem is very, very efficient. So, this is one way one can reformulate. 
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We look at another reformulation now, this is called the nu SVM and most people think 

that this nu is a (( )) on the SVM proposed this new SVM the idea behind the or the 

motivation behind new SVM is as follows. This is the primal objective problem that we 

that we seek to solve for SVM here, I put phi X i, instead of X i because, we are 

essentially learning this optimal hyperplane near high dimensional space and phi is the 

symbol for that transformation. Basically, this is the margin and basically, you put X i 

because, we do not whether things are separable or not. So, we use the slack variables X 

i. The problem with this optimization is, I do not know how to choose C. C is a kind of 

an exchange rate between margin, and some measure of error and the measure of error is 

very crazy here, because X i i greater than 0, does not have mean that term actually, 

make the error if X i i is better than 0. 

But less than one the corresponding X i y i is correctly classified, but it still has 2 error 

and it does not tell me, how many I am incorrectly classifying. Instead of misclassifying 

only 1 but misclassifying by a large margin, I may settle for something that classifies 100 

misclassifies, 100 patterns, but each one by small margin. Because by this the summation 

X i, I really do not know what it is doing. So, I I cannot give any physical meaning to C 

all in (( )), if C is very large, I will not tolerate any errors except, for that I have very 

little idea about whether, I should choose C to be 5 or 10 and what are the tradeoffs. 
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So, one problem with the SVM formulation slack variables is we do not have good 

guidelines on how to choose C it is very difficult to give guidelines because C does not 

have any simple interpretation So, let us say we we want to work with a optimization 

problem in which the use of constant like C has some meaning. So, I reformulate the 

primal objective function like this I still have are We transpose W I still have summation 

X i i instead of C. I put 1 by n here, where n is the number of samples and, add a one 

extra term minus nu rho nu is a parameter instead of C I am my new parameter is nu, nu 

rho is also optimization variable now in addition to W b and X i i I have added one more 

optimization variable rho and rho comes here in place of one 

 So, instead of say demanding y i and W transpose phi X i plus b greater than one minus 

X i. I am saying, it should be greater than rho minus X i. So, whether the margin is with 

respect to hyperplanes that are one distance away or rho distance away. I do not know, I 

am just saying take a rho distance away and optimize. Now, let us just consider this 

problem as it is and of course, if I want rho to play, put the place of one and, and now, 

that is what defines a margin then rho I need rho greater than 0. I do not need rho greater 

than 0, for the following thsi optimization is very cleverly chosen given this problem if 

the point W is all come as a W is equal to 0 or, b equal to 0 all components are X i equal 

to 0 and rho equal to 0. This is my optimization variables, all 0 is a feasible point and 

because, it satisfies all the constraints. 



Because all 0 is feasible point and at that point, the objective function is value 0 which 

means the, the actual minima cannot be positive. Because, I already knew one feasible 

point at with the objective functions value 0. Your strictly positive value can be it is 

minima now, if I choose rho greater than 0, this term will be positive, I know W 

transpose, W is positive. I know X i i is are positive So, if I, if I choose any rho greater 

than 0, this will be strictly greater than 0. Now, such a point can never be the solution of 

this optimization problem because, I know a feasible point at which the objective 

functions value 0. So, we do not need rho greater than 0 constraint at all we can just 

minimize unconstraint on rho. So, let us start with the this problem. 
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And form it is Lagrangian. So, recall that I have W b X i rho 4 optimization variables 

then I have n constraints like this. Another unconstraint like this, I have to write all my 

constraints as less or equal to 0 form so, this constrain becomes rho minus X i i minus y 

into W transpose phi X i plus b less or equal to 0. This constraint becomes minus X i i 

less than equal to 0, this constraint becomes minus X i i less than equal to 0 also, the (( )) 

that we are putting phi X i here so that we are already using the kernel trick and we 

ultimately put the kernel there that we are we are of keeping the notations.  

So, that we are conscious that the formulation is in a transformed space so, with all this, 

this will be my L;agrangian. This is objective function half W transpose, W minus rho nu 

plus 1 by n summation X i i minus eta i X i i is for this constraint minus X i i less than 



equal to 0, and eta are the corresponding Lagrangian variables and this is for this 

constraint summation mu i rho minus X i i minus y i W transpose phi X i plus b this is 

my Lagrangian right. 

So, mu i are the Lagrangian multipliers for the separability constraints and eta is the 

Lagrangian multipliers for constraints X i i greater than equal to 0. Now let us put the 

Kuhn tucker conditions for this I have to first is so, derivative with respect to all the 

optimization variables should be 0 of l. So, there with expect to W 0 del by del b is equal 

to 0 with respect to X i is equal to 0 and del l, where del rho is equal to 0 del with respect 

to W is equal to 0 is such a thing because with respect to W nothing has changed, I get 

one W from here and I get. 

 

So, that will still give me this similarly, with respect to b, also nothing has changed so I 

put I get that with respect to X i. So, if I want to differentiate with respect to any 

particular X i i I get 1 by n from here minus eta i, from here and minus mu i from here so 

any (( )) with respect to any X i i will give me eta i plus mu i is equal to 1 by n. It is a 

very interesting thing the, the 2 Lagrangian multipliers or the different constraints in the 

primal I will (( )) like this similarly, del l by del rho will give me if differentiate with 

respect to rho will give me minus nu from here and summation mu i from here. 

So, this nu that I have chosen as a nu is of different constant should be equal to 

summation, I is equal to one to n mu i interesting relationship. So, the Kuhn tucker 

conditions specifies that summation mu i should be equal to nu, then I have the 



feasibility the way the 2 constant that should be satisfied then the Lagrange multipliers 

for the equality constraints shall be positive then, I have the complimental slackness 

because, eta i is for the constraint X i i greater than equal to 0, eta i X i i should be equal 

to 0. Similarly, nu I into this constraint should be equal to 0 these two are the 

complimental slackness condition. 
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Now, why is this interesting suppose X i i greater than 0 for some I so, X i i is greater 

than 0. Then the corresponding eta is equal to 0 because, of the complimentary slackness 

once the corresponding eta is equal to 0, this tells me that the corresponding mu i should 

be equal to 1 by n. and I also know that nu is equal to summation mu i we can put all of 

these together suppose X i i is greater than 0 for some i. Then we have eta i equal to 0 

and hence, mu i is equal to to 1 by n and hence nu is equal to summation mu I. Now, this 

summation mu i can be written as summation over all those I is such that, X i i greater 

than 0 and summation over all those i is, is that X i i equal to 0. For some I X i i will be 

X i for some i X i i will, will greater than equal to 0 the mu i is are positive. 

So, I can if I (( )) this terms it is all, I am only finding a lower bound. So, I can always 

write this plus, this is greater than equal to only this term and this term has a very 

interesting structure. When X i i greater than 0 mu i is equal to 1 by n. So, each of these 

terms will be 1 by n how many systems are there as many i are there X i i greater than 0. 

So, I can say this is the, this set of I is are that X i i greater than 0. This is the number of I 



for which X i i greater than 0 by n. What does X i i greater than 0 means? On that 

particular example, X i y i there is an margin error that is I am actually do not have as 

much margin, as I want that is X i i is are slack variables, X i i will be greater than 0 only 

if I makeshift arrangement making an error on the corresponding X i y i. 

So, this numerator here is nothing but the number of examples on which I made error. 

So, what we have is that mu is greater than equal to the fraction of margin errors so, the 

new that I have chosen is such, that it has to be greater than or equal to the number of 

margin errors. So, if I chose mu to be point 1, when I, when I am solving this problem 

that means, I will not allow that means my optimization problem guarantees that any 

solution. I get is such that the number of i for which I have made margin errors is less 

than 10 percent. So, nu is an upper bound on the fraction of margin errors is not all. 
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 We also know that for all I, whether or not X i i greater than 0, mu i is between 0 and 1 

by n and we known nu is equal to summation mu I. So, I can once again split that to mu i 

such that mu i greater than 0, mu i such that mu i equal to 0. This term does matter really 

and for all these mu I, I know it is less than equal to 1 by n So, I can write it less than 

equal to mu i such that mu i greater than 0, and we know what are mu i greater than 0 

they are support vectors. So, nu is also, because each mu is less than equal to 1 by n 

summation mu i is less than equal to 1 by n times. The number of thing in the summation 



and number of things in that summation is number of I is, is the mu i greater than 0 that 

is equal to the number of support vectors. 

So, nu is a lower bound on the fraction of support vectors that is nu is always less than 

equal to fraction of support vectors. So, if I chose nu to be 1. I am, I am asking the 

optimization I am, I formulate the optimal problems such that at the optimum point, the 

fraction of support vector should be at least 10 percent and the number of margin errors 

have to be utmost 10 percent. Matter of fact, one can show that asymptotically as the 

number of examples goes to infinity nu will be actually equal to both. These fractions nu 

will be equal to the fraction of support vectors and fraction of margin errors. It is very 

useful so, I can decide what kind of performance I want by choosing my nu. 
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So, the nu in SVM formulation in the nu in the nu, SVM formulation the nu is a user 

chosen constant and unlike the parameter C. the nu has interesting interpretation nu will 

be between 0 and 1 and with of nu between 0 and 1. This will be, this will not have a 

solution because nu has to be a summation mu i and, mu i are always between 0 and 1 by 

n and given that nu between 0 and 1. It is simultaneously, it is a, it is a lower bound on 

the fraction of support vectors and is an upper bound on the fraction of margin errors. 

Simultaneously, an upper bound on the fraction of errors and lower bound on the fraction 

of support vectors. So, what it means is that for the chosen nu the problem has a solution 

with rho greater than 0 of course, if I chosen an unattainable nu I cannot get a solution, 



but what do you mean by I cannot get a solution it always has a feasible point. So, I will 

get a solution, but the solution will be trivial, I will get rho is equal to 0, but if I will get a 

solution with rho greater than 0, then the bounds would be met. This gives you a very 

good way of choosing the penalty constant unlike C, I can choose nu. And you know 

because, I have now good idea of so if I, if I am allowing, if I am willing to tolerate may 

be at most 10 percent margin errors then I choose nu to be 0.1. 

I solve it suppose on this problem, I cannot get a solution, where I can only misclassify 

10 percent points it turns over that the rho that I get would be 0. So, maybe I will change 

the 10 percent nu to 15 percent nu. But the nu has a nice interpretation and hence in that 

sense is much easier to choose, than the penalty constancy, this is the; this is the real 

utility of the nu SVM. So, can it be solved easily see my, my primal problem now looks 

much, much different from the old primal problem of old SVM, because I get a minus 

rho nu rho here and I changes to rho but much more importantly unlike the rho SVM. It 

has one more optimization variable, but as it turns out if I take the dual the, dual looks no 

different. 
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This is the dual for us all that happened is the, the quadratic term in, in the in the dual 

still stays mu i mu j y i y j K X i X j with a minus term the, the linear term summation 

mu i goes away does not matter. Now, I still have the old inequality constraint, I is equal 

to 1 to n mu i y i is equal to 0. The old equality constraint then I still have bound 



constraint, but not there is no C. Now, as what was there before summation X i i is 1 by 

n. 

So, I get mu i to be between 0 and 1 by n and I get this extra summation, i is equal to 1 to 

n mu i is equal to nu. So, it is exactly same as the old SVM, this external rho that I have 

put in really makes no difference. The objective function is still quadratic and, I still have 

similar kind of linear equality constraints and bound constraints of the variables. So, a 

simple optimization problem similar to that of old SVM so, it is very easy to solve once 

again the dimensionality is only n and so on, so forth. One can also show that this is not 

any approximation like the P S 1 I considered. 

If suppose, you have a solution for nu SVM and ultimately once we solve we will not 

only get mu i is, but also get rho and get say, the rho is strictly greater than 0. That is 

what, we mean by solution for nu SVM. Then I go back to the old SVM formulation 

there I choose C is equal to 1 by rho times n, n is the number of examples, then 1 can 

show that you get the same solution with that old SVM algorithm as you got for nu 

SVM. So, this nu SVM essentially gives you a solution, you could have got for a 

particular value of C in that sense unlike adding b square in function I am not doing any 

approximation that, what I have done is, I have really cleaned up the formulation of 

SVM because, unlike the penalty constant C the use of different constant nu here has 

some interpretation. 
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Now, this idea can be extended to regression problem also just you have got nu SVM. I 

can get nu support vector regression algorithm, let us call it nu SVR in the regression 

problem, what are the use of different constants one is epsilon, epsilon tells me see I if 

you recall your support vector regression algorithm. We’re using the so called epsilon 

insensitive loss function. So, in that sense epsilon tells me the allowable error range if the 

actual value the difference between the actual value and my prediction is less than 

epsilon I suffer no loss unlike in the least squares case so to make a good guess on 

epsilon on this problem. If I put epsilon very large then useless predictions will come and 

even, if I put epsilon very small, I may not be able to find a nice function, which predicts 

to that level of accuracy. 

So, because up to epsilon the loss function is nu 0 loss, I should use epsilon very 

intelligently and once again like the C there here. The C is not the real issue this epsilon 

is the one that is telling me, how I am trading accuracy. And I have no like epsilon 

specify the tolerance, tolerable error and is once again difficult to know for this data set. 

What is a tolerable error so like in the nu SVM case, we can reformulate support vector 

regression. So, that just like we added rho instead of one there and rho as a optimization 

variable. we can add epsilon as an optimization variable here this will give me something 

very similar to SVM nu SVM, it is like this  



(Refer Slide Time: 45:03) 

 

(Refer Slide Time: 45:46) 

 

So, once again this is my old SVR optimization half W transpose W which we added as a 

parameter we already seen this is like the epsilon margin of a function C times, this 

because, this is simply a way to implement the epsilon in sense to a loss function. So, if 

(( )) of y i minus W transpose phi X i minus b is less than epsilon, when both X i i and X 

i i prime are 0, if on one side it is not less than epsilon, then the corresponding X i i will 

come here. 



So, this is my whole formulation of the slack variables and in the nu formulation. I want 

to optimize an epsilon also, I add epsilon as an extra parameter for optimizing and I put 

nu epsilon inside here otherwise the constraints remain the same epsilon just became an 

optimization variables. And I am just saying on the C side in addition to your old 

parameters, I put nu epsilon where nu is a user chosen constant. 
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The dual for this once turns out to be quadratic, it is, it got once again very simple 

structure a, very similar to the old nu SVR. I would not go in details because, it is, its it is 

pointless, but the, the thing to recognise is that the, the objective function is still as one 

linear term and one quadratic term, and all constraints are linear. So, this is once again a 

very good nice optimization problem and, one can show that you get similar results as nu 

SVM. The whole idea of, why we did this is same as in SVM case, where we want to 

have a allowable accuracy. So, we want to choose nu based on how much accuracy we 

are looking for in our predictions. So, that you know I, I correctly optimize a my epsilon 

tolerance limit. 
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So, this is, this turns out to be true, this turns out to have similar kind of properties as the 

nu SVM case that is to say in the nu, SVR suppose nu SVR leads to solution, W bar b 

bar epsilon bar with epsilon bar strictly just like in the nu SVM. If, I choose a wrong nu I 

would not get a solution in the sense, I get a solution with rho is equal to 0 similarly, here 

so when I get a solution with epsilon strictly greater than 0. Then if I now run the old 

SVR with that value of epsilon and the, the, the same values for the other constant C, 

then I get back the same solution. 

So, one like nu SVM, nu SVR also gives you a solution that old SVR could have given 

and at some particular parameter settings. The only thing is we beforehand do not know 

how to set this parameter because, for this data set we do not know, what is the tolerable 

error? That is why we assumed it is good except that once, once I get a particular epsilon 

bar for that epsilon bar. I get the; I get the same solution in the old nu SVR also, this is a 

actual exact formulation and once again you confer that nu is an upper bound and the 

fraction of errors meaning number of points on which prediction is greater than epsilon 

and lower bound on the fraction of support vectors. And like earlier, if you have 

sufficiently good data sets, sufficiently good meaning your large number of IID 

examples and your class conditional densities satisfies some proper conditions. 

Then in such cases nu equals nu simultaneously equals both fractions asymptotically. So, 

as the number of examples goes to infinity nu is actually equal to the fraction of support 



vectors, as well as the fraction of errors so, like an SVM it becomes very easy to decide, 

how to choose the required constants by the user. So, this is; this is an example of just 

reformulating the, the optimization problem for SVM. So, that the resulting optimization 

problem is a lot easier to choose the user defined constants while at the same time, we 

are still getting the same solution, as the old SVM and same solution mean, same 

solution at some parameters. So, we are not really sacrificing the idea of getting optimal 

hyperplane, but this allows us to choose our parameters much more simply much more 

easier to choose than the penalty constant C.  
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Now, I will look at one more issue with SVM is we posed SVM support vector 

regression problem as a risk minimization under a special loss function namely, epsilon 

insensitive loss function. And then reformulate, it as a equivalent constraint optimization 

problem for a support vector machine namely, the classification problem we directly 

pose the optimal hyperplane problem is a constraint optimization problem. Among all 

hyperplane that satisfy, the separabilty constraint, find the one with minimum margin. 

But know we know the connection between, constraint optimization equivalent 

unconstraint optimization problems at least some time, they can exist so one can ask is 

SVM can SVM be written like a risk minimizer, as it turns out. Yes SVM is also an 

empirical risk minimization algorithm under a special loss function. 
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So, let us look at the SVM again this is, the SVM primal optimization problem half W 

transpose W plus C I with these constraints. So, what do the constraints mean the 

constraints mean, if you give a particular W on b these X i i is that I have to choose to 

maintain feasibility or such that X i i has to be greater than 0. And X i i has to greater 

than 1 minus y i into W transpose X i plus b. 

So, X i i has to be greater than maximum of 0 comma 1 minus phi into W transpose, X i 

plus b ultimately. I am minimizing summation X i i so, as long X i i can be anything 

greater than this. So, the best X i i is to just simply choose this because, X i i has to 

greater than equal to this, and I am minimizing summation X i i I I just need to choose 

this as my X i. So, given a W b this is the best choice for X i and once I know that the 

best choice for X i i can put it there once, I put it there I will use up the constraints now. 

So, I can just do a unconstraint optimization. 
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So, what this means is that solving the SVM problem this, this constraint optimization is 

same as solving this unconstraint optimization, instead of summation X i i. These X i i 

has to take only this value max of this now I do not need these constraints any more 

once. It takes this with respect to W and b and the corresponding X i i it satisfies these 

constraints. So, my SVM problem is same as solving the unconstraint optimization 

problem, minimize over W b of W transpose W plus C, I is equal to 1 to n max of this 

max of 0 comma 1 minus y i and W transpose X i plus b. Now the model we used is f X 

W transpose X plus b. 

So, this is this term is like some, something y i and f X i this is f X i so, 1 minus y i f X i 

this is some function of y i and f X i. So, this can be a loss function, if this is a loss 

function this should be the regularization term. Of course, where that C comes is a matter 

of convenience. So, the end we know that is a regulation term because for this model, we 

already know that W transpose W is a good regularization term. So, this must be the 

empirical risk so, is this empirical risk. 
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Yes of course, it is a empirical risk with respect to a particular loss function that we have 

seen earlier, when we studied loss functions, it is called the Hinge loss. So, the hinge loss 

for, for X y for a model, f is l of y comma f X is max of 0 comma 1 minus y into f X, that 

is what we have here, that is what exactly max of 0 comma 0 minus y into f X y i f X i. 

So, that is the binge loss, so with respect to hinge loss, if I want to do regularize a risk 

minimization. What should I do minimize over W b 1 by n because empirical risk I is 

equal to 1 to n l of y i f X i plus constant n is of W transpose W. 

Because that is the regularization term l of y i comma f X i is nothing, but max 0 comma 

1 minus y i f X i that is what, I have here. So, which means our SVM formulation is 

nothing but empirical risk minimization under the hinge loss along with a regularization. 

So, SVM is also no different from empirical risk minimization, it is just; it is just doing a 

empirical risk minimization under a special loss function called hinge loss. Which you 

have already seen as an example, loss function what we considered loss function matter 

of fact a truly that these are convex loss unlike the 0 1 loss function. 
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As we saw the hinge loss and square loss are good convex approximations of the 0-1 

loss, when we studied loss functions, we said the 0-1 loss is nice because, minimizing 0-

1 loss gives you classifier with minimum probability of misclassification. But 0 one loss 

is non convex and hence it is good to have some convex loss functions. So, let us just 

recall this 0-1 loss function is 1, we are considering y is plus 1 minus 1. So, and our 

classifier is sign of f X our model.  

So, 0-1 loss function is a y and f X of the same sign when there is no loss otherwise, 

there is a loss. So, it is one if y f X is negative and 0 otherwise, as we already seen square 

error loss can be written like this because, when y is 1 is 1 minus f X whole square. 

When y is minus 1 it is minus 1 minus f X whole square, it is same as 1 plus f X whole 

square. So, this is the square loss function, this as we have seen the hinge loss. 
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We can plot all these so, that is the 0-1 loss function plotted and the X axis, I am plotting 

y into f X and the y axis, I am plotting the loss function y comma f X. So, that is the 0-1 

loss function, but that is non convex. So, squared error is one way of convexifying it and, 

the hinge loss is another way of convexifying it. Square loss is what say neural networks 

minimize hinge loss is, what SVM is minimize. Because, I convexified it nice in SVM 

because that is both pieces are linear. 



I get a very nice optimization solution, the as we saw the empirical risk under regularize 

the empirical risk under hinge loss can be rewritten equivalently, as the constraint 

optimization problem, which can be solved very efficiently hinge loss. I also called soft 

margin loss suppose we, we are actually minimizing expectation with respect to soft 

margin loss say y is plus 1. So, we want to the f that models, such that we want to 

minimize expectation of max 0 comma 1 minus y f X what is our best. We want always 

this max 0 comma something to be 0. 

So, we want this to be always positive, if possible that I can do if I always make y and f 

X of the same sign. So, essentially what it means is that, the best f is such that a 

probability y is equal to plus 1. It is greater than 0.5 given a particular X for that X f X 

should be greater than 0 and so, this is a very nice classifier. This is essentially bayes, 

bayes optimal classifier, if the posterior probability is greater than 0.5, I go for that class. 

So, essentially minimizing expectation under hinge loss, also gives us just like under 0-1 

loss gives us a freely a good classifier that is that is one another way of, of looking at 

why SVM is perform better. 
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So, to go further on this, let us see that SVM method has two important ingredients; one 

is the kernel function, the kernel functions allow us to learn non-linear model choosing 

essentially, linear techniques. The second one is the support vector expansion, the final 

model is expressed as the linear combination of the data vectors and often sparse. 



Because as the Lagrange multipliers might be except for the support vectors for the rest 

of them Lagrangian multipliers are 0.  

So, that is the support vector expansion, the final model is expressed as a fast linear 

combination of the examples, though these are very useful things. Now, in general also 

these are good, kernels are good way to capture similarity, and are useful in general 

support vector expansion is also a general property of kernel based methods. So, in the 

next lecture, we will look at these two in detail; we will, we will look at capturing 

general similarities, using kernels and also when all such support vector expansions 

occur. So, next lecture, we will use slightly more theoretical tools and look at kernel 

based methods in general. 

Thank you. 

 


